Tag Archives: The Netherlands

Carbon nanotubes self-assembling into transistors on a gold substrate

I’m not sure this work is ready for commercialization (I think not) but it’s certainly intriguing. From an April 5, 2017 news item on ScienceDaily,

Carbon nanotubes can be used to make very small electronic devices, but they are difficult to handle. University of Groningen scientists, together with colleagues from the University of Wuppertal and IBM Zurich, have developed a method to select semiconducting nanotubes from a solution and make them self-assemble on a circuit of gold electrodes. …

An April 5, 2017 University of Groningen (Netherlands) press release on EurekAlert, which originated the news item, explains the work in more detail,

The results look deceptively simple: a self-assembled transistor with nearly 100 percent purity and very high electron mobility. But it took ten years to get there. University of Groningen Professor of Photophysics and Optoelectronics Maria Antonietta Loi designed polymers which wrap themselves around specific carbon nanotubes in a solution of mixed tubes. Thiol side chains on the polymer bind the tubes to the gold electrodes, creating the resultant transistor.


‘In our previous work, we learned a lot about how polymers attach to specific carbon nanotubes’, Loi explains. These nanotubes can be depicted as a rolled sheet of graphene, the two-dimensional form of carbon. ‘Depending on the way the sheets are rolled up, they have properties ranging from semiconductor to semi-metallic to metallic.’ Only the semiconductor tubes can be used to fabricate transistors, but the production process always results in a mixture.

‘We had the idea of using polymers with thiol side chains some time ago’, says Loi. The idea was that as sulphur binds to metals, it will direct polymer-wrapped nanotubes towards gold electrodes. While Loi was working on the problem, IBM even patented the concept. ‘But there was a big problem in the IBM work: the polymers with thiols also attached to metallic nanotubes and included them in the transistors, which ruined them.’


Loi’s solution was to reduce the thiol content of the polymers, with the assistance of polymer chemists from the University of Wuppertal. ‘What we have now shown is that this concept of bottom-up assembly works: by using polymers with a low concentration of thiols, we can selectively bring semiconducting nanotubes from a solution onto a circuit.’ The sulphur-gold bond is strong, so the nanotubes are firmly fixed: enough even to stay there after sonication of the transistor in organic solvents.

The production process is simple: metallic patterns are deposited on a carrier , which is then dipped into a solution of carbon nanotubes. The electrodes are spaced to achieve proper alignment: ‘The tubes are some 500 nanometres long, and we placed the electrodes for the transistors at intervals of 300 nanometres. The next transistor is over 500 nanometres away.’ The spacing limits the density of the transistors, but Loi is confident that this could be increased with clever engineering.

‘Over the last years, we have created a library of polymers that select semiconducting nanotubes and developed a better understanding of how the structure and composition of the polymers influences which carbon nanotubes they select’, says Loi. The result is a cheap and scalable production method for nanotube electronics. So what is the future for this technology? Loi: ‘It is difficult to predict whether the industry will develop this idea, but we are working on improvements, and this will eventually bring the idea closer to the market.’

Here’s a link to and a citation for the paper,

On-Chip Chemical Self-Assembly of Semiconducting Single-Walled Carbon Nanotubes (SWNTs): Toward Robust and Scale Invariant SWNTs Transistors by Vladimir Derenskyi, Widianta Gomulya, Wytse Talsma, Jorge Mario Salazar-Rios, Martin Fritsch, Peter Nirmalraj, Heike Riel, Sybille Allard, Ullrich Scherf, and Maria A. Loi. Advanced Materials DOI: 10.1002/adma.201606757 Version of Record online: 5 APR 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Sustainable Nanotechnologies (SUN) project draws to a close in March 2017

Two Oct. 31, 2016 news item on Nanowerk signal the impending sunset date for the European Union’s Sustainable Nanotechnologies (SUN) project. The first Oct. 31, 2016 news item on Nanowerk describes the projects latest achievements,

The results from the 3rd SUN annual meeting showed great advancement of the project. The meeting was held in Edinburgh, Scotland, UK on 4-5 October 2016 where the project partners presented the results obtained during the second reporting period of the project.

SUN is a three and a half year EU project, running from 2013 to 2017, with a budget of about €14 million. Its main goal is to evaluate the risks along the supply chain of engineered nanomaterials and incorporate the results into tools and guidelines for sustainable manufacturing.

The ultimate goal of the SUN Project is the development of an online software Decision Support System – SUNDS – aimed at estimating and managing occupational, consumer, environmental and public health risks from nanomaterials in real industrial products along their lifecycles. The SUNDS beta prototype has been released last October, 2015, and since then the main focus has been on refining the methodologies and testing them on selected case studies i.e. nano-copper oxide based wood preserving paint and nano- sized colourants for plastic car part: organic pigment and carbon black. Obtained results and open issues were discussed during the third annual meeting in order collect feedbacks from the consortium that will inform, in the next months, the implementation of the final version of the SUNDS software system, due by March 2017.

An Oct. 27, 2016 SUN project press release, which originated the news item, adds more information,

Significant interest has been payed towards the results obtained in WP2 (Lifecycle Thinking) which main objectives are to assess the environmental impacts arising from each life cycle stage of the SUN case studies (i.e. Nano-WC-Cobalt (Tungsten Carbide-cobalt) sintered ceramics, Nanocopper wood preservatives, Carbon Nano Tube (CNT) in plastics, Silicon Dioxide (SiO2) as food additive, Nano-Titanium Dioxide (TiO2) air filter system, Organic pigment in plastics and Nanosilver (Ag) in textiles), and compare them to conventional products with similar uses and functionality, in order to develop and validate criteria and guiding principles for green nano-manufacturing. Specifically, the consortium partner COLOROBBIA CONSULTING S.r.l. expressed its willingness to exploit the results obtained from the life cycle assessment analysis related to nanoTiO2 in their industrial applications.

On 6th October [2016], the discussions about the SUNDS advancement continued during a Stakeholder Workshop, where representatives from industry, regulatory and insurance sectors shared their feedback on the use of the decision support system. The recommendations collected during the workshop will be used for the further refinement and implemented in the final version of the software which will be released by March 2017.

The second Oct. 31, 2016 news item on Nanowerk led me to this Oct. 27, 2016 SUN project press release about the activities in the upcoming final months,

The project has designed its final events to serve as an effective platform to communicate the main results achieved in its course within the Nanosafety community and bridge them to a wider audience addressing the emerging risks of Key Enabling Technologies (KETs).

