Tag Archives: Technical University of Denmark

Science advice conference in Brussels, Belgium, Sept. 29 – 30, 2016 and a call for speakers

This is the second such conference and they are issuing a call for speakers; the first was held in New Zealand in 2014 (my April 8, 2014 post offers an overview of the then proposed science advice conference). Thanks to David Bruggeman and his Feb. 23, 2016 posting (on the Pasco Phronesis blog) for the information about this latest one (Note: A link has been removed),

The International Network for Global Science Advice (INGSA) is holding its second global conference in Brussels this September 29 and 30, in conjunction with the European Commission. The organizers have the following goals for the conference:

  • Identify core principles and best practices, common to structures providing scientific advice for governments worldwide.
  • Identify practical ways to improve the interaction of the demand and supply side of scientific advice.
  • Describe, by means of practical examples, the impact of effective science advisory processes.

Here’s a little more about the conference from its webpage on the INGSA website,

Science and Policy-Making: towards a new dialogue

29th – 30th September 2016, Brussels, Belgium

Call for suggestions for speakers for the parallel sessions


“Science advice has never been in greater demand; nor has it been more contested.”[1] The most complex and sensitive policy issues of our time are those for which the available scientific evidence is ever growing and multi-disciplined, but still has uncertainties. Yet these are the very issues for which scientific input is needed most. In this environment, the usefulness and legitimacy of expertise seems obvious to scientists, but is this view shared by policy-makers?


A two-day conference will take place in Brussels, Belgium, on Thursday 29th and Friday 30th September 2016. Jointly organised by the European Commission and the International Network for Government Science Advice (INGSA), the conference will bring together users and providers of scientific advice on critical, global issues. Policy-makers, leading practitioners and scholars in the field of science advice to governments, as well as other stakeholders, will explore principles and practices in a variety of current and challenging policy contexts. It will also present the new Scientific Advice Mechanism [SAM] of the European Commission [emphasis mine; I have more about SAM further down in the post] to the international community. Through keynote lectures and plenary discussions and topical parallel sessions, the conference aims to take a major step towards responding to the challenge best articulated by the World Science Forum Declaration of 2015:

“The need to define the principles, processes and application of science advice and to address the theoretical and practical questions regarding the independence, transparency, visibility and accountability of those who receive and provide advice has never been more important. We call for concerted action of scientists and policy-makers to define and promulgate universal principles for developing and communicating science to inform and evaluate policy based on responsibility, integrity, independence, and accountability.”

The conference seeks to:

Identify core principles and best practices, common to structures providing scientific advice for governments worldwide.
Identify practical ways to improve the interaction of the demand and supply side of scientific advice.
Describe, by means of practical examples, the impact of effective science advisory processes.

The Programme Committee comprises:

Eva Alisic, Co-Chair of the Global Young Academy

Tateo Arimoto, Director of Science, Technology and Innovation Programme; The Japanese National Graduate Institute for Policy Studies

Peter Gluckman, Chair of INGSA and Prime Minister’s Chief Science Advisor, New Zealand (co-chair)

Robin Grimes, UK Foreign Office Chief Scientific Adviser

Heide Hackmann, International Council for Science (ICSU)

Theodoros Karapiperis, European Parliament – Head of Scientific Foresight Unit (STOA), European Parliamentary Research Service (EPRS) – Science and Technology Options Assessment Panel

Johannes Klumpers, European Commission, Head of Unit – Scientific Advice Mechanism (SAM) (co-chair)

Martin Kowarsch, Head of the Working Group Scientific assessments, Ethics and Public Policy, Mercator Research Institute on Global Commons and Climate Change

David Mair, European Commission – Joint Research Centre (JRC)

Rémi Quirion, Chief Scientist,  Province of Québec, Canada

Flavia Schlegel, UNESCO Assistant Director-General for the Natural Sciences

Henrik Wegener, Executive Vice President, Chief Academic Officer, Provost at Technical University of Denmark, Chair of the EU High Level Group of Scientific Advisors

James Wilsdon, Chair of INGSA, Professor of Research Policy, Director of Impact & Engagement, University of Sheffield

The conference will be a combination of plenary lectures and topical panels in parallel (concurrent) sessions outlined below. Each session will include three speakers (15 minute address with 5 minute Q & A each) plus a 30 minute moderated discussion.

Parallel Session I: Scientific advice for global policy

The pathways of science advice are a product of a country’s own cultural history and will necessarily differ across jurisdictions. Yet, there is an increasing number of global issues that require science advice. Can scientific advice help to address issues requiring action at international level? What are the considerations for providing science advice in these contexts? What are the examples from which we can learn what works and what does not work in informing policy-making through scientific advice?

Topics to be addressed include:

Climate Change – Science for the Paris Agreement: Did it work?
Migration: How can science advice help?
Zika fever, dementia, obesity etc.; how can science advice help policy to address the global health challenges?

Parallel Session II: Getting equipped – developing the practice of providing scientific advice for policy

The practice of science advice to public policy requires a new set of skills that are neither strictly scientific nor policy-oriented, but a hybrid of both. Negotiating the interface between science and policy requires translational and navigational skills that are often not acquired through formal training and education. What are the considerations in developing these unique capacities, both in general and for particular contexts? In order to be best prepared for informing policy-making, up-coming needs for scientific advice should ideally be anticipated. Apart from scientific evidence sensu stricto, can other sources such as the arts, humanities, foresight and horizon scanning provide useful insights for scientific advice? How can scientific advice make best use of such tools and methods?

Topics to be addressed include:

How to close the gap between the need and the capacity for science advice in developing countries with limited or emerging science systems?
What skills do scientists and policymakers need for a better dialogue?
Foresight and science advice: can foresight and horizon scanning help inform the policy agenda?

Parallel Session III: Scientific advice for and with society

In many ways, the practice of science advice has become a key pillar in what has been called the ‘new social contract for science[2]’. Science advice translates knowledge, making it relevant to society through both better informed policy and by helping communities and their elected representatives to make better informed decisions about the impacts of technology. Yet providing science advice is often a distributed and disconnected practice in which academies, formal advisors, journalists, stakeholder organisations and individual scientists play an important role. The resulting mix of information can be complex and even contradictory, particularly as advocate voices and social media join the open discourse. What considerations are there in an increasingly open practice of science advice?

Topics to be addressed include:

Science advice and the media: Lost in translation?
Beyond the ivory tower: How can academies best contribute to science advice for policy?
What is the role of other stakeholders in science advice?

Parallel Session IV: Science advice crossing borders

Science advisors and advisory mechanisms are called upon not just for nationally-relevant advice, but also for issues that increasingly cross borders. In this, the importance of international alignment and collaborative possibilities may be obvious, but there may be inherent tensions. In addition, there may be legal and administrative obstacles to transnational scientific advice. What are these hurdles and how can they be overcome? To what extent are science advisory systems also necessarily diplomatic and what are the implications of this in practice?

