Tag Archives: Technion

Therapeutic nanoparticles for agricultural crops

Nanoscale drug delivery systems developed by the biomedical community may prove useful to farmers. The Canadian Broadcasting Corporation (CBC) featured the story in a May 26, 2018 online news item (with audio file; Note: A link has been removed),

Thanks to a fortuitous conversation between an Israeli chemical engineer who works on medical nanotechnology and his farmer friend, there’s a new way to deliver nourishment to nutrient-starved crops.

Avi Schroeder, the chemical engineer and cancer researcher from Technion — Israel Institute of Technology asked his friend what are the major problems facing agriculture today. “He said, ‘You know Avi, one of the major issues we’re facing is that in some of the crops we try to grow, we actually have a lack of nutrients. And then we end up not growing those crops even though they’re very valuable or very important crops.'”

This problem is only going to become more acute in many regions of the world as global population approaches eight billion people.

“Feeding them with healthy food and nutritious food is becoming a major limiting factor. And … the land we can actually grow crops on are also becoming smaller and smaller in every country because people need to build houses too. So what we want is to get actually more crops per hectare.”

The way farmers currently deliver nutrients to malnourished agricultural crops is very inefficient. Much of what is added to the leaves of the plant is wasted. Most of it washes away or isn’t taken up by the plants.

If plants don’t get the nutrients they need, their leaves start to yellow, their growth becomes stunted and they don’t produce as much food as nutrient-rich crops.

“We work primarily in the field of medicine,” says Schroeder. “What we do many times is we’ll load minuscule doses of medicine into nanoparticles — we’ll inject them into the patient. And those nanoparticles will actually be able to detect the disease site inside the body. That sounded very, very similar to the problem the farmers were actually facing — how do you get a medicine into a crop or a nutrient into a crop and get it to the right region within the crop where it’s actually necessary.”

The nanoparticles Schroeder developed are tiny packages that can deliver nutrients — any nutrients — that are placed inside.

A June 6, 2018 news item on Nanowerk offers a few more details,

An innovative technology developed at the Technion [Israel Institute of Technology] could lead to significant increases in agricultural yields. Using a nanometric transport platform on plants that was previously utilized for targeted drug delivery, researchers increased the penetration rate of nutrients into the plants, from 1% to approximately 33%.

A May 27,2018 Technion press release, which originated the news item, fleshes out the details,

The technology exploits nanoscale delivery platforms which until now were used to transport drugs to specific targets in the patient’s body. The work was published in Scientific Reports and will be presented in Nature Press.

The use of the nanotechnology for targeted drug delivery has been the focus of research activity conducted at the Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies at the Wolfson Faculty of Chemical Engineering. The present research repurposes this technology for agricultural use; and is being pursued by laboratory director Prof. Avi Schroeder and graduate student Avishai Karny.

“The constant growth in the world population demands more efficient agricultural technologies, which will produce greater supplies of healthier foods and reduce environmental damage,” said Prof. Schroeder. “The present work provides a new means of delivering essential nutrients without harming the environment.”

The researchers loaded the nutrients into liposomes which are small spheres generated in the laboratory, comprised of a fatty outer layer enveloping the required nutrients. The particles are stable in the plant’s aqueous environment and can penetrate the cells. In addition, the Technion researchers can ‘program’ them to disintegrate and release the load at precisely the location and time of interest, namely, in the roots and leaves. Disintegration occurs in acidic environments or in response to an external signal, such as light waves or heat. The molecules comprising the particles are derived from soy plants and are therefore approved and safe for consumption by both humans and animals.

In the present experiment, the researchers used 100-nanometer liposomes to deliver the nutrients iron and magnesium into both young and adult tomato crops. They demonstrated that the liposomes, which were sprayed in the form of a solution onto the leaves, penetrated the leaves and reached other leaves and roots. Only when reaching the root cells did they disintegrate and release the nutrients. As said, the technology greatly increased the nutrient penetration rate.