The series of events include the New Tools and Approaches for Nanomaterial Safety Assessment: A joint conference organized by NANOSOLUTIONS, SUN, NanoMILE, GUIDEnano and eNanoMapper to be held on 7 – 9 February 2017 in Malaga, Spain, the SUN-CaLIBRAte Stakeholders workshop to be held on 28 February – 1 March 2017 in Venice, Italy and the SRA Policy Forum: Risk Governance for Key Enabling Technologies to be held on 1- 3 March in Venice, Italy.

Jointly organized by the Society for Risk Analysis (SRA) and the SUN Project, the SRA Policy Forum will address current efforts put towards refining the risk governance of emerging technologies through the integration of traditional risk analytic tools alongside considerations of social and economic concerns. The parallel sessions will be organized in 4 tracks:  Risk analysis of engineered nanomaterials along product lifecycle, Risks and benefits of emerging technologies used in medical applications, Challenges of governing SynBio and Biotech, and Methods and tools for risk governance.

The SRA Policy Forum has announced its speakers and preliminary Programme. Confirmed speakers include:

  • Keld Alstrup Jensen (National Research Centre for the Working Environment, Denmark)
  • Elke Anklam (European Commission, Belgium)
  • Adam Arkin (University of California, Berkeley, USA)
  • Phil Demokritou (Harvard University, USA)
  • Gerard Escher (École polytechnique fédérale de Lausanne, Switzerland)
  • Lisa Friedersdor (National Nanotechnology Initiative, USA)
  • James Lambert (President, Society for Risk Analysis, USA)
  • Andre Nel (The University of California, Los Angeles, USA)
  • Bernd Nowack (EMPA, Switzerland)
  • Ortwin Renn (University of Stuttgart, Germany)
  • Vicki Stone (Heriot-Watt University, UK)
  • Theo Vermeire (National Institute for Public Health and the Environment (RIVM), Netherlands)
  • Tom van Teunenbroek (Ministry of Infrastructure and Environment, The Netherlands)
  • Wendel Wohlleben (BASF, Germany)

The New Tools and Approaches for Nanomaterial Safety Assessment (NMSA) conference aims at presenting the main results achieved in the course of the organizing projects fostering a discussion about their impact in the nanosafety field and possibilities for future research programmes.  The conference welcomes consortium partners, as well as representatives from other EU projects, industry, government, civil society and media. Accordingly, the conference topics include: Hazard assessment along the life cycle of nano-enabled products, Exposure assessment along the life cycle of nano-enabled products, Risk assessment & management, Systems biology approaches in nanosafety, Categorization & grouping of nanomaterials, Nanosafety infrastructure, Safe by design. The NMSA conference key note speakers include:

  • Harri Alenius (University of Helsinki, Finland,)
  • Antonio Marcomini (Ca’ Foscari University of Venice, Italy)
  • Wendel Wohlleben (BASF, Germany)
  • Danail Hristozov (Ca’ Foscari University of Venice, Italy)
  • Eva Valsami-Jones (University of Birmingham, UK)
  • Socorro Vázquez-Campos (LEITAT Technolоgical Center, Spain)
  • Barry Hardy (Douglas Connect GmbH, Switzerland)
  • Egon Willighagen (Maastricht University, Netherlands)
  • Nina Jeliazkova (IDEAconsult Ltd., Bulgaria)
  • Haralambos Sarimveis (The National Technical University of Athens, Greece)

During the SUN-caLIBRAte Stakeholder workshop the final version of the SUN user-friendly, software-based Decision Support System (SUNDS) for managing the environmental, economic and social impacts of nanotechnologies will be presented and discussed with its end users: industries, regulators and insurance sector representatives. The results from the discussion will be used as a foundation of the development of the caLIBRAte’s Risk Governance framework for assessment and management of human and environmental risks of MN and MN-enabled products.

The SRA Policy Forum: Risk Governance for Key Enabling Technologies and the New Tools and Approaches for Nanomaterial Safety Assessment conference are now open for registration. Abstracts for the SRA Policy Forum can be submitted till 15th November 2016.
For further information go to:

There you have it.

Barnacle footprints could be useful

An Aug. 18, 2016 news item on Nanowerk describes efforts by scientists at the University of Twente (The Netherlands) and A*STAR (Singapore) to trace a barnacle’s footprints (Note: A link has been removed),

Barnacle’s larvae leave behind tiny protein traces on a ship hull: but what is the type of protein and what is the protein-surface interaction? Conventional techniques can only identify dissolved proteins, and in large quantities. Using a modified type of an Atomic Force Microscope, scientists of the University of Twente in The Netherlands and A*STAR in Singapore, can now measure protein characteristics of even very small traces on a surface. They present the new technique in Nature Nanotechnology (“Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample”).

An Aug. 16, 2016 University of Twente press release, which originated the news item, explains how the ‘footprints’ could lead to new applications for ships and boats and briefly describes the technical aspects of the research,

In infection diseases, membrane fouling, interaction with bacteria, as well as in rapid healing of wounds for example, the way proteins interact with a surface plays an important role. On a surface, they function in a different way than in solution. On a ship hull, the larvae of the barnacle will leave tiny traces of protein to test if the surface is attractive for long-term attachment. If we get to know more about this interaction, it will be possible to develop surface conditions that are less attractive for the barnacle. Large amounts of barnacles on a ship will have a destructive effect on flow resistance and will lead to more fuel consumption. The new measuring method makes use of a modified Atomic Force Microscope: a tiny ball glued to the cantilever of the microscope will attract protein molecules.

Modified AFM tip with a tiny ball that can attract protein molecules


An amount of just hundreds of protein molecules will be sufficient to determine a crucial value, called the iso-electric point (pI): this is the pH-value at which the protein has net zero electric charge. The pI value says a lot about the surroundings a protein will ‘feel comfortable’ in, and to which it preferably moves. Using the AFM microscope, of which the modified tip has collected protein molecules, it is possible to perform force measurements for different pH values. The tip will be attracted or repelled, or show no movement when the pI point is reached. For these measurement, the researchers made a special reference material consisting of several layers. Using this, the effect of a number of pH-values can be tested until the pI value is found.

The traces the larve leaves behind (left) and force measurements (right)


The tests have been successfully performed for a number of known proteins like fibrinogen, myoglobine and bovine albumin. And returning to the barnacle: the tiny protein footprint will contain enough molecules to determine the pI value. This quantifies the ideal surface conditions, and using this knowledge, new choices can be made for e.g. the paint that is used on a ship hull.

The research has been done within the group Materials Science and Technology of Polymers of Professor Julius Vancso, in close collaboration with colleagues of A*STAR in Singapore – Prof Vancso is a Visiting Professor there as well. His group is part of UT’s MESA+ Institute for Nanotechnology.