Topics to be addressed include:

How is science advice applied across national boundaries in practice?
What support do policymakers need from science advice to implement the Sustainable Development Goals in their countries?
Science Diplomacy/Can Scientists extend the reach of diplomats?

Call for Speakers

The European Commission and INGSA are now in the process of identifying speakers for the above conference sessions. As part of this process we invite those interested in speaking to submit their ideas. Interested policy-makers, scientists and scholars in the field of scientific advice, as well as business and civil-society stakeholders are warmly encouraged to submit proposals. Alternatively, you may propose an appropriate speaker.

The conference webpage includes a form should you wish to submit yourself or someone else as a speaker.

New Scientific Advice Mechanism of the European Commission

For anyone unfamiliar with the Scientific Advice Mechanism (SAM) mentioned in the conference’s notes, once Anne Glover’s, chief science adviser for the European Commission (EC), term of office was completed in 2014 the EC president, Jean-Claude Juncker, obliterated the position. Glover, the first and only science adviser for the EC, was to replaced by an advisory council and a new science advice mechanism.

David Bruggemen describes the then situation in a May 14, 2015 posting (Note: A link has been removed),

Earlier this week European Commission President Juncker met with several scientists along with Commission Vice President for Jobs, Growth, Investment and Competitiveness [Jyrki] Katainen and the Commissioner for Research, Science and Innovation ]Carlos] Moedas. …

What details are publicly available are currently limited to this slide deck.  It lists two main mechanisms for science advice, a high-level group of eminent scientists (numbering seven), staffing and resource support from the Commission, and a structured relationship with the science academies of EU member states.  The deck gives a deadline of this fall for the high-level group to be identified and stood up.

… The Commission may use this high-level group more as a conduit than a source for policy advice.  A reasonable question to ask is whether or not the high-level group can meet the Commission’s expectations, and those of the scientific community with which it is expected to work.

David updated the information in a January 29,2016 posting (Note: Links have been removed),

Today the High Level Group of the newly constituted Scientific Advice Mechanism (SAM) of the European Union held its first meeting.  The seven members of the group met with Commissioner for Research, Science and Innovation Carlos Moedas and Andrus Ansip, the Commission’s Vice-President with responsibility for the Digital Single Market (a Commission initiative focused on making a Europe-wide digital market and improving support and infrastructure for digital networks and services).

Given it’s early days, there’s little more to discuss than the membership of this advisory committee (from the SAM High Level Group webpage),

Janusz Bujnicki

Professor, Head of the Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw

Janusz Bujnicki

Professor of Biology, and head of a research group at IIMCB in Warsaw and at Adam Mickiewicz University, Poznań, Poland. Janusz Bujnicki graduated from the Faculty of Biology, University of Warsaw in 1998, defended his PhD in 2001, was awarded with habilitation in 2005 and with the professor title in 2009.

Bujnicki’s research combines bioinformatics, structural biology and synthetic biology. His scientific achievements include the development of methods for computational modeling of protein and RNA 3D structures, discovery and characterization of enzymes involved in RNA metabolism, and engineering of proteins with new functions. He is an author of more than 290 publications, which have been cited by other researchers more than 5400 times (as of October 2015). Bujnicki received numerous awards, prizes, fellowships, and grants including EMBO/HHMI Young Investigator Programme award, ERC Starting Grant, award of the Polish Ministry of Science and award of the Polish Prime Minister, and was decorated with the Knight’s Cross of the Order of Polonia Restituta by the President of the Republic of Poland. In 2013 he won the national plebiscite “Poles with Verve” in the Science category.

Bujnicki has been involved in various scientific organizations and advisory bodies, including the Polish Young Academy, civic movement Citizens of Science, Life, Environmental and Geo Sciences panel of the Science Europe organization, and Scientific Policy Committee – an advisory body of the Ministry of Science and Higher Education in Poland. He is also an executive editor of the scientific journal Nucleic Acids Research.

Curriculum vitae  PDF icon 206 KB

Pearl Dykstra

Professor of Sociology, Erasmus University Rotterdam

Pearl Dykstra

Professor Dykstra has a chair in Empirical Sociology and is Director of Research of the Department of Public Administration and Sociology at the Erasmus University Rotterdam. Previously, she had a chair in Kinship Demography at Utrecht University (2002-2009) and was a senior scientist at the Netherlands Interdisciplinary Demographic Institute (NIDI) in The Hague (1990-2009).

Her publications focus on intergenerational solidarity, aging societies, family change, aging and the life course, and late-life well-being. She is an elected member of the Netherlands Royal Academy of Arts and Sciences (KNAW, 2004) and Vice-President of the KNAW as of 2011, elected Member of the Dutch Social Sciences Council (SWR, 2006), and elected Fellow of the Gerontological Society of America (2010). In 2012 she received an ERC Advanced Investigator Grant for the research project “Families in context”, which will focus on the ways in which policy, economic, and cultural contexts structure interdependence in families.

Curriculum vitae  PDF icon 391 KB

Elvira Fortunato

Deputy Chair

Professor, Materials Science Department of the Faculty of Science and Technology, NOVA University, Lisbon

Elvira Fortunato

Professor Fortunato is a full professor in the Materials Science Department of the Faculty of Science and Technology of the New University of Lisbon, a Fellow of the Portuguese Engineering Academy since 2009 and decorated as a Grand Officer of the Order of Prince Henry the Navigator by the President of the Republic in 2010, due to her scientific achievements worldwide. In 2015 she was appointed by the Portuguese President Chairman of the Organizing Committee of the Celebrations of the National Day of Portugal, Camões and the Portuguese Communities.

She was also a member of the Portuguese National Scientific & Technological Council between 2012 and 2015 and a member of the advisory board of DG CONNECT (2014-15).

Currently she is the director of the Institute of Nanomaterials, Nanofabrication and Nanomodeling and of CENIMAT. She is member of the board of trustees of Luso-American Foundation (Portugal/USA, 2013-2020).

Fortunato pioneered European research on transparent electronics, namely thin-film transistors based on oxide semiconductors, demonstrating that oxide materials can be used as true semiconductors. In 2008, she received in the 1st ERC edition an Advanced Grant for the project “Invisible”, considered a success story. In the same year she demonstrated with her colleagues the possibility to make the first paper transistor, starting a new field in the area of paper electronics.

Fortunato published over 500 papers and during the last 10 years received more than 16 International prizes and distinctions for her work (e.g: IDTechEx USA 2009 (paper transistor); European Woman Innovation prize, Finland 2011).

