Tag Archives: Tim Lougheed

Science communication: perspectives from 39 countries

Bravo to the team behind “Communicating Science: A Global Perspective” published in September 2020 by the Australian National University Press!

Two of the editors, Toss Gascoigne (Visiting fellow, Centre for the Public Awareness of Science, Australian National University) and Joan Leach (Professor, Australian National University) have written November 8, 2020 essay featuring their book for The Conversation,

It’s a challenging time to be a science communicator. The current pandemic, climate crisis, and concerns over new technologies from artificial intelligence to genetic modification by CRISPR demand public accountability, clear discussion and the ability to disagree in public.

Since the Second World War, there have been many efforts to negotiate a social contract between science and civil society. In the West, part of that negotiation has emphasised the distribution of scientific knowledge. But how is the relationship between science and society formulated around the globe?

We collected stories from 39 countries together into a book. …

The term “science communication” is not universal. For 50 years, what is called “science communication” in Australia has had different names in other countries: “science popularisation”, “public understanding”, “vulgarisation”, “public understanding of science”, and the cultivation of a “scientific temper”.

Colombia uses the term “the social appropriation of science and technology”. This definition underscores that scientific knowledge is transformed through social interaction.

Each definition delivers insights into how science and society are positioned. Is science imagined as part of society? Is science held in high esteem? Does association with social issues lessen or strengthen the perception of science?

Governments play a variety of roles in the stories we collected. The 1970s German government stood back, perhaps recalling the unsavoury relationship between Nazi propaganda and science. Private foundations filled the gap by funding ambitious programs to train science journalists. In the United States, the absence of a strong central agency encouraged diversity in a field described variously as “vibrant”, “jostling” or “cacophonous”.

Russia saw a state-driven focus on science through the communist years, to modernise and industrialise. In 1990 the Knowledge Society’s weekly science newspaper Argumenty i Fakty had the highest weekly circulation of any newspaper in the world: 33.5 million copies. But the collapse of the Soviet Union showed how fragile these scientific views were, as people turned to mysticism.

Eighteen countries contributing to the book have a recent colonial history, and many are from the Global South. They saw the end of colonial rule as an opportunity to embrace science. …

Science in these countries focused mainly on health, the environment and agriculture. Nigeria’s polio vaccine campaign was almost derailed in 2003 when two influential groups, the Supreme Council for Shari’ah in Nigeria and the Kaduna State Council of Imams and Ulamas, declared the vaccine contained anti-fertility substances and was part of a Western conspiracy to sterilise children. Only after five Muslim leaders witnessed a successful vaccine program in Egypt was it recognised as being compatible with the Qur’an.

If you have time, I recommend reading the entire essay, which can be found here in November 8, 2020 essay on The Conversation or in a Nov. 9, 2020 news item on phys.org.

I found more information about the book on the Australian National University Press’s Communicating Science: A Global Perspective webpage,

This collection charts the emergence of modern science communication across the world. This is the first volume to map investment around the globe in science centres, university courses and research, publications and conferences as well as tell the national stories of science communication.

Communicating Science describes the pathways followed by 39 different countries. All continents and many cultures are represented. For some countries, this is the first time that their science communication story has been told. [emphasis mine]

Here’s a link to and a citation for the book,

Communicating Science; A Global Perspective. Edited by Toss Gascoigne, Bernard Schiele, Joan Leach, Michelle Riedlinger, Bruce V. Lewenstein, Luisa Massarani, Peter Broks. DOI: http://doi.org/10.22459/CS.2020 ISBN (print): 9781760463656 ISBN (online): 9781760463663 Imprint [Publisher]: ANU Press Publication date: Sep 2020

The paper copy is $150 and I assume those are Australian dollars. There are free online and e-versions but they do ask you to: Please read Conditions of use before downloading the formats.

A commentary on the Canadian chapter, mostly

Before launching into the commentary, Here’s a bit about words.