Here’s a link to and a citation for the paper,

Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample by Shifeng Gu, Xiaoying Zhu, Dominik Jańczewski, Serina Siew Chen Lee, Tao He, Serena Lay Ming Teo, & G. Julius Vancso.  Nature Nanotechnology (2016) doi:10.1038/nnano.2016.118 Published online 25 July 2016

This paper is behind a paywall.

The Canadian nano scene as seen by the OECD (Organization for Economic Cooperation and Development)

I’ve grumbled more than once or twice about the seemingly secret society that is Canada’s nanotechnology effort (especially health, safety, and environment issues) and the fact that I get most my information from Organization for Economic Cooperation and Development (OECD) documents. That said, thank you to Lynne Bergeson’s April 8, 2016 post on Nanotechnology Now for directions to the latest OECD nano document,

The Organization for Economic Cooperation and Development recently posted a March 29, 2016, report entitled Developments in Delegations on the Safety of Manufactured Nanomaterials — Tour de Table. … The report compiles information, provided by Working Party on Manufactured Nanomaterials (WPMN) participating delegations, before and after the November 2015 WPMN meeting, on current developments on the safety of manufactured nanomaterials.

It’s an international roundup that includes: Australia, Austria, Belgium, Canada, Germany, Japan, Korea, the Netherlands, Switzerland, Turkey, United Kingdom, U.S., and the European Commission (EC), as well as the Business and Industry Advisory Committee to the OECD (BIAC) and International Council on Animal Protection in OECD Programs (ICAPO).

As usual, I’m focusing on Canada. From the DEVELOPMENTS IN DELEGATIONS ON THE SAFETY OF MANUFACTURED NANOMATERIALS – TOUR DE TABLE Series on the Safety of Manufactured Nanomaterials No. 67,

National  developments  on  human  health  and  environmental  safety  including  recommendations, definitions, or discussions related to adapting or applying existing regulatory systems or the drafting of new laws/ regulations/amendments/guidance materials A consultation document on a Proposed Approach to Address Nanoscale Forms of Substances on the Domestic  Substances  List was  published  with  a  public  comment  period  ending on  May  17,  2015. The proposed approach outlines the Government’s plan to address nanomaterials considered in commerce in Canada (on  Canada’s  public inventory).  The  proposal is a stepwise  approach to  acquire  and  evaluate information,  followed  by  any  necessary  action. A  follow-up  stakeholder  workshop  is  being  planned  to discuss  next  steps  and  possible  approaches  to prioritize  future  activities. The  consultation document  is available at: http://www.ec.gc.ca/lcpe-cepa/default.asp?lang=En&n=1D804F45-1

A mandatory information gathering survey was published on July 25, 2015. The purpose of the survey is to collect information to determine the commercialstatus of certain nanomaterials in Canada. The survey targets  206  substances  considered  to  be  potentially  in commerce  at  the  nanoscale. The  list  of  206 substances was developed using outcomes from the Canada-United States Regulatory Cooperation Council (RCC)  Nanotechnology  Initiative  to  identify nanomaterial  types. These  nanomaterial  types  were  cross-referenced  with  the Domestic  Substances  List to  develop  a  preliminary  list  of  substances  which are potentially intentionally manufactured at the nanoscale. The focus of the survey aligns with the Proposed Approach to  Address  Nanoscale  Forms  of  Substances  on  the Domestic  Substances  List (see  above)  and certain  types  of  nanomaterials  were  excluded  during the  development  of  the  list  of  substances. The information  being  requested  by  the  survey  includes substance  identification,  volumes,  and  uses.  This information will feed into the Government’s proposed approach to address nanomaterials on the Domestic Substances List. Available at: http://gazette.gc.ca/rp-pr/p1/2015/2015-07-25/html/notice-avis-eng.php

Information on:

a.risk  assessment  decisions, including  the  type  of:  (a)  nanomaterials  assessed; (b) testing recommended; and (c) outcomes of the assessment;

Four substances were notified to the program since the WPMN14 – three surface modified substances and  one  inorganic  substance.  No  actions,  including  additional  data requests,  were  taken  due  to  low expected  exposures  in  accordance  with  the New  Substances  Notifications  Regulations  (Chemicals and Polymers) (NSNR) for two of the substances.  Two of the substances notified were subject to a Significant New Activity Notice. A Significant New Activity notice is an information gathering tool used to require submission  of  additional  information  if  it  is suspected  that  a  significant  new  activity  may  result in  the substance becoming toxic under the Canadian Environmental Protection Act, 1999.

b.Proposals, or modifications to previous regulatory decisions

As  part  of  the  Government’s  Chemicals  Management Plan,  a  review  is  being  undertaken  for  all substances  which  have  been  controlled through  Significant  New  Activity  (SNAc)  notices (see  above).  As part  of  this  activity,  the  Government  is  reviewing past  nanomaterials  SNAc  notices  to  see  if  new information  is  available  to  refine  the  scope  and information  requirements.    As  a  result  of  this  review, 9 SNAc  notices  previously  in  place  for  nanomaterials have  been  rescinded.    This  work  is  ongoing,  and  a complete review of all nanomaterial SNAcs is currently planned to be completed in 2016.

Information related to good practice documents

The Canada-led,  ISO  standards project, ISO/DTR  19716 Nanotechnologies — Characterization  of cellulose  nanocrystals, [emphasis mine] initiated  in  April 2014, is  now at Committee  Draft  (CD)  3-month  ISO ballot, closing    Aug 31, 2015. Ballot comments will be addressed during JWG2 Measurement and Characterization working  group meetings  at  the 18th Plenary  of  ISO/TC229, Nanotechnologies,  being held in Edmonton, Alberta, Sep. 28 – Oct. 2, 2015.

Research   programmes   or   strategies   designed   to  address   human   health   and/   or environmental safety aspects of nanomaterials

Scientific research

Environment Canada continues to support various academic and departmental research projects. This research has to date included studying fate and effects of nanomaterials in the aquatic, sediment, soil, and air  compartments. Funding  in  fiscal  2015-16  continues  to  support  such  projects,  including  sub-surface transportation, determining key physical-chemical parameters to predict ecotoxicity, and impacts of nano-silver [silver nanoparticles]  addition  to  a  whole  lake  ecosystem [Experimental Lakes Area?]. Environment  Canada  has  also  partnered  with  the National Research  Council  of  Canada  recently  to  initiate  a project  on  the  development  of  test  methods  to identify surfaces of nanomaterials for the purposes of regulatory identification and to support risk assessments. In addition,  Environment  Canada  is  working  with  academic laboratories in  Canada  and  Germany  to  prepare guidance to support testing of nanoparticles using the OECD Test Guideline for soil column leaching.