Curriculum vitae  PDF icon 339 KB

Rolf-Dieter Heuer

Director-General of the European Organization for Nuclear Research (CERN)

Rolf-Dieter Heuer

Professor Heuer is an experimental particle physicist and has been CERN Director-General since January 2009. His mandate, ending December 2015, is characterised by the start of the Large Hadron Collider (LHC) 2009 as well as its energy increase 2015, the discovery of the H-Boson and the geographical enlargement of CERN Membership. He also actively engaged CERN in promoting the importance of science and STEM education for the sustainable development of the society. From 2004 to 2008, Prof. Heuer was research director for particle and astroparticle physics at the DESY laboratory, Germany where he oriented the particle physics groups towards LHC by joining both large experiments, ATLAS and CMS. He has initiated restructuring and focusing of German high energy physics at the energy frontier with particular emphasis on LHC (Helmholtz Alliance “Physics at the Terascale”). In April 2016 he will become President of the German Physical Society. He is designated President of the Council of SESAME (Synchrotron-Light for Experimental Science and Applications in the Middle East).

Prof. Heuer has published over 500 scientific papers and holds many Honorary Degrees from universities in Europe, Asia, Australia and Canada. He is Member of several Academies of Sciences in Europe, in particular of the German Academy of Sciences Leopoldina, and Honorary Member of the European Physical Society. In 2015 he received the Grand Cross 1st class of the Order of Merit of the Federal Republic of Germany.

Curriculum vitae  PDF icon

Julia Slingo

Chief Scientist, Met Office, Exeter

Julia Slingo

Dame Julia Slingo became Met Office Chief Scientist in February 2009 where she leads a team of over 500 scientists working on a very broad portfolio of research that underpins weather forecasting, climate prediction and climate change projections. During her time as Chief Scientist she has fostered much stronger scientific partnerships across UK academia and international research organisations, recognising the multi-disciplinary and grand challenge nature of weather and climate science and services. She works closely with UK Government Chief Scientific Advisors and is regularly called to give evidence on weather and climate related issues.

Before joining the Met Office she was the Director of Climate Research in NERC’s National Centre for Atmospheric Science, at the University of Reading. In 2006 she founded the Walker Institute for Climate System Research at Reading, aimed at addressing the cross disciplinary challenges of climate change and its impacts. Julia has had a long-term career in atmospheric physics, climate modelling and tropical climate variability, working at the Met Office, ECMWF and NCAR in the USA.

Dame Julia has published over 100 peer reviewed papers and has received numerous awards including the prestigious IMO Prize of the World Meteorological Organization for her outstanding work in meteorology, climatology, hydrology and related sciences. She is a Fellow of the Royal Society, an Honorary Fellow of the Royal Society of Chemistry and an Honorary Fellow of the Institute of Physics.

Curriculum vitae  PDF icon 239 KB

Cédric Villani

Director, Henri Poincaré Institute, Paris

Cédric Villani

Born in 1973 in France, Cédric Villani is a mathematician, director of the Institut Henri Poincaré in Paris (from 2009), and professor at the Université Claude Bernard of Lyon (from 2010). In December 2013 he was elected to the French Academy of Sciences.

He has worked on the theory of partial differential equations involved in statistical mechanics, specifically the Boltzmann equation, and on nonlinear Landau damping. He was awarded the Fields Medal in 2010 for his works.

Since then he has been playing an informal role of ambassador for the French mathematical community to media (press, radio, television) and society in general. His books for non-specialists, in particular Théorème vivant (2012, translated in a dozen of languages), La Maison des mathématiques (2014, with J.-Ph. Uzan and V. Moncorgé) and Les Rêveurs lunaires (2015, with E. Baudoin) have all found a wide audience. He has also given hundreds of lectures for all kinds of audiences around the world.

He participates actively in the administration of science, through the Institut Henri Poincaré, but also by sitting in a number of panels and committees, including the higher council of research and the strategic council of Paris. Since 2010 he has been involved in fostering mathematics in Africa, through programs by the Next Einstein Initiative and the World Bank.

Believing in the commitment of scientists in society, Villani is also President of the Association Musaïques, a European federalist and a father of two.


Henrik C. Wegener


Executive Vice President, Chief Academic Officer and Provost, Technical University of Denmark

Henrik C. Wegener

Henrik C. Wegener is Executive Vice President and Chief Academic Officer at Technical University of Denmark since 2011. He received his M.Sc. in food science and technology at the University of Copenhagen in 1988, his Ph.D. in microbiology at University of Copenhagen in 1992, and his Master in Public Administration (MPA) form Copenhagen Business School in 2005.

Henrik C. Wegener was director of the National Food Institute, DTU from 2006-2011 and before that head of the Department of Epidemiology and Risk Assessment at National Food and Veterinary Research Institute, Denmark (2004-2006). From 1994-1999, he was director of the Danish Zoonosis Centre, and from 1999-2004 professor of zoonosis epidemiology at Danish Veterinary Institute. He was stationed at World Health Organization headquarters in Geneva from 1999-2000. With more than 3.700 citations (h-index 34), he is the author of over 150 scientific papers in journals, research monographs and proceedings, on food safety, zoonoses, antimicrobial resistance and emerging infectious diseases.

He has served as advisor and reviewer to national and international authorities & governments, international organizations and private companies, universities and research foundations, and he has served, and is presently serving, on several national and international committees and boards on food safety, veterinary public health and research policy.

Henrik C. Wegener has received several awards, including the Alliance for the Prudent Use of Antibiotics International Leadership Award in 2003.

That’s quite a mix of sciences and I’m happy to see a social scientist has been included.

Conference submissions

Getting back to the conference and its call for speakers, the deadline for submissions is March 25, 2016. Interestingly, there’s also this (from conference webpage),

The deadline for submissions is 25th March 2016. The conference programme committee with session chairs will review all proposals and select those that best fit the aim of each session while also representing a diverse range of perspectives. We aim to inform selected speakers within 4 weeks of the deadline to enable travel planning to Brussels.

To make the conference as accessible as possible, there is no registration fee. [emphasis mine] The European Commission will cover travel accommodation costs only for confirmed speakers for whom the travel and accommodation arrangements will be made by the Commission itself, on the basis of the speakers’ indication.

Good luck!

*Head for conference submissions added on Feb. 29, 2016 at 1155 hundred hours.

Paper as good at storing electrical energy as commercial supercapacitors

This is another potential nanocellulose application according to a Dec. 3, 2015 news item on ScienceDaily,

Researchers at Linköping University’s Laboratory of Organic Electronics, Sweden, have developed power paper — a new material with an outstanding ability to store energy. The material consists of nanocellulose and a conductive polymer. …

One sheet, 15 centimetres in diameter and a few tenths of a millimetre thick can store as much as 1 F, which is similar to the supercapacitors currently on the market. The material can be recharged hundreds of times and each charge only takes a few seconds.

