Tag Archives: TFN

China’s and NanoH2O’s desalination efforts

An Oct. 21, 2013 news item on Azonano describes a desalination business deal between China and NanoH2O, a company headquartered in California,

NanoH2O, Inc., manufacturer of the most efficient and cost-effective reverse osmosis (RO) membranes for seawater desalination, today announced plans to build a manufacturing facility in Liyang, China, a city in the Yangtze River Delta 250 kilometers west of Shanghai.

The 10,000 square meter facility will be the company’s second fully integrated manufacturing plant, following the first located in Los Angeles, California. The China facility comes at a total investment of $45 million and is expected to be operational by the end of 2014.

China, which represents one-fifth of the world’s population but just six percent of the global fresh water supply, plans to increase its seawater reverse osmosis desalination capacity three-fold by 2015. The overall membrane market in China is estimated to grow more than 20 percent per year over the next 10 years. The Chinese government’s current five-year plan also calls for 70 percent of equipment used in desalination plants to be produced domestically. Establishing a new NanoH2O facility in China will allow the company to take advantage of the growing domestic market for both desalination and wastewater treatment.

A few weeks ago in a Sept. 27, 2013 posting, I mentioned some negotiations and deal making between China and the Czech Republic, which concerned ‘green’ nanotechnology.

The signing of the Letter of Intent between NAFIGATE China (a subsidiary of the Czech company NAFIGATE Corporation JSC) and their Chinese partner Guodian Technology & Environment Group Corporation Limited (a subsidiary of one of the most prominent Chinese energy companies) is a significant milestone in Czech-Chinese cooperation in nanotechnology sector. Since January 2013 both companies have been preparing the foundation of the NANODEC (Nanofiber Development Center) project for the development of final applications for water and air cleaning.[emphasis added here]

The company does provide some details about its technology, reversoe osmosis membranes relying on thin-film nanocomposites (TFN) on the FAQs (Frequently Asked Questions) webpage on the NanoH2O website,

 About Thin-Film Nanocomposite (TFN) Technology

What does the term “thin-film nanocomposite” mean?

The term “thin-film nanocomposite” was first used by researchers at University of California, Los Angeles (UCLA) who found that by encapsulating benign nanomaterial into the thin-film polyamide layer of a traditional thin-film composite membrane, they were able to increase membrane permeability compared to conventional RO membranes. NanoH2O leverages nanotechnology to further change the structure of the thin-film of a conventional RO membrane and enhance membrane performance. Benign nanoparticles are introduced during the synthesis of a traditional polymer film and are fully encapsulated when the nanocomposite RO membrane is formed.

How do nanoparticles increase membrane performance?

NanoH2O’s encapsulation of benign nanoparticles changes the structure of the thin-film surface of a conventional RO membrane, allowing more water to pass through while rejecting unwanted materials such as salt. QuantumFlux membranes are 50-100% more permeable than conventional membranes while still meeting best-in-class salt rejection.

Do nanoparticles pose any potential risks to water quality?

No. NanoH2O’s QuantumFlux membrane elements are completely safe for the treatment of potable water. The Qfx SW 365 ES, Qfx SW 400 ES, Qfx SW 400 SR and Qfx SW 400 R are all NSF Standard 61 certified, which means that they have been independently evaluated by NSF International, the global organization that provides standards development, product certification, auditing, education and risk management for public health and safety. NSF Standard 61 certification attests to the safety and viability of the Qfx SW 365 ES, Qfx SW 400 ES, Qfx SW 400 SR and Qfx SW 400 R membrane elements when used in the production of drinking water.

Does NanoH2O use a nanoparticle coating applied to another manufacturer’s membrane?

No. NanoH2O introduces nanostructured materials into the monomers that form the polymer film manufactured solely at its El Segundo, California facility. The nanoparticles are encapsulated into NanoH2O’s patented and patent-pending thin-film polyamide formulation, which makes up the top layer of the thin-film nanocomposite membrane.

There’s no mention here of exactly what kind of nanoparticles are being used in the company’s Quantum Flux membranes (or as they’re known generically, reverse osmosis membranes) but the company does offer some technical papers here, where there is, hopefully, more detail.

About Thin-Film Nanocomposite (TFN) Technology

What does the term “thin-film nanocomposite” mean?

The term “thin-film nanocomposite” was first used by researchers at University of California, Los Angeles (UCLA) who found that by encapsulating benign nanomaterial into the thin-film polyamide layer of a traditional thin-film composite membrane, they were able to increase membrane permeability compared to conventional RO membranes. NanoH2O leverages nanotechnology to further change the structure of the thin-film of a conventional RO membrane and enhance membrane performance. Benign nanoparticles are introduced during the synthesis of a traditional polymer film and are fully encapsulated when the nanocomposite RO membrane is formed.

How do nanoparticles increase membrane performance?

NanoH2O’s encapsulation of benign nanoparticles changes the structure of the thin-film surface of a conventional RO membrane, allowing more water to pass through while rejecting unwanted materials such as salt. QuantumFlux membranes are 50-100% more permeable than conventional membranes while still meeting best-in-class salt rejection.

Do nanoparticles pose any potential risks to water quality?

No. NanoH2O’s QuantumFlux membrane elements are completely safe for the treatment of potable water. The Qfx SW 365 ES, Qfx SW 400 ES, Qfx SW 400 SR and Qfx SW 400 R are all NSF Standard 61 certified, which means that they have been independently evaluated by NSF International, the global organization that provides standards development, product certification, auditing, education and risk management for public health and safety. NSF Standard 61 certification attests to the safety and viability of the Qfx SW 365 ES, Qfx SW 400 ES, Qfx SW 400 SR and Qfx SW 400 R membrane elements when used in the production of drinking water.

Does NanoH2O use a nanoparticle coating applied to another manufacturer’s membrane?

No. NanoH2O introduces nanostructured materials into the monomers that form the polymer film manufactured solely at its El Segundo, California facility. The nanoparticles are encapsulated into NanoH2O’s patented and patent-pending thin-film polyamide formulation, which makes up the top layer of the thin-film nanocomposite membrane.