Health  Canada  continues  its  research  efforts  to  investigate  the  effects  of  surface-modified  silica nanoparticles. The   aims   of   these   projects   are  to:   (1) study the importance of size and surface functionalization;  and  (2)  provide a genotoxic profile and  to  identify  mechanistic  relationships  of  particle properties  to  elicited  toxic  responses.  A manuscript reporting  the in  vitro genotoxic,  cytotoxic and transcriptomic  responses  following  exposure  to  silica  nanoparticles  has  recently  been  submitted to  a  peer reviewed journal and is currently undergoing review. Additional manuscripts reporting the toxicity results obtained to date are in preparation.

Information on public/stakeholder consultations;

A consultation document on a Proposed Approach to Address Nanoscale Forms of Substances on the Domestic  Substances  List was  published  with a  public  comment  period ending  on May  17,  2015  (see Question  1).  Comments  were  received  from approximately  20  stakeholders  representing  industry and industry  associations,  as  well  as  non-governmental  organizations. These  comments  will  inform  decision making to address nanomaterials in commerce in Canada.

Information on research or strategies on life cycle aspects of nanomaterials

Canada, along with Government agencies in the United States, Non-Governmental Organizations and Industry,  is  engaged  in  a  project  to  look  at releases  of  nanomaterials  from  industrial  consumer  matrices (e.g., coatings). The objectives of the NanoRelease Consumer Products project are to develop protocols or
methods (validated  through  interlaboratory  testing) to  measure  releases  of  nanomaterials  from  solid matrices as a result of expected uses along the material life cycle for consumer products that contain the nanomaterials. The  project  is  currently  in  the  advanced  stages  of Phase  3  (Interlaboratory  Studies).  The objectives of Phase 3 of the project are to develop robust methods for producing and collecting samples of CNT-epoxy  and  CNT-rubber  materials  under  abrasion  and  weathering scenarios,  and  to  detect  and quantify, to the extent possible, CNT release fractions. Selected laboratories in the US, Canada, Korea and the European Community are finalising the generation and analysis of sanding and weathering samples and the    results    are    being    collected    in    a   data    hub    for    further    interpretation    and    analysis.

Additional details about the project can be found at the project website: http://www.ilsi.org/ResearchFoundation/RSIA/Pages/NanoRelease1.aspx

Under the OECD Working Party on Resource Productivity and Waste (WPRPW), the expert group on waste containing nanomaterials has developed four reflection papers on the fate of nanomaterials in waste treatment  operations.  Canada  prepared the  paper  on  the  fate  of  nanomaterials in  landfills;  Switzerland on the  recycling  of  waste  containing  nanomaterials;  Germany  on  the  incineration  of  waste  containing nanomaterials;  and  France  on  nanomaterials  in wastewater  treatment.  The  purpose  of  these  papers is to provide  an  overview  of  the  existing  knowledge  on the  behaviour  of  nanomaterials  during  disposal operations and identify the information gaps. At the fourth meeting of the WPRPW that took place on 12-14 November 2013, three of the four reflection papers were considered by members. Canada’s paper was presented and discussed at the fifth meeting of the WPRPRW that took place on 8-10 December 2014. The four  papers  were  declassified  by  EPOC  in  June  2015, and  an  introductory  chapter  was  prepared  to  draw these  papers  together. The introductory  chapter  and accompanying  papers  will  be  published in  Fall  2015. At  the sixth  meeting  of  the  WPRPW  in  June – July  2015,  the  Secretariat  presented  a  proposal  for an information-sharing  platform  that  would  allow  delegates  to  share research  and  documents  related  to nanomaterials. During a trial phase, delegates will be asked to use the platform and provide feedback on its use at the next meeting of the WPRPW in December 2015. This information-sharing platform will also be accessible to delegates of the WPMN.

Information related to exposure measurement and exposure mitigation.

Canada and the Netherlands are co-leading a project on metal impurities in carbon nanotubes. A final version  of  the  report  is  expected  to  be ready for WPMN16. All  research has  been completed (e.g. all components are published or in press and there was a presentation by Pat Rasmussen to SG-08 at the Face-to-Face Meeting in Seoul June 2015). The first draft will be submitted to the SG-08 secretariat in autumn 2015. Revisions  will  be  based  on  early  feedback  from  SG-08  participants.  The  next  steps  depend  on  this feedback and amount of revision required.

Information on past, current or future activities on nanotechnologies that are being done in co-operation with non-OECD countries.

A webinar between ECHA [European Chemicals Agency], the US EPA [Environmental Protection Agency] and Canada was hosted by Canada on April 16, 2015. These are  regularly  scheduled  trilateral  discussions  to keep  each  other  informed  of  activities  in  respective jurisdictions.

In  March 2015, Health  Canada  hosted  3  nanotechnology knowledge  transfer sessions  targeting Canadian  government  research  and  regulatory  communities  working  in  nanotechnology.  These  sessions were  an  opportunity  to  share  information  and perspectives  on  the  current  state  of  science supporting  the regulatory  oversight  of  nanomaterials with  Government.  Presenters  provided  detailed  outputs  from  the OECD WPMN including: updates on OECD test methods and guidance documents; overviews of physical-chemical properties, as well as their relevance to toxicological testing and risk assessment; ecotoxicity and fate   test   methods;   human   health   risk   assessment   and   alternative   testing   strategies;   and exposure measurement  and  mitigation.  Guest  speakers  included  Dr  Richard  C.  Pleus  Managing  Director  and  Director of Intertox, Inc and Dr. Vladimir Murashov Special Assistant on Nanotechnology to the Director of National Institute for Occupational Safety and Health (NIOSH).

On   March   4-5, 2015, Industry   Canada   and   NanoCanada co-sponsored  “Commercializing Nanotechnology  in  Canada”,  a  national  workshop  that brought  together  representatives  from  industry, academia and government to better align Canada’s efforts in nanotechnology.  This workshop was the first of  its  kind  in  Canada. It  also  marked  the  official  launch  of  NanoCanada (http://nanocanada.com/),  a national  initiative  that  is  bringing  together stakeholders  from  across  Canada  to  bridge  the  innovation  gap and stimulates emerging technology solutions.

It’s nice to get an update about what’s going on. Despite the fact this report was published in 2016 the future tense is used in many of the verbs depicting actions long since accomplished. Maybe this was a cut-and-paste job?

Moving on, I note the mention of the Canada-led,  ISO  standards project, ISO/DTR  19716 Nanotechnologies — Characterization  of cellulose  nanocrystals (CNC). For those not familiar with CNC, the Canadian government has invested hugely in this material derived mainly from trees, in Canada. Other countries and jurisdictions have researched nanocellulose derived from carrots, bananas, pineapples, etc.