A Dec. 3, 2015 Linköping University press release (also on EurekAlert), which originated the news item, provides more detail,

It’s a dream product in a world where the increased use of renewable energy requires new methods for energy storage — from summer to winter, from a windy day to a calm one, from a sunny day to one with heavy cloud cover.

“Thin films that function as capacitors have existed for some time. What we have done is to produce the material in three dimensions. We can produce thick sheets,” says Xavier Crispin, professor of organic electronics and co-author to the article just published in Advanced Science.

Other co-authors are researchers from KTH Royal Institute of Technology, Innventia, Technical University of Denmark and the University of Kentucky.

The material, power paper, looks and feels like a slightly plasticky paper and the researchers have amused themselves by using one piece to make an origami swan — which gives an indication of its strength.

The structural foundation of the material is nanocellulose, which is cellulose fibres which, using high-pressure water, are broken down into fibres as thin as 20 nm in diameter. With the cellulose fibres in a solution of water, an electrically charged polymer (PEDOT:PSS), also in a water solution, is added. The polymer then forms a thin coating around the fibres.

“The covered fibres are in tangles, where the liquid in the spaces between them functions as an electrolyte,” explains Jesper Edberg, doctoral student, who conducted the experiments together with Abdellah Malti, who recently completed his doctorate.

The new cellulose-polymer material has set a new world record in simultaneous conductivity for ions and electrons, which explains its exceptional capacity for energy storage. It also opens the door to continued development toward even higher capacity. Unlike the batteries and capacitors currently on the market, power paper is produced from simple materials – renewable cellulose and an easily available polymer. It is light in weight, it requires no dangerous chemicals or heavy metals and it is waterproof.

This press release also offers insight into funding and how scientists view requests for reports and oversight,

The Power Papers project has been financed by the Knut and Alice Wallenberg Foundation since 2012.

“They leave us to our research, without demanding lengthy reports, and they trust us. We have a lot of pressure on us to deliver, but it’s ok if it takes time, and we’re grateful for that,” says Professor Magnus Berggren, director of the Laboratory of Organic Electronics at Linköping University.

Naturally, commercialization efforts are already in the works. (Canadian nanocellulose community watch out! The Swedes are coming!),

The new power paper is just like regular pulp, which has to be dehydrated when making paper. The challenge is to develop an industrial-scale process for this.

“Together with KTH, Acreo and Innventia we just received SEK 34 million from the Swedish Foundation for Strategic Research to continue our efforts to develop a rational production method, a paper machine for power paper,” says Professor Berggren.

Here’s a link to and a citation for the team’s study,

An Organic Mixed Ion–Electron Conductor for Power Electronics by Abdellah Malti, Jesper Edberg, Hjalmar Granberg, Zia Ullah Khan, Jens W. Andreasen, Xianjie Liu, Dan Zhao, Hao Zhang, Yulong Yao, Joseph W. Brill, Isak Engquist, Mats Fahlman, Lars Wågberg, Xavier Crispin, and Magnus Berggren. Advanced Science DOI: 10.1002/advs.201500305 Article first published online: 2 DEC 2015

© 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is open access.

What do you do with a problem like regulating nanotechnology risks?

You get points for recognizing the “Sound of Music’ reference. Of course, the points aren’t useful for anything, which leads me in a roundabout way to Michael Berger’s fascinating May 28, 2013 Nanowerk Spotlight article, Does the EU’s chemical regulation sufficiently address nanotechnology risks? It’s a digest of a discussion, published in Nature Nanotechnology’s May 2013 issue, about nanotechnology regulations in light of the European Commission’s (EC; a unit in the European Union structure) Second Regulatory Review on Nanomaterials.

Berger summarizes Steffen Foss Hansen’s The European Union’s chemical legislation needs revision (article is behind a paywall) and Antonio Tajani’s response to Hansen, Substance identification of nanomaterials not key to ensuring their safe use (article is behind a paywall; Note: Links have been removed from the following excerpt),

The European Union’s chemical legislation known as REACH needs revision argues Steffen Foss Hansen, Associate Professor at DTU Environment, Technical University of Denmark. In a correspondence to the Editor of Nature Nanotechnology (“The European Union’s chemical legislation needs revision”), Hansen argues that REACH needs to be revised in three major areas.

First of all, a distinction needs to be made in the legal text of REACH between the bulk and the nano form of a given material and Hansen argues that the European Commission should acknowledge that nanomaterials cannot be identified solely by chemical composition. Additional main identifiers (such as primary particle size distribution, shape – including aspect ratio – specific surface area and surface treatment) are needed as this is the only manner in which it can be made clear that the properties and behavior of nanomaterials differ fundamentally from each other and from the bulk material.

In a response to Hansen’s Correspondence, Antonio Tajani, Vice-President of the European Commission and Commissioner for Industry and Entrepreneurship, writes that substance identification of nanomaterials is not key to ensuring their safe use (“Substance identification of nanomaterials not key to ensuring their safe use”).

Tajani argues that substance identification is only one element and that trying to identify unambiguous rules for substance identification is probably elusive and might result in ever more complex rules on what is considered as the same substance as opposed to different substances, without necessarily resulting in more safety of nanomaterials. Instead, Tajani and the European Commission wish to focus on clarifying what is needed to demonstrate the safe use while also noting that the implementation of regulatory changes would take several years and hence is not desirable.

As per my Oct. 25, 2011 posting (Nanoparticle size doesn’t matter), my thinking on environmental, health, and safety issues regarding engineered nanomaterials has been in the process of change and I note that focusing on the size, shape, and other factors would make regulation next to impossible. So, I’m inclined to agree with Tajani’s arguments that trying to develop “unambiguous rules for substance identification” is not a worthwhile approach to dealing with any EHS issues that nanomaterials may present and will likely prove futile in the same way as gaining points for recognizing my attempted ‘Sound of Music’ reference.

I assume that Tajani and Hansen are referring to engineered nanomaterials as opposed to naturally occurring nanomaterials. (I too forget to specify but unless otherwise noted I’m usually referring to engineered nanomaterials.)

For me, two of the most compelling issues that Hansen presents revolve around a lack of data and standardized testing (from Hansen’s article in Nature),

… there are few measured exposure data and that few environmental fate and behaviour studies are available. …

… there are currently no standardized (eco)toxicity test guidelines in use …

I do wonder how many the word ‘few’ represents as I’m reminded of the plethora of studies on silver nanoparticles and on long, multi-walled carbon nanotubes. Certainly, they are attempting to address the situation regarding consistent testing protocols in the US as per my May 8, 2013 post about the NanoGo Consortium. Perhaps the EC folks could consider using these protocols as a model for a European version?  I assume that Hansen is commenting on a broader, European-inflected picture rather than the piecemeal, ‘globalish’ picture I have formed from my meanderings in the nanosphere.