In addition to demonstrating the effectivity of this approach as compared to the standard spray method, the researchers also assessed the regulatory limitations associated with the spread of volatile particles.

”Our engineered liposomes are only stable within a short spraying range of up to 2 meters,” explained Prof. Schroeder. “If they travel in the air beyond that distance, they break down into safe materials (phospholipids). We hope that the success of this study will expand the research and development of similar agricultural products, to increase the yield and quality of food crops.”

This is an illustration of the work,

Each liposome (light blue bubble) was loaded with iron and magnesium particles. The liposomes sprayed on the leaves, penetrated and then spread throughout the various parts of the plant and released their load within the cells. Courtesy: Technion

Here’s a link to and a citation for the paper,

Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops by Avishai Karny, Assaf Zinger, Ashima Kajal, Janna Shainsky-Roitman, & Avi Schroeder. Scientific Reportsvolume 8, Article number: 7589 (2018) DOI: https://doi.org/10.1038/s41598-018-25197-y Published 17 May 2018

This paper is open access.

There once was a champion … it was nano-rust

Swiss and Israeli scientists have discovered water and nano iron oxide (rust) can be used to produce solar hydrogen cheaply. From the July 7, 2013 news release on EurekAlert,

In the quest for the production of renewable and clean energy, photoelectrochemical cells (PECs) constitute a sort of a Holy Grail. PECs are devices able of splitting water molecules into hydrogen and oxygen in a single operation, thanks to solar radiation. “As a matter of fact, we’ve already discovered this precious chalice, says Michael Grätzel, Director of the Laboratory of Photonics and Interfaces (LPI) at EPFL [Ecole Polytechnique Fédérale de Lausanne] and inventor of dye-sensitized photoelectrochemical cells. Today we have just reached an important milestone on the path that will lead us forward to profitable industrial applications.”

This week, Nature Materials is indeed publishing a groundbreaking article on the subject. EPFL researchers, working with Avner Rotschild from Technion (Israel), have managed to accurately characterize the iron oxide nanostructures to be used in order to produce hydrogen at the lowest possible cost. “The whole point of our approach is to use an exceptionally abundant, stable and cheap material: rust,” adds Scott C. Warren, first author of the article.

The EFFL July 9, 2013 news release by Emmanuel Barraud about this research provides more details,

At the end of last year, Kevin Sivula, one of the collaborators at the LPI laboratory, presented a prototype electrode based on the same principle. Its efficiency was such that gas bubbles emerged as soon as it was under a light stimulus. Without a doubt, the potential of such cheap electrodes was demonstrated, even if there was still room for improvement.

By using transmission electron microscopy (TEM) techniques, researchers were able to precisely characterize the movement of the electrons through the cauliflower-looking nanostructures forming the iron oxide particles, laid on electrodes during the manufacturing process. “These measures have helped us understand the reason why we get performance differences depending on the electrodes manufacturing process”, says Grätzel.

By comparing several electrodes, whose manufacturing method is now mastered, scientists were able to identify the “champion” structure. A 10×10 cm prototype has been produced and its effectiveness is in line with expectations. The next step will be the development of the industrial process to large-scale manufacturing. A European funding and the Swiss federal government could provide support for this last part.

Evidently, the long-term goal is to produce hydrogen – the fuel of the future – in an environmentally friendly and especially competitive way. For Michael Grätzel, “current methods, in which a conventional photovoltaic cell is coupled to an electrolyzer for producing hydrogen, cost 15 € per kilo at their cheapest. We’re aiming at a € 5 charge per kilo”.

Here’s a link to and a citation for the published research paper,

Identifying champion nanostructures for solar water-splitting by Scott C. Warren, Kislon Voïtchovsky, Hen Dotan, Celine M. Leroy, Maurin Cornuz, Francesco Stellacci, Cécile Hébert, Avner Rothschild & Michael Grätzel. Nature Materials (2013) doi:10.1038/nmat3684
Published online 07 July 2013

This paper is behind a paywall.