Finally, it was interesting to find out about the existence of  NanoCanada. In looking up the Contact Us page, I noticed Marie D’Iorio’s name. D’Iorio, as far as I’m aware, is still the Executive Director for Canada’s National Institute of Nanotechnology (NINT) or here (one of the National Research Council of Canada’s institutes). I have tried many times to interview someone from the NINT (Nils Petersen, the first NINT ED and Martha Piper, a member of the advisory board) and more recently D’Iorio herself only to be be met with a resounding silence. However, there’s a new government in place, so I will try again to find out more about the NINT, and, this time, NanoCanada.

Biological supercomputers (living, breathing supercomputers) and an international collaboration spearheaded by Canadian scientists

A living, breathing supercomputer is a bit mind-boggling but scientists at McGill University (Canada) and their international colleagues have created a working model according to a Feb. 26, 2016 McGill University news release on EurekAlert (and received via email), Note: A link has been removed,

The substance that provides energy to all the cells in our bodies, Adenosine triphosphate (ATP), may also be able to power the next generation of supercomputers. That is what an international team of researchers led by Prof. Nicolau, the Chair of the Department of Bioengineering at McGill, believe. They’ve published an article on the subject earlier this week in the Proceedings of the National Academy of Sciences (PNAS), in which they describe a model of a biological computer that they have created that is able to process information very quickly and accurately using parallel networks in the same way that massive electronic super computers do.

Except that the model bio supercomputer they have created is a whole lot smaller than current supercomputers, uses much less energy, and uses proteins present in all living cells to function.

Doodling on the back of an envelope

“We’ve managed to create a very complex network in a very small area,” says Dan Nicolau, Sr. with a laugh. He began working on the idea with his son, Dan Jr., more than a decade ago and was then joined by colleagues from Germany, Sweden and The Netherlands, some 7 years ago [there is also one collaborator from the US according the journal’s [PNAS] list of author affiliations, read on for the link to the paper]. “This started as a back of an envelope idea, after too much rum I think, with drawings of what looked like small worms exploring mazes.”

The model bio-supercomputer that the Nicolaus (father and son) and their colleagues have created came about thanks to a combination of geometrical modelling and engineering knowhow (on the nano scale). It is a first step, in showing that this kind of biological supercomputer can actually work.

The circuit the researchers have created looks a bit like a road map of a busy and very organized city as seen from a plane. Just as in a city, cars and trucks of different sizes, powered by motors of different kinds, navigate through channels that have been created for them, consuming the fuel they need to keep moving.

More sustainable computing

But in the case of the biocomputer, the city is a chip measuring about 1.5 cm square in which channels have been etched. Instead of the electrons that are propelled by an electrical charge and move around within a traditional microchip, short strings of proteins (which the researchers call biological agents) travel around the circuit in a controlled way, their movements powered by ATP, the chemical that is, in some ways, the juice of life for everything from plants to politicians.

Because it is run by biological agents, and as a result hardly heats up at all, the model bio-supercomputer that the researchers have developed uses far less energy than standard electronic supercomputers do, making it more sustainable. Traditional supercomputers use so much electricity that they heat up a lot and then need to be cooled down, often requiring their own power plant to function.

Moving from model to reality

Although the model bio supercomputer was able to very efficiently tackle a complex classical mathematical problem by using parallel computing of the kind used by supercomputers, the researchers recognize that there is still a lot of work ahead to move from the model they have created to a full-scale functional computer.

”Now that this model exists as a way of successfully dealing with a single problem, there are going to be many others who will follow up and try to push it further, using different biological agents, for example,” says Nicolau. “It’s hard to say how soon it will be before we see a full scale bio super-computer. One option for dealing with larger and more complex problems may be to combine our device with a conventional computer to form a hybrid device. Right now we’re working on a variety of ways to push the research further.”

What was once the stuff of science fiction, is now just science.

The funding for this project is interesting,

This research was funded by: The European Union Seventh Framework Programme; [US] Defense Advanced Research Projects Agency [DARPA]; NanoLund; The Miller Foundation; The Swedish Research Council; The Carl Trygger Foundation; the German Research Foundation; and by Linnaeus University.

I don’t see a single Canadian funding agency listed.

In any event, here’s a link to and a citation for the paper,

Parallel computation with molecular-motor-propelled agents in nanofabricated networks by Dan V. Nicolau, Jr., Mercy Lard, Till Kortend, Falco C. M. J. M. van Delft, Malin Persson, Elina Bengtsson, Alf Månsson, Stefan Diez, Heiner Linke, and Dan V. Nicolau. Proceedings of the National Academy of Sciences (PNAS): http://www.pnas.org/content/early/2016/02/17/1510825113

This paper appears to be open access.

Finally, the researchers have provided an image illustrating their work,

Caption: Strands of proteins of different lengths move around the chip in the bio computer in directed patterns, a bit like cars and trucks navigating the streets of a city. Credit: Till Korten

Caption: Strands of proteins of different lengths move around the chip in the bio computer in directed patterns, a bit like cars and trucks navigating the streets of a city. Credit: Till Korten

ETA Feb. 29 2016: Technical University Dresden’s Feb. 26, 2016 press release on EurekAlert also announces the bio-computer albeit from a rather different perspective,

The pioneering achievement was developed by researchers from the Technische Universität Dresden and the Max Planck Institute of Molecular Cell Biology and Genetics, Dresden in collaboration with international partners from Canada, England, Sweden, the US, and the Netherlands.

Conventional electronic computers have led to remarkable technological advances in the past decades, but their sequential nature -they process only one computational task at a time- prevents them from solving problems of combinatorial nature such as protein design and folding, and optimal network routing. This is because the number of calculations required to solve such problems grows exponentially with the size of the problem, rendering them intractable with sequential computing. Parallel computing approaches can in principle tackle such problems, but the approaches developed so far have suffered from drawbacks that have made up-scaling and practical implementation very difficult. The recently reported parallel-computing approach aims to address these issues by combining well established nanofabrication technology with molecular motors which are highly energy efficient and inherently work in parallel.

In this approach, which the researchers demonstrate on a benchmark combinatorial problem that is notoriously hard to solve with sequential computers, the problem to be solved is ‘encoded’ into a network of nanoscale channels (Fig. 1a). This is done, on the one hand by mathematically designing a geometrical network that is capable of representing the problem, and on the other hand by fabricating a physical network based on this design using so-called lithography, a standard chip-manufacturing technique.