Hansen also points this out in his Nature article (Note: Footnotes have been removed),

Another disturbing aspect of the Second Regulatory Review on Nanomaterials is that it focuses only on first-generation nanomaterials (that is, passive nanostructures such as nanoparticles). The Staff Working Paper acknowledges that second- and third-generation nanomaterials (for example, targeted drug-delivery systems and novel robotic devices) are entering early stages of market development, …

I’m beginning to find the discussion about definitions and resultant regulations wearing and am coming to the conclusion that the focus should be on bringing the information already gathered together, standardizing tests, determining what is  known and not known, and establishing some forward momentum.

“Control my chirality, please,” said the carbon nanotube to the researchers

A combined Finnish, Russian, and Danish team have found a way to control the chirality of single-walled carbon nanotubes according to an Apr. 30, 2013 news item on Azonano,

An ultimate goal in the field of carbon nanotube research is to synthesise single-walled carbon nanotubes (SWNTs) with controlled chiralities. Twenty years after the discovery of SWNTs, scientists from Aalto University in Finland, A.M. Prokhorov General Physics Institute RAS in Russia and the Center for Electron Nanoscopy of Technical University of Denmark (DTU) have managed to control chirality in carbon nanotubes during their chemical vapor deposition synthesis.

The Aalto University Apr. 29, 2013 news release, which originated the news item, goes on to explain,

 Over the years, substantial progress has been made to develop various structure-controlled synthesis methods. However, precise control over the chiral structure of SWNTs has been largely hindered by a lack of practical means to direct the formation of the metal nanoparticle catalysts and their catalytic dynamics during tube growth.

– We achieved an epitaxial formation of Co nanoparticles by reducing a well-developed solid solution in CO, reveals Maoshuai He, a postdoctoral researcher at Aalto University School of Chemical Technology.

– For the first time, the new catalyst was employed for selective growth of SWNTs, adds senior staff scientist Hua Jiang from Aalto University School of Science.

By introducing the new catalysts into a conventional CVD reactor, the research team demonstrated preferential growth of semiconducting SWNTs (~90%) with an exceptionally high population of (6,5) tubes (53%) at 500 °C. Furthermore, they also showed a shift of the chiral preference from (6,5) tubes at 500 °C  to (7, 6) and (9, 4) nanotubes at 400 °C.

– These findings open new perspectives both for structural control of SWNTs and for elucidating their growth mechanisms, thus are important for the fundamental understanding of science behind nanotube growth, comments Professor Juha Lehtonen from Aalto University.

For anyone like me who needs a description of chirality, there’s this from Wikipedia,

Chirality (pron.: /kaɪˈrælɪtiː/) is a property of asymmetry important in several branches of science. The word chirality is derived from the Greek, χειρ (kheir), “hand”, a familiar chiral object.

An object or a system is chiral if it is not identical to its mirror image, that is, it cannot be superposed onto it. A chiral object and its mirror image are called enantiomorphs (Greek opposite forms) or, when referring to molecules, enantiomers. A non-chiral object is called achiral (sometimes also amphichiral) and can be superposed on its mirror image.

Human hands are perhaps the most universally recognized example of chirality: The left hand is a non-superimposable mirror image of the right hand; no matter how the two hands are oriented, it is impossible for all the major features of both hands to coincide.[2] This difference in symmetry becomes obvious if someone attempts to shake the right hand of a person using his left hand, or if a left-handed glove is placed on a right hand. In mathematics chirality is the property of a figure that is not identical to its mirror image.

One of the researchers notes why they, or anyone else, would want to control the chirality of carbon nanotubes, from the news release,

– Chirality defines the optical and electronic properties of carbon nanotubes, so controlling it is a key to exploiting their practical applications, says Professor Esko I. Kauppinen, the leader of the Nanomaterials Group in Aalto University School of Science.

ETA Apr. 30, 2013 at 4:20 pm PDT: Here’s a link to and a citation for the team’s published paper,

Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles by Maoshuai He, Hua Jiang, Bilu Liu, Pavel V. Fedotov, Alexander I. Chernov, Elena D. Obraztsova, Filippo Cavalca, Jakob B. Wagner, Thomas W. Hansen, Ilya V. Anoshkin, Ekaterina A. Obraztsova, Alexey V. Belkin, Emma Sairanen, Albert G. Nasibulin,  Juha Lehtonen, & Esko I. Kauppinen. Scientific Reports 3, Article number 1460  doi:10.1038/srep01460 Published15 March 2013

This article is open access.

Silver nanoparticles: we love you/we hate you

We seem to have a love/hate affair with silver nanoparticles. Long recognized as biocides capable of killing bacteria, silver nanoparticles are used both in hospital settings and in sports wear. As the use of silver nanoparticles increases, there are concerns about unintended consequences to the environment and to human health. An Apr. 12, 2013 news item on Nanowerk highlights some research done in Europe in 2011 (Note: Links have been removed),

As part of an EU funded project called Prosuite, Walser [Tobias Walser, researcher at the Institute for environmental engineering at the Swiss Federal Institute of Technology Zürich {ETH}] and colleagues analysed the environmental impact of nanosilver T-shirts during their entire life cycle, from raw material extraction to end-of-life disposal (“Prospective Environmental Life Cycle Assessment of Nanosilver T-Shirts”). This, according to Walser, is the first of its kind for a nanomaterial. The scientists found that the T-shirt’s environmental impact during use would be reduced if they are washed less often than conventional ones, due to their antimicrobial properties. This would even compensate for a slightly higher climate footprint during production. Walser explains: “In comparison to all toxic releases during the life cycle of a T-shirt, the toxic releases from nanosilver from washing appear to be of minor relevance.” [emphasis mine]

The Apr. 11, 2013 article by Constanze Böttcher for Youris.com, which originated the news item, expands on the theme of toxicity, nanosilver, and wastewater (Note: A link has been removed),

Previous studies looked at single impacts of antibacterial textiles. For example, scientists found that nanosilver leaches into the wastewater during washing. According to other studies, this silver may not be that harmful to the environment because it is transformed into a nearly insoluble substance called silver sulphide in wastewater treatments. A study published by the Danish Environmental Protection Agency in 2012 did not find “specific risks” to health or environmental effects of nanosilver textiles available in Denmark.

This finding contrasts with more recent research at Duke University’s CEINT (Center for Environmental Implications of Nanotechnology) mesocosm project where a study did point to adverse responses (noted in my Feb. 28, 2013 posting where I highlighted two nanosilver environmental studies, a Finnish/Estonian research project and the CEINT project),

In experiments mimicking a natural environment, Duke University researchers have demonstrated that the silver nanoparticles used in many consumer products can have an adverse effect on plants and microorganisms.

The main route by which these particles enter the environment is as a by-product of water and sewage treatment plants. [emphasis] The nanoparticles are too small to be filtered out, so they and other materials end up in the resulting “sludge,” which is then spread on the land surface as a fertilizer.

