Tag Archives: theoretical physics

Awe, science, and God

Having been brought up in a somewhat dogmatic religion, I was a bit resistant when I saw ‘religion’ mentioned in the news release but it seems I am being dogmatic. Here’s a definition from the Religion Wikipedia entry (Note: Links have been removed),

Religion is a social-cultural system of designated behaviors and practices, morals, worldviews, texts, sanctified places, prophecies, ethics, or organizations, that relates humanity to supernatural, transcendental, or spiritual elements. However, there is no scholarly consensus over what precisely constitutes a religion.[1][2]

This research into science and God suggests that the two ‘belief’ systems are not antithetical. From a July 18, 2019 Arizona State University (ASU) news release (also on EurekAlert but published on July 17, 2019) by Kimberlee D’Ardenne,

Most Americans believe science and religion are incompatible, but a recent study suggests that scientific engagement can actually promote belief in God.

Researchers from the Arizona State University Department of Psychology found that scientific information can create a feeling of awe, which leads to belief in more abstract views of God. The work will be published in the September 2019 issue of the Journal of Experimental Social Psychology and is now available online.

“There are many ways of thinking about God. Some see God in DNA, some think of God as the universe, and others think of God in Biblical, personified terms,” said Kathryn Johnson, associate research professor at ASU and lead author on the study. “We wanted to know if scientific engagement influenced beliefs about the existence or nature of God.”

Though science is often thought of in terms of data and experiments, ASU psychology graduate student Jordan Moon, who was a coauthor on the paper, said science might be more to some people. To test how people connect with science and the impact it had on their beliefs about God, the researchers looked at two types of scientific engagement: logical thinking or experiencing the feeling of awe.

The team first surveyed participants about how interested they were in science, how committed they were to logical thinking and how often they felt awe. Reporting a commitment to logic was associated with unbelief. The participants who reported both a strong commitment to logic and having experienced awe, or a feeling of overwhelming wonder that often leads to open-mindedness, were more likely to report believing in God. The most common description of God given by those participants was not what is commonly found in houses of worship: They reported believing in an abstract God described as mystical or limitless.

“When people are awed by the complexity of life or the vastness of the universe, they were more inclined to think in more spiritual ways,” Johnson said. “The feeling of awe might make people more open to other ways of conceptualizing God.”

In another experiment, the research team had the participants engage with science by watching videos. While a lecture about quantum physics led to unbelief or agnosticism, watching a music video about how atoms are both particles and waves led people to report feeling awe. Those who felt awe also were more likely to believe in an abstract God.

“A lot of people think science and religion do not go together, but they are thinking about science in too simplistic a way and religion in too simplistic a way,” said Adam Cohen, professor of psychology and senior author on the paper. “Science is big enough to accommodate religion, and religion is big enough to accommodate science.”

Cohen added that the work could lead to broader views of both science and religion.

Morris Okun, Matthew Scott and Holly O’Rourke from ASU and Joshua Hook from the University of North Texas also contributed to the work. The study was funded by the John Templeton Foundation.

Here’s a link to and a citation for the paper,

Science, God, and the cosmos: Science both erodes (via logic) and promotes (via awe) belief in God by Kathryn A.Johnson, Jordan W.Moon, Morris A.Okun, Matthew J.Scott, Holly P.O’Rourke, Joshua N.Hook, Adam B. Cohen. Journal of Experimental Social Psychology
Volume 84, September 2019, 103826 DOI: https://doi.org/10.1016/j.jesp.2019.103826

This paper is behind a paywall.

I noted the funding from the John Templeton Foundation and recalled they have a prize that relates to this topic.

2019 Templeton Prize winner

A March 20, 2019 article by Lee Billings for Scientific American offers a profile of the 2019 Templeton Prize winner,

Marcelo Gleiser, a 60-year-old Brazil-born theoretical physicist at Dartmouth College and prolific science popularizer, has won this year’s Templeton Prize. Valued at just under $1.5 million, the award from the John Templeton Foundation annually recognizes an individual “who has made an exceptional contribution to affirming life’s spiritual dimension.” [emphasis mine] Its past recipients include scientific luminaries such as Sir Martin Rees and Freeman Dyson, as well as religious or political leaders such as Mother Teresa, Desmond Tutu and the Dalai Lama.

Across his 35-year scientific career, Gleiser’s research has covered a wide breadth of topics, ranging from the properties of the early universe to the behavior of fundamental particles and the origins of life. But in awarding him its most prestigious honor, the Templeton Foundation chiefly cited his status as a leading public intellectual revealing “the historical, philosophical and cultural links between science, the humanities and spirituality.” He is also the first Latin American to receive the prize.

Scientific American spoke with Gleiser about the award, how he plans to advance his message of consilience, the need for humility in science, why humans are special, and the fundamental source of his curiosity as a physicist.