The network is then explored in parallel by many protein filaments (here actin filaments or microtubules) that are self-propelled by a molecular layer of motor proteins (here myosin or kinesin) covering the bottom of the channels (Fig. 3a). The design of the network using different types of junctions automatically guides the filaments to the correct solutions to the problem (Fig. 1b). This is realized by different types of junctions, causing the filaments to behave in two different ways. As the filaments are rather rigid structures, turning to the left or right is only possible for certain angles of the crossing channels. By defining these options (‘split junctions’ Fig. 2a + 3b and ‘pass junctions’, Fig. 2b + 3c) the scientists achieved an ‘intelligent’ network giving the filaments the opportunity either to cross only straight or to decide between two possible channels with a 50/50 probability.

The time to solve combinatorial problems of size N using this parallel-computing approach scales approximately as N2, which is a dramatic improvement over the exponential (2N) time scales required by conventional, sequential computers. Importantly, the approach is fully scalable with existing technologies and uses orders of magnitude less energy than conventional computers, thus circumventing the heating issues that are currently limiting the performance of conventional computing.

The diagrams mentioned were not included with the press release.

Majorana, matter, anti-matter, and nanowires

This is one of my favourite types of science story and I’m going to start with the quantum physics part of this (from the April 13, 2012 news item on Nanowerk),

Scientists at TU Delft’s Kavli Institute and the Foundation for Fundamental Research on Matter (FOM Foundation) have succeeded for the first time in detecting a Majorana particle. In the 1930s, the brilliant Italian physicist Ettore Majorana deduced from quantum theory the possibility of the existence of a very special particle, a particle that is its own anti-particle: the Majorana fermion. That ‘Majorana’ would be right on the border between matter and anti-matter.

The researchers have made a video about the Majorana fermion and nanowires (from the April 12, news release on the TU Delft website),

Here’s a little more about the Majorana fermion and why the researchers as so excited (from the TU Delft news release),

Majorana fermions are very interesting – not only because their discovery opens up a new and uncharted chapter of fundamental physics; they may also play a role in cosmology. A proposed theory assumes that the mysterious ‘dark matter, which forms the greatest part of the universe, is composed of Majorana fermions. Furthermore, scientists view the particles as fundamental building blocks for the quantum computer. Such a computer is far more powerful than the best supercomputer, but only exists in theory so far. Contrary to an ‘ordinary’ quantum computer, a quantum computer based on Majorana fermions is exceptionally stable and barely sensitive to external influences.

This breakthrough was achieved not with the Large Hadron Collider at CERN (European Particle Physics Laboratory) but with nanowires (from the TU Delft news release),

For the first time, scientists in Leo Kouwenhoven’s research group managed to create a nanoscale electronic device in which a pair of Majorana fermions ‘appear’ at either end of a nanowire. They did this by combining an extremely small nanowire, made by colleagues from Eindhoven University of Technology, with a superconducting material and a strong magnetic field. ‘The measurements of the particle at the ends of the nanowire cannot otherwise be explained than through the presence of a pair of Majorana fermions’, says Leo Kouwenhoven.

The device is made of an Indium Antemonide nanowire, covered with a Gold contact and partially covered with a Superconducting Niobium contact. The Majorana fermions are created at the end of the Nanowire. (from the TU Delft website)

At the end of the TU Delft news release, they mention more about Ettore Majorana and this is where the story gets quite intriguing,

The Italian physicist Ettore Majorana was a brilliant theorist who showed great insight into physics at a young age. He discovered a hitherto unknown solution to the equations from which quantum scientists deduce elementary particles: the Majorana fermion. Practically all theoretic particles that are predicted by quantum theory have been found in the last decades, with just a few exceptions, including the enigmatic Majorana particle and the well-known Higgs boson. But Ettore Majorana the person is every bit as mysterious as the particle. In 1938 he withdrew all his money and disappeared during a boat trip from Palermo to Naples. Whether he killed himself, was murdered or lived on under a different identity is still not known. No trace of Majorana was ever found.

Here’s the citation for the article describing the discovery of the Majorana fermion (from the TU Delft news release),

The article is published in Science Express on 12 April: Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices, V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven

There’s more information and there are more images with the April 12, 2012 TU Deflt news release.

Nanotechnology in the developing world/global south

Sometimes it’s called the ‘developing world’, sometimes it’s called the ‘global south’ and there have been other names before these. In any event, the organization, Nanotechnology for Development (Nano-dev) has released a policy brief about nanotechnology and emerging economies (?). Before discussing the brief, I have found a little information on the organization. From the Nano-dev home page,

Nanotechnology for development is a research project that aims at understanding how nanotechnology can contribute to development. By investigating way people deal with nanotechnology in Kenya, India and the Netherlands, the project will flesh out appropriate ways for governing nanotechnology for development.

Nanotechnology is a label for technologies at the nano-scale, roughly between 1 and 100 nanometers. This is extremely small. By comparison, the diameter of one human hair is about 60,000 nanometers. At this scale materials acquire all sorts of new characteristics that can be used in a wide range of novel applications. This potentially includes cheaper and more efficient technologies that can benefit the world’s poor, such as cheap water filters, efficient solar powered electricity, and portable diagnostic tests.

The four team members on the Nano-dev project are (from the Project Team page):

Pankaj Sekhsaria’s project seeks to understand the cultures of innovation in nanotechnology research in India, particularly in laboratories. He has a Bachelors Degree in Mechanical Engineering from Pune University in India and a MA in Mass Communication from the Jamia Milia Islamia in New Delhi, India.

Trust Saidi’s research is on travelling nanotechnologies. He studied BSc in Geography and Environmental Studies at Zimbabwe Open University, BSc Honours in Geography at University of Zimbabwe, MSc in Public Policy and Human Development at Maastricht Graduate School of Governance, Maastricht University.

Charity Urama’s project investigates the role of knowledge brokerage in nanotechnology for development. She obtained her BSc Botany from the faculty of Biological Sciences, University of Nigeria, Nsukka and MSc from the school of Biological and Environmental Sciences, Faculty of Life sciences, University of Aberdeen (UK).

Koen Beumer focuses on the democratic risk governance of nanotechnologies for development. Koen Beumer studied Arts and Culture (BA) and Cultures of Arts, Science and Technology (MPhil, cum laude) at Maastricht University.

According to the April 4, 2012 news item on Nanowerk about the brief,

The key message of the policy brief is that nanotechnology can have both positive and negative consequences for countries in the global South. These should be pro-actively dealt with.

The positive consequences of nanotechnology include direct benefits in the form of solutions to the problems of the poor and indirect benefits in the form of economic growth. The negative consequences of nanotechnology include direct risks to human health and the environment and indirect risks such as a deepening of the global divide. Core challenges to harnessing nanotechnology for development include risk governance, cultures of innovation, knowledge brokerage and travelling technology.