The researchers found that one of the plants studied, a common annual grass known as Microstegium vimeneum, had 32 percent less biomass in the mesocosms treated with the nanoparticles. Microbes were also affected by the nanoparticles, Colman [Benjamin Colman, a post-doctoral fellow in Duke’s biology department and a member of the Center for the Environmental Implications of Nanotechnology (CEINT)] said. One enzyme associated with helping microbes deal with external stresses was 52 percent less active, while another enzyme that helps regulate processes within the cell was 27 percent less active. The overall biomass of the microbes was also 35 percent lower, he said.

As I’ve suggested before, analysing the impact that new products and materials may have on the environment and on our health is a complex process.  From Böttcher’s 2013 article (Note: Links have been removed),

Some experts are concerned about their environmental risks, however. The study “is very relevant” because it “gives a fingerprint” about the impact of such T-shirts, Anders Baun says. But the professor in risk assessment of nanomaterials at the department of environmental engineering at the Technical University of Denmark, based in Lyngby, considers it “a bad idea to distribute silver in the environment”. He points to a study that found evidence for nanosilver accumulating in the food web based on a study of plants and animals of an experimental wetland environment. Moreover, he says, it is unknown how the coating of nanosilver influences its environmental behaviour. Baun has previously criticised the European policies regarding nanosilver and is currently enrolled in a scientific committee on the topic as invited expert. The expert group will publish its opinion later this year, he says.

There’s also the possibility that bacteria will develop resistance with increased use of silver nanoparticles in medical environments and in sportswear and in other applications.

For those who want to conduct their own investigations, here’s a link to and a citation for Walser’s 2011 paper,

Prospective Environmental Life Cycle Assessment of Nanosilver T-Shirts by Tobias Walser, Evangelia Demou, Daniel J. Lang, and Stefanie Hellweg.  Environ. Sci. Technol [Environmental Science and Technology], 2011, 45 (10), pp 4570–4578 DOI: 10.1021/es2001248 Publication Date (Web): April 20, 2011
Copyright © 2011 American Chemical Society

This paper is open access.

A description of PROSUITE (PROspective SUstaInability assessment of TEchnologies project) can be found here and the PROSUITE project website can found here.

ETA Apr. 18, 2013: An Apr. 18, 2013 news item (Barely any nanosilver from consumer products in the water) on Nanowerk provides some insight into why at least one European country views the presence of silver nanoparticles in sewage sludge without any particular alarm,

The study did not examine what happens to nanosilver in the sewage sludge thereafter. In Switzerland, it is not permissible to use sewage sludge on farmland, and most of the sludge is therefore burned. [emphasis mine] The heavy metals separated in this process should not be released into the environment in large quantities.

Here’s a link to and citation for the Swiss study,

Fate and transformation of silver nanoparticles in urban wastewater systems by Ralf Kaegia, Andreas Voegelina, Christoph Orta, Brian Sinneta, Basilius Thalmanna, Jasmin Krismerb, Harald Hagendorferc, Maline Elumelua, and Elisabeth Muellerd. Water Research, http://dx.doi.org/10.1016/j.watres.2012.11.060 Available online 26 March 2013

The article is behind a paywall.

Danish nanotechnology-enabled product database

It’s called the Nanodatabase according to the Nov. 30, 2012 news item on Nanowerk (Note: I have removed a link),

The Danish Consumer Council and the Danish Ecological Council has in cooperation with DTU Environment developed a database, which help consumers identify more than 1,200 products that may contain nanomaterials. The Nanodatabase gives consumers a choice. [emphasis mine]

”Most consumers have no idea if there are nanomaterials or not in the goods they’re buying. And they have no way of finding out, so that they can avoid the products if they are worried about the potentially harmful effects” says Claus Jørgensen, Senior Advisor at the Danish Consumer Council.

This is why the Danish Ecological Council and the Danish Consumer Council in cooperation with experts from DTU [Technical University of Denmark] Environment has decided to launch the Nanodatabase. Now consumers can search the database to see if a certain product contains nanomaterials or is marketed as ‘nano’. This way the consumers can choose if they want the nanomaterials or not.

The database contains more than 1,200 products which contain nanomaterials or are marketed using the nano-claim. [emphasis mine]

“Until we know for sure that the use of nanotechnology is safe and the legislation is in place, we need a label that can help consumers make informed choices”, says Lone Mikkelsen [chemical expert from the Danish Ecological Council].

The two organisations hope that the English version of the database will help consumers in other countries. The hope is that consumers will report products that contain ‘nano’ or claim to be a nano product to the database.

This project reminds me of the Project on Emerging Nanotechnologies (PEN) and their consumer products inventory. I don’t believe they’re adding to that inventory any moreas the March 10, 2011 news release announcing over 1300 nanotechnology-enabled products (as claimed by manufacturers) in the inventory appears to have been PEN’s last. I think they, like the Danish Consumer Council and the Danish Ecological Council, were hoping to raise awareness.

Toxicology convo heats up: OECD releases report on inhalation toxicity testing and Nature Nanotechnology publishes severe critique of silver toxicity overanalysis

This has to be one of the rawest reports I’ve seen and that’s not a criticism. The OECD (Organization for Economic Cooperation and Development) has released no. 35 in its Series on the Safety of Manufactured Nanomaterials titled, INHALATION TOXICITY TESTING: EXPERT MEETING ON POTENTIAL REVISIONS TO OECD TEST GUIDELINES AND GUIDANCE DOCUMENT.

This report is the outcome of a meeting which took place in fall 2011 according to the July 4, 2012 news item on Nanowerk,

The expert meeting on Inhalation Toxicity Testing for Nanomaterials was held on 19-20 October 2011 in The Hague, hosted by the Netherlands, with the aim of discussing the results of the OECD Sponsorship Programme (under the responsibility of SG3) on this specific topic and addressing issues relevant to inhalation toxicity. Fifty experts from the WPMN as well as the OECD Working Group of the National Coordinators for the Test Guidelines programme (WNT) participated in the meeting.