You’ve written and spoken eloquently about nature of reality and consciousness, the genesis of life, the possibility of life beyond Earth, the origin and fate of the universe, and more. How do all those disparate topics synergize into one, cohesive message for you

To me, science is one way of connecting with the mystery of existence. And if you think of it that way, the mystery of existence is something that we have wondered about ever since people began asking questions about who we are and where we come from. So while those questions are now part of scientific research, they are much, much older than science. I’m not talking about the science of materials, or high-temperature superconductivity, which is awesome and super important, but that’s not the kind of science I’m doing. I’m talking about science as part of a much grander and older sort of questioning about who we are in the big picture of the universe. To me, as a theoretical physicist and also someone who spends time out in the mountains, this sort of questioning offers a deeply spiritual connection with the world, through my mind and through my body. Einstein would have said the same thing, I think, with his cosmic religious feeling.

If you’re interested, this is a wide ranging profile touching on one of the big questions in physics, Is there a theory of everything?

For anyone curious about the Templeton Foundation, you can find out more here.

Sculplexity: 3D printing explains theoretical physics

An example of sculplexity (3D printed data visualization of concepts in theoretical physics),

3D Printed Forest Fire Model. Caption: Researchers have successfully demonstrated how complex theoretical physics can be transformed into a physical object using a 3D printer. Credit: Imperial College London/EPL

3D Printed Forest Fire Model. Caption: Researchers have successfully demonstrated how complex theoretical physics can be transformed into a physical object using a 3D printer. Credit: Imperial College London/EPL

A Dec. 9, 2013  Institute of Physics (IOP) news release (also on EurekAlert, dated Dec. 8, 2013) tells the story behind sculplexity,

In a new study published today, 9 December [2013], in the journal EPL, the researchers have successfully demonstrated how complex theoretical physics can be transformed into a physical object using a 3D printer.

In just eight hours and at the cost of around 15 euros, they were able to use a commercially available 3D printer to create their own 8 cm3 object based on a mathematical model that described how forest fires can be started and how they eventually spread over time.

The researchers have labelled the approach “Sculplexity”—standing for sculptures of complexity—and believe it could also be used to produce works of art based on science, or transform the way that ideas and concepts are presented and discussed within the scientific community.

Co-author of the study Dr Tim Evans, a theoretical physicist at Imperial, said: “The work was inspired by a visit to the Victoria and Albert Museum in London where I came across the first ever 3D printed object the museum had acquired.

“The object was a table inspired by the tree-like structures found in nature, which is an example of a branching process that is commonly encountered in complex systems in theoretical physics. This led me to think, what other processes familiar to physics could be turned into a 3D printed object?”

The news release goes on to explain a little about complex systems and discusses the ‘3D Printed Forest Fire Model’ illustrated in the above,

Complex systems are made up of many parts that interact on many time and length scales and which show coherent behaviour and certain patterns on a large scale. A living organism is the best example of a complex system, whereby the individual parts—in this case the molecular processes in the cell — interact with each other and contribute to much larger processes on a macroscopic scale.

The interactions at play in many complex systems can be mapped out onto a two-dimensional grid which is divided into identical squares, or “cells”. Each of the cells can exist in a certain state and evolve over time, which is governed by a certain set of rules.

In their study, the researchers used a forest fire as an example, in which each cell represented a tree which could either be alive, dead or burning. The exact state that each cell occupied over time depended on a set of rules, which took into account the cell’s proximity to other cells that may be burning or if it was struck by lightning.

“The basic idea is simple,” continued Dr Evans. “A 3D printer builds up its object in layers. So the height of the object can be thought of as time. Suppose you have a mathematical model which defines a flat, two-dimensional picture that evolves in time — typically this will be a grid with some squares full and some empty.

“The mathematical model will define at each point in time what the printer should print at one height. The next step in the model will then define what to print on top of the first layer, and so forth. The result is a 3D object which shows how the mathematical model has evolved over time.”

The resulting model the researchers created was not without glitches; however, Dr Evans believes the experience has allowed them to identify the obstacles, formulate solutions and inspire the physics community to “get creative”.

“In our own group at Imperial we are trying to explain heartbeat anomalies by looking at simple models for the behaviour of individual cells in heart muscle — it’s possible that this could be visualised using 3D printing. Most models that represent the spread of disease could also be visualised.

“There may be many other examples and we just hope our rather literal translation from theoretical model to 3D printer output stimulates others to get creative,” Dr Evans concluded.

This is a very interesting approach to data visualization. The researchers’ paper is well illustrated and includes an image of object (“a table inspired by the tree-like structures found in nature, which is an example of a branching process that is commonly encountered in complex systems”) which inspired to Dr. Evans’ project,

Sculplexity: Sculptures of Complexity using 3D printing by D. S. Reiss, J. J. Price and T. S. Evans.  EPL (Europhysics Letters) Volume 104 Number 4, EPL 104 48001 doi:10.1209/0295-5075/104/48001

At the time of this writing (Dec. 11, 2013), this paper is open access.