What I found particularly interesting in the policy brief is the analysis of nanotechnology efforts in countries that are not usually mentioned  (from the policy brief),

There are large differences amongst countries in the global South. Some countries, like India, Egypt, Brazil and South Africa, have invested substantial sums of money through dedicated programs. Often these are large countries with emerging economies. Dedicated programs and strategies have been generated with strong political support.

In other countries in the global South things look different. Several African countries, like Nigeria, Kenya, Uganda and Zimbabwe have expressed their interest in nanotechnologies and some activities can indeed be observed. But generally this activity does not exceed the level of individual researchers and incidental funding. [p. 3]

In addition to the usual concerns expressed over human health, they mention this risk,

Furthermore, properties at the nano-scale may be used to imitate the properties of rare minerals, thus affecting the export rates of their main producers, usually countries in the global South. Nanotechnologies may thus have reverse effects on material demands and consequently on the export of raw materials by countries in the global South (Schummer 2007). [p. 3]

Interesting thought that nanotechnology research could pose a risk to the economic welfare of countries that rely on the export of raw materials. Canada, anyone? If you think about it, all the excitement over nanocellulose doesn’t have to be an economic boon for ‘forestry-based’ countries. If cellulose is the most abundant polymer on earth what’s stop other countries from using their own nanocellulose. After all, Brazilian researchers are working on nanocellulose fibres derived from pineapples and bananas (my Mar. 28, 2011 and June 16, 2011 postings).

One final thing from the April 4, 2012 news item on Nanowerk,

The NANO-DEV project is partnership of three research institutes led by Maastricht University, the Netherlands. Besides Maastricht University, it includes the University of Hyderabad (India) and the African Technology Policy Studies Network (Kenya).

Attracting creatives and economic opportunities

The Canadian 2012 federal budget was presented today (Mar.29.12) and so a discussion about creativity and economic opportunities seems à propos. I’ll start with Amsterdam (Holland/The Netherlands) and THNK. Neal Ungerleider, in his March 27, 2012 article titled, The THNK Tank: Why Amsterdam Wants Your (Creative) Brains, for Fast Company notes,

Amsterdam is embarking on an ambitious experiment to attract foreign creatives: An invite-only, public/private-funded school and accelerator for international creative minds, leaders, and entrepreneurs. THNK: The Amsterdam School of Creative Leadership opened several weeks ago with an initial class of 30 drawn from across Europe, the United States, China, India, Israel, Mauritius, and South Africa. Classes and mentoring at THNK are held both in Amsterdam–in a home base inside a converted gasworks–and via telecommuting once participants return to their home countries.

For Amsterdam, THNK is a slick business development project that simultaneously doubles as soft diplomacy. The thinkers and doers who will be joining in THNK’s activities will be connected with local entrepreneurs, artists, and firms–whom the city is doubtlessly hoping will be back in the future.

The partnership behind this initiative includes the Dutch federal government, the province of Noord-Holland, Stadsregio Amsterdam (a regional conglomeration of 16 municipalities in what is dubbed as the ‘Amsterdam region’, The Netherlands Chamber of Commerce, and I amsterdam.

These organizations certainly seem to be modeling leadership. Here’s more about their initiative, from the About THNK page,

Of course the world is changing. That’s what it’s done since time began. Evolution is natural. Sometimes it happens slowly. And sometimes it rocks the world like a fiery volcano, suddenly transforming entire landscapes.

Our world has reached that point now. Social inequality, our love/hate relationship with technology, dwindling resources, climate change, the collapse of financial institutions…

Organizations of all types, shapes and sizes are struggling with this new reality. Some are so involved in daily operations – and keeping their heads above water – they are blind to the future. Others recognize the challenges around them, but lack vision.

THNK believes the answer is passionate, visionary and creative leadership.

Creative leadership according to THNK means: public, social and business worlds coming together to create and realize new and innovative solutions to major issues of societal relevance that will have great meaning and impact – either nationally or internationally.

This isn’t just about generating ideas. It’s also about making it happen.

About Amsterdam

Although our focus is international, THNK is firmly rooted in Amsterdam. We’ve made the Westergasfabriek our home. This 19th-century former gas factory has been transformed into one of the city’s most exciting cultural centers, with old industrial buildings now housing trendsetting cafes, cinema, festivals and other events. Not to mention the surrounding city parks – with everything from hidden waterways to bike paths reaching from the countryside to the heart of Amsterdam.

Thanks to its highly diverse culture – with more than 175 nationalities – and an inventive and tolerant mentality, Amsterdam has grown into an important international hub for creative thought and industry. The city’s unique DNA of creativity, tolerance, diversity, collaboration and trade is reflected in THNK’s highly pragmatic and open culture.

It’s not surprising that such diverse influences have brought forth such creativity. Three of our local scientists have been awarded Nobel prizes. Fashion designers Viktor & Rolf have wowed the world. Droog designer Marcel Wanders has changed the way we look at interior design. Architects such as Ben van Berkel are reshaping our skylines.

Amsterdam’s unique DNA of creativity, tolerance, diversity, collaboration and trade will be reflected in THNK’s highly pragmatic and open culture. Reaching beyond its borders, Amsterdam serves as a major gateway into continental Europe. With two major seaports within a 50-kilometer radius, strong international railroad connections and Amsterdam Airport Schiphol close by, you’re always close to anywhere in Europe and the world.

They do invite applications (perhaps the invite-only applications were a feature for the first cohort). You can get more information here or go here to apply immediately. The 18-month program costs  € 39,500 (approx. $52, 520 CAD) and there are periods when you are required to be in Amsterdam, so you may want to include some housing and travel costs as well.

Meanwhile in Vancouver (Canada), Simon Fraser University (SFU) is about to host BCreative 2012 from May 10 – 12, 2012. From the BCreactive 2012 conference/showcase About page,

… designed to bring together government, business, the creative sector, and researchers to stimulate thinking, policy, and action directed at developing a strategy and levering resources to further build the creative economy and to help British Columbia BC become a leader in the creative sector in the twenty-first century.

BCreative 2012 conference/showcase has four specific objectives:

  1. To make the case for the creative economy to have a commanding presence in government economic and cultural policy;
  2. To build bridges between the general business community and this new and dynamic business sector with distinctive infrastructure needs from which all British Columbians can benefit both socially and economically;
  3. To encourage information sharing among the creative sub-sectors and to sensitize the creative sector to the contribution of the creative economy to job creation and overall economic growth;
  4. To bring forward useful information, analysis, training, and research resources that can assist in building BC’s creative economy.

Speakers include the co-author of the two UN Creative Economy reports, Edna dos Santos-Duisenberg, creative cities theorist Charles Landry, Canada Council CEO Robert Sirman, representatives from creative cities: Berlin and Paris. Partners with Simon Fraser University in this enterprise include the BC Business Council and the Vancouver Board of Trade, with Tourism Vancouver helping behind the scenes.