This is a partial list of recommendations from the report,

Recommendations raised by the speakers for the discussion

7. Various recommendations were raised by the speakers that served as points for discussion. These recommendations do not necessarily reflect a general agreement. …

• “Provide explicit guidance for the generation of aerosols (sample preparation) based on the exposure scenario”. Hans Muijser

• “Generation of a test atmosphere should have workplace characteristics, but should be adapted to adjust for rodent respirability”. Günter Oberdörster

• “A choice for a dry aerosol or a liquid aerosol should depend on the given test substance and planned test approach (hazard- or risk driven)”. Otto Creutzenberg

• “Aerosol characterization should include size distribution, mass, number and morphology of the material”. Günter Oberdörster

• “Mass concentration is not sufficient for comparison of nanomaterials of the same chemical composition”. Flemming Cassee

• “Dry powders will appear as agglomerate upon aerosolization, which needs to be addressed in the sample preparation guidelines”. Flemming Cassee

• “Dissolution behaviour of the test substance should be assessed in physiological fluids mimicking various lung-specific pH ambiences (neutral, acid)”. Otto Creutzenberg

• “Data analysis should include interpretation of aerosol characteristics, NOAEL, risk assessment implications, mode of action and a strategy for dosimetric extrapolation to humans. The inclusion of biokinetic data is important”. Günter Oberdörster

• “Include biokinetics in the guidance, since different distribution patterns in the whole organism are likely dependent on physicochemical characteristics of nanoparticle aerosols and the dose at the target site will therefore be different. This will allow the assessment of accumulation of nanomaterials in the body at low exposure levels and long-term exposure. A way to perform it is by radiolabelled materials, chemical elemental analysis to determine organ concentrations and transmission electron microscopy”. Wolfgang Kreyling. Others who have suggested inclusion of biokinetics or recognized the importance were Otto Creutzenberg, Frieke Kuper, Günter Oberdörster and David Warheit. (p. 13)

You actually see who made the recommendations! Speakers discussed carbon nanotubes, titanium dioxide, cerium oxide, zinc oxide and more, all of which you can read about in summary form in this 38 pp. report.

Meanwhile, Nature Nanotechnology has published an incendiary commentary about nanosilver and the latest request by the European Commission for another study.  Michael Berger has devoted a July 4, 2012 Nanowerk Spotlight article to the commentary,

A commentary by Steffen Foss Hansen and Anders Baun in this week’s Nature Nanotechnology (“When enough is enough”  [behind a paywall]) pointedly asks “when will governments and regulatory agencies stop asking for more reports and reviews, and start taking regulatory action?”

Hansen and Baun, both from the Technical University of Denmark’s Department of Environmental Engineering, take issue with yet another scientific opinion on nanosilver that has been requested by the European Commission in late 2011: “SCENIHR – Request for a scientific opinion on Nanosilver: safety, health and environmental effects and role in antimicrobial resistance” (pdf). Specifically, the EC wants SCENIHR to answer four questions under the general heading of ‘Nanosilver: safety, health and environmental effects, and role in antimicrobial resistance’.

“Most of these questions – and possibly all of them – have already been addressed by no less than 18 review articles in scientific journals, the oldest dating back to 2008, plus at least seven more reviews and reports commissioned and/or funded by governments and other organizations” Hansen tells Nanowerk. “Many of these reviews and reports go through the same literature, cover the same ground and identify many of the same data gaps and research needs.”

Here’s a prediction from Hansen and Baun as to what will be in the next report due in 2013  (from the Nature Nanotechnology commentary When enough is enough in 7, 409–411 (2012) published online  July 1, 2012 [Note: I have removed links and footnotes]),

… we predict that the SCENIHR’s upcoming review will consist of five main sections summarizing: the properties and uses of nanosilver; human and environmental toxicity; microbial resistance; risk assessment; and research needs. We also predict that the SCENIHR’s report will say something along the following lines: “Nanosilver is reportedly one of the most widely used nanomaterials in consumer products today but the scale of production and use is unknown. The antibacterial properties of nanosilver are exploited in a very diverse set of products and applications including dietary supplements, personal care products, powdered colours, textile, paper, kitchenware and food storage.” And like many previous reviews and reports, the new report is likely to cite the Consumer Product Inventory maintained by the Project on Emerging Nanotechnologies.

We acknowledge that answering the question of how to regulate the use of nanosilver is not easy given the different views of the different stakeholders in this debate and the complex regulatory landscape associated with the many applications of nanosilver. …

Arguably, we all want that the pros and cons of regulatory policy options be based on the best available science while taking broader socio-economical and ethical aspects into consideration before deciding on the appropriate regulatory measures concerning human and environmental exposure to nanosilver. Although it is common for independent scientific experts to be commissioned to gather, analyse and review the available scientific information, and to provide recommendations on how to address a given risk, we do not see the need for further reviews. It is time for the European Commission to decide on the regulatory measures that are appropriate for nanosilver. These measures should then be implemented wholeheartedly and their effectiveness monitored.

I predict this commentary will provoke some interesting responses and I will try to add the ones I can find to this posting as they become available.

ETA July 6, 2012: Dexter Johnson weighed in with his July 5, 2012 posting (Note: I have removed a link),

What may make the matter even worse is that we may already have a pretty substantial framework—in the US, at least—on which to base nanosilver regulations, which dates back to the 1950s. It concerned what was called at the time collodial silver, which is essentially what today is called nanosilver.

But getting back to current stagnant state of affairs, it’s hard to know exactly what’s causing the paralysis. It could be concern over implementing regulations in a depressed economy, or just a fear of taking a position. But in both these instances, the lack of action is making the situation worse. …

Two (Denmark & US) contrasting documents about nanomaterials and risk

The Danes released their NanoRiskCat (NRC) document in early December 2011 while the US National Research Council released its report on the US research strategy on environmental and health impact of engineered nanomaterials today, Jan. 25, 2012.

(BTW, There”s going to be an alphabet soup situation in this posting with two different NRCs [the catalogue] and the US National Research Council for starters. I’ll do my best to keep these entities distinct from each other.)

The documents represent an interesting contrast regarding approaches to nanomaterials and their risks. From the Jan. 25, 2012 Nanowerk Spotlight article about Denmark’s NanoRiskCat,

The project’s aim was to identify, categorize and rank the possible exposure and hazards associated with a nanomaterial in a product. NanoRiskCat is using a stepwise approach based on existing data on the conventional form of the chemical as well as the data that may exist on the nanoform. However, the tool still needs to be further validated and tested on a series of various nano products in order to adjust and optimize the concept and thereby to achieve a screening tool as informative and practical as possible.

Meanwhile, here’s the description of the US NRC’s latest report, from the Jan. 25, 2012 news item on Nanowerk,

Despite extensive investment in nanotechnology and increasing commercialization over the last decade, insufficient understanding remains about the environmental, health, and safety aspects of nanomaterials. Without a coordinated research plan to help guide efforts to manage and avoid potential risks, the future of safe and sustainable nanotechnology is uncertain, says a new report (“A Research Strategy for Environmental, Health, and Safety Aspects of Engineered Nanomaterials“)from the National Research Council. The report presents a strategic approach for developing research and a scientific infrastructure needed to address potential health and environmental risks of nanomaterials. Its effective implementation would require sufficient management and budgetary authority to direct research across federal agencies.

I find it interesting that the US government which has poured billions into its National Nanotechnology Initiative (NNI) is still trying to develop a research strategy for environmental and health impacts while the Danish (who have likely spent far less and, to be fair, likely have less bureaucracy) have created an assessment tool designed to evaluate the exposure to and hazards posed by nanomaterials found in consumer and industrial use.