There’s an early bird registration fee until March 31, 2012. You can find a copy of the schedule (presumably a draft) here.  I hope the participants will develop ideas as fresh and innovative as THNK.

BTW, I notice that Amsterdam’s THNK mentions scientists while the BCreative conference does not whether that omission reflects organizational difficulties or a blindspot is a mystery.

David Koepsell: nanotechnology brings the intellectual property regime to an end

David Koepsell, author of Innovation and Nanotechnology: Converging Technologies and the End of Intellectual Property, is a philosopher, attorney, and educator who teaches at the Delft University of Technology (the Netherlands). He is also author of Who Owns You? The Corporate Gold Rush to Patent Your Genes.

In a Feb. 27, 2012 interview with Dr. J (James Hughes, executive director of the Institute of Ethics for Emerging Technologies [IEET] and producer/interviewer for Changesurfer radio), Koepsell discussed his book about nanotechnology and the disappearance of intellectual property regimes in a 28 min. 51 sec. podcast.

Koepsell and Dr. J provided a good description of converging technologies so I’m going to plunge in without much introduction.

I wasn’t expecting to hear about Marxism and the means of production but there it was, mentioned in the context of a near future society where manufacturing can be done by anyone, anywhere by means of molecular manufacturing or by means of 3D fabrication, or etc. The notion is that production will be democratized as will the intellectual property regime. There were several mentions of the state (government) no longer having control in the future over intellectual property, specifically patents and copyrights, and some discussion of companies that guard their intellectual property jealously. (I have commented on the intellectual property topic, most recently,  in my Patents as weapons and obstacles posting in October 2011. Koepsell is mentioned in this posting.)

Both Koepsell and the interviewer (Dr. J) mentioned the possibility of widespread economic difficulty as jobs disappear due to the disappearance of manufacturing and other associated jobs as people can produce their own goods (much like you can with Star Trek’s replicators). But it did seem they mentioned job loss somewhat blithely, secure in their own careers as academics who as a group are not known for their manufacturing prowess or, for that matter, the production of any goods whatsoever.

It seems to me this future bears a remarkable resemblance to the past, where people had to create their own products by raising their own food, spinning, weaving, and sewing their own clothes, etc. The Industrial Revolution changed all that and turned most folks into ‘wage slaves’. As I recall, that’s from Marx and it’s a description of a loss of personal agency/autonomy, i.e., being a slave to wages (no longer producing your own food, clothing, etc.) and not a reference to poor wages as many believe (including me until I got a somewhat snotty professor for one of my courses).

The podcast is definitely worth your time if you don’t mind the references to Marx (there aren’t many) as the ideas are provocative even if you don’t agree. Koepsell describes how his interest in this area was awakened (he wrote about software, which is both copyrightable as writing and patentable as a machine).

The book is available as a free download or you can purchase it here. Here’s a brief excerpt from the book’s introduction (I removed a citation number),

Science demands unfettered inquiry into the workings of nature, and replaces the confidence previously demanded over rote knowledge with a practiced skepticism, and ongoing investigation. With the rise of the age of science came the need to develop new means of treating information. Scientific investigations conducted by ‘natural philosophers’ could only be conducted in full view, out in the open, with results published in meetings of scientific societies and their journals. Supplanting secret-keeping and obscurantism, the full sunlight of public and peer scrutiny could begin to continually cleanse false assumptions and beliefs, and help to perfect theories about the workings of the world. Science demanded disclosure, where trades and arts often encouraged secrets. And so as natural philosophers began to disseminate the results of their investigations into nature, new forms of trade, art, and industry began to emerge, as well as the demand for new means of protection in the absence of secrecy. Thus, as the scientific age was dawning, and helping to fuel a new technological revolution, modern forms of IP [intellectual property] protection such as patents and copyrights emerged as states sought to encourage the development of the aesthetic and useful arts. By granting to authors and inventors a monopoly over the practice of their art, as long as they brought forth new and useful inventions (or for artistic works, as long as they were new), nation states helped to attract productive and inventive artisans and trades into their borders. These forms of state monopoly also enabled further centralization of trades and industries, as technologies now could become immune from the possibility of ‘reverse-engineering’ and competitors could be kept at bay by the force of law. This sort of state-sanctioned centralization and monopoly helped build the industrial revolution (by the account of many historians and economists, although this assumption has lately been challenged) as investors now could commodify new technologies free from the threat of direct competition, secure in the safe harbor of a state-supported monopoly over the practice of a useful art for a period of time.

In many ways, traditional IP [intellectual property] was (and is) deemed vital to the development of large industries and their infrastructures, and to the centralized, assembly-line factory mode of production that dominated the twentieth century. With the benefit of a state-sanctioned monopoly, industry could build sufficient infrastructure to dominate a market with a new technology for the duration of a patent. This confidence assured investors that there would be some period of return on the investment in which other potential competitors are held at bay, at least from practicing the art as claimed in the patent. Factories could be built, supply chains developed, and a market captured and profited from, and prices will not be subject to the ruthless dictates of supply and demand. Rather, because of the luxury of a protected market during the period of protection, innovators can inflate prices to not only recoup the costs of investment, but also profit as handsomely as the captive market will allow.

For most of the twentieth century, IP allowed the concentration of industrial production into the familiar factory, assembly-line model. Even while the knowledge behind new innovation moved eventually into the public domain as patents lapsed, during the course of the term of patent protection, strictly monopolized manufacturing processes and their products could be heavily capitalized, and substantial profits realized, before a technique or technology lost its protection. But the modes and methods of manufacturing are now changing, and the necessity of infrastructural investment is also being altered by the emergence of new means of production, including what we’ll call ‘micromanufacturing’, which is a transitional technology on the way to true MNT (molecular nanotechnology), and is included in our discussions of ‘nanowares’. Essentially, assembly-lines and supply chains that supported the huge monopolistic market dominance models of the industrial revolution, well into the twentieth century, are becoming obsolete. If innovation and production can be linked together with modern and futuristic breakthroughs in micromanufacturing (in which small components can be fabricated and produced en mass, cheaply) and eventually molecular manufacturing (in which items are built on the spot, from the ground up, molecule by molecule), then we should consider whether the IP regimes that helped fuel the industrial revolution are still necessary, or even whether they were ever necessary at all. Do they promote new forms of innovation and production, or might they instead stifle potentially revolutionary changes in our manners of creation and distribution?

Amusingly, towards the end of the interview Dr. J plugs Koepsell’s ‘nanotechnology’ book by noting it’s available for free downloads then saying ‘we’re hoping you’ll buy it’ (at the publisher’s site).