One other interesting tidbit, both the Danish and the US Environmental Protection Agencies (EPAs) were instigators of their country’s respective documents. The Danish EPA was one of the three funders (the other two were the Danish Technical University and the National Research Centre for the Working Environment) for their NanoRiskCat. The US EPA was one of the sponsors  for the strategy report. The other sponsors include the The National Academy of Sciences, National Academy of Engineering, Institute of Medicine, and National Research Council.

I have to admit I’m getting a little tired of strategy documents and I’m please to see an attempt to evaluate the situation. I’m not sure which version (alpha or beta) of the tool they’ve released but there’s definitely some tweaking to be done as the Danes themselves admit,

It is the view of the Danish EPA that the traffic light ranking [I’m assuming they assign a colour [red, amber, yellow] as a means of quickly identifying a risk level in their documentation of specific nanomaterials) of the health effects may be further modified to obtain a better ranking in the various categories. Thus titanium dioxide in sunscreen is ranked as red due to lung effects of titanium dioxide, because the tool in its present form does not sufficiently take account of which type of health effects that are most relevant for the most relevant exposure route of the product. In this case the inhalational exposure of titanium dioxide from a sun screen seems less relevant.

Yes, I agree that exposure to nanoscale titanium dioxide via inhalation is an unlikely when you’re using a nanosunscreen. Although given some folks I’ve known, it’s not entirely out of the question. (It’s been my experience that people will inhale anything if they think they can get high from it.)

Site remediation and nano materials; perspectives on risk assessment; Leonardo’s call for nano and art; a new nano art/science book

The Project on Emerging Nanotechnologies (PEN) is holding an event on site remediation on Feb. 4, 2010 (12:30 pm to 1:30 pm EST). From the news release,

A new review article appearing in Environmental Health Perspectives (EHP) co-authored by Dr. Todd Kuiken, Research Associate for the Project on Emerging Nanotechnologies (PEN), Dr. Barbara Karn, Office of Research and Development, U.S. Environmental Protection Agency and Marti Otto, Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency focuses on the use of nanomaterials for environmental cleanup. It provides an overview of current practices; research findings; societal issues; potential environment, health, and safety implications; and possible future directions for nanoremediation. The authors conclude that the technology could be an effective and economically viable alternative for some current site cleanup practices, but potential risks remain poorly understood.

PEN’s Contaminated Site Remediation: Are Nanomaterials the Answer? features the EHN article’s authors  Kulken, Karn, and Otto on a panel with David Rejeski, PEN’s executive director moderating. PEN also has a map detailing almost 60 sites (mostly in the US, 2  in Canada, 4 in Europe, and 1 in Taiwan) where nanomaterials are being used for remediation.  More from the news release,

According to Dr. Kuiken, “Despite the potentially high performance and low cost of nanoremediation, more research is needed to understand and prevent any potential adverse environmental impacts, particularly studies on full-scale ecosystem-wide impacts. To date, little research has been done.”

In its 2004 report Nanoscience and nanotechnologies: opportunities and uncertainties, the British Royal Society and Royal Academy of Engineering recommended that the use of free manufactured nanoparticles be prohibited for environmental applications such as remediation until further research on potential risks and benefits had been conducted. The European Commission’s Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) called for further risk research in 2005 while acknowledging environmental remediation technology as one of nanotechnology’s potential benefits.

If you wish to attend in person (i.e. you are in Washington, DC), you are asked to RSVP here (they provide a light lunch starting at 12 pm) or you can watch the webcast (no RSVP necessary and I will put up a link to the webcast closer to the date).

On the topic of risk, Michael Berger has written an in depth piece about a recently published article, Redefining research risk priorities for nanomaterials, in the Journal of Nanoparticle Research. From Berger’s piece,

While research in quantitative risk characterization of nanomaterials is crucially important, and no one advocates abandoning this approach, scientists and policy makers must face the reality that many of these knowledge gaps cannot be expected to be closed for many years to come – and decision making will need to continue under conditions of uncertainty. At the same time, current chemical-based research efforts are mainly directed at establishing toxicological and ecotoxicological and exposure data for nanomaterials, with comparatively little research undertaken on the tools or approaches that may facilitate near-term decisions.

In other words, there’s a big lag between developing new products using nanomaterials and the research needed to determine the health and environmental risks associated both with the production and use of these new materials. The precautionary principle suggests that we not produce or adopt these products until we are certain about risks and how to ameliorate and/or eliminate them. That’s an impossible position as we can never anticipate with any certainty what will happen when something is released to the general public or into the environment at large.  From Berger’s piece,

In their article, [Khara Deanna] Grieger [PhD student at Technical University of Denmark (DTU)], Anders Baun, who heads DTU’s Department of Environmental Engineering, and Richard Owens from the Policy Studies Institute in the UK, argue that there has not yet been a significant amount of attention dedicated to the field of timely and informed decision making for near term decisions. “We see this as the central issue for the responsible emergence of nanotechnologies” says Grieger.

Getting back to site remediation using nanomaterials, since it’s already in use as per the map and the authors state that there hasn’t been enough research into risks, do we pull back and adopt the precautionary principle or do we proceed as intelligently as possible in an area where uncertainty rules? That’s a question I will continue to explore as I get my hands on more information.

On a completely different nano front, the Leonardo magazine has issued a call for papers on nano and art,

2011 is the International Year of Chemistry! To celebrate Leonardo is seeking to publish papers and artworks on the intersections of chemistry,
nanotechnology and art for our on-going special section on nanotechnology and the arts. Since its inception nanotech/science has been intimately connected to chemistry; fullerenes, nanoputians, molecular machines, nano-inorganics and self-assembling molecular systems all spring from the minds and labs of chemists, biochemists and chemical engineers. If you’re a nano-oriented chemist who is serious about art, an artist working on the molecular level, or a chemical educator exploring the mysteries of nano through the arts we are especially seeking submissions from you.

You can send proposals, queries, and/or manuscripts to the Leonardo editorial office: leonardomanuscripts@gmail.com. You can read more about the call for papers here at Leblogducorps or you can go here to the Leonardo online journal.

Meanwhile, Andrew Maynard at 2020 Science is posting about a new book which integrates art work in an attempt to explain nanotechnology without ever mentioning it. From Andrew’s posting,

How do you write a book about something few people have heard off, and less seem interested in?  The answer, it seems, is to write about something else.

Felice Frankel and George Whitesides have clearly taken this lesson to heart. Judged by the cover alone, their new book “No Small Matter:  Science at the Nanoscale” is all about science in the Twilight zone of the nanoscale

– where stuff doesn’t behave in the way intuition says it should.

Drat! I can’t make the indent go away. At any rate, do visit 2020 as Andrew to read more from this posting and at least one other where he has gotten permission to excerpt parts of the book (text and images).