Terminology

Terminology, whether it’s within one language or across two or more languages, is almost always an issue and science communication is no exception as is noted in the Introduction (Subsection 4, page 11),

In the course of compiling the chapters, we found that the term ‘science communication’ has many definitions and not all researchers or practitioners agree on its goals and boundaries. It has been variously described as an objective, goals, a process, a result and an outcome. This confusion over a definition is reflected in the terminology used internationally for the field. From the second half of the 20th century, what we have chosen to call ‘science communication’ for this book has flown under different headings: ‘science popularisation, ‘public understanding’, ‘vulgarisation’, ‘social appropriation of science and technology’, ‘public understanding of science’ and ‘scientific temper’ for example. In all, the chapters mention 24 separate terms for the expression ‘science communication’ that we chose. We have taken note of that variety.

Very few of the chapters which are organized by country name attempt to establish a definition. The chapter on Canada written by Michelle Riedlinger, Alexandre Schiele and Germana Barata is one of the many not offering any definitions for ‘science communication’. Although, it does offer a few other terms used as synonyms or closely allied concepts (also without definitions). They include ‘science or scientific culture’, which (according to a Nov.13.20 email from Toss Gascoigne in response to my question about science culture being a term unique to Canada) has French roots and is used in France and Canada.

Scope

The scope for both the book and the chapter on Canada is substantive and everyone involved is to be lauded for their efforts. Here’s how the book is described on the publisher’s ‘Communicating Science; A Global Perspective’ webpage (Note: more about the emphases in the ‘I love you; we need to talk’ subsection below),

This collection charts the emergence of modern science communication across the world. This is the first volume to map investment around the globe in science centres, university courses and research, publications and conferences as well as tell the national stories of science communication. [emphases mine]

The authors of the Canada chapter managed to squeeze a lot of Canadian science communication history into 21 pp. of text.

Quite an accomplishment. I am particularly admiring as earlier this year I decided to produce a 10 year overview (2010 – 19) of science culture in Canada and got carried away proceeded to write a 25,000 word, multi-part series.

Given the November 8, 2020 essay and its storytelling style, I wasn’t expecting the largely historical review I found in both the Canada and France chapters. I advise reading the Introduction to the book first as that will set expectations more accurately.

I love you; we need to talk

I learned a lot about the history of science communication in Canada. It’s the first time I’ve seen a document that pulls together so much material ranging from 19th century efforts to relatively contemporaneous efforts, i.e., 2018 or thereabouts.

There’s something quite exciting about recognizing the deep roots that science communication has in Canada.

I just wish the authors hadn’t taken ‘the two cultures’ (French and English) route. By doing so, they managed to write a history that ignores a lot of other influences including that of Canada’s Indigenous peoples and their impact on Canadian science, science culture, and, increasingly, science communication. (Confession, I too missed the impact from Indigenous peoples in my series.)

Plus, ‘two cultures’ seems a dated (1970s?) view of Canadian society and, by extension, its science culture and communication.

This was not the only element that seemed out of date. The authors mentioned Canada’s National Science and Technology Week without noting that the effort was rebranded in 2016 as ‘Science Odyssey’ (plus, its dates moved from Oct. to May of each year).

No surprise, the professional and institutional nature of science communication was heavily emphasized. So, it was delightful to find a section (2.10 on page 11) titled, “Citizen involvement in science communication.” Perhaps, they were constrained for space as they didn’t include the astronomy community, which I believe is amongst our oldest citizen science groups with roots that can be traced back to the 19th century (1868).

There are some other omissions (unless noted otherwise, I managed to include something on the topic in my series):

  • the Canadian Arctic and/or The North (I tried but did not succeed)
  • art/science (also known as sciart) communities
  • the maker and do-it-yourself (DIY) communities
  • open science, specifically, the open science initiative at McGill University’s Neuro (Montreal Neurological Institute-Hospital) (can’t remember but I probably missed this too)
  • the immigrant communities and their impact (especially obvious in light of the January 2020 downed PS752 Flight from Iran to the Ukraine; many of the passengers were Canadians and/or students coming to study and a stunning percentage of those people were in science and/or technology) (I didn’t do as good as job as I should have)
  • women or gender issues (I missed it too)
  • BIPOC representation (yes, I missed it)
  • LGBTQ+ representation (yes, me too)
  • social sciences (yes, me too)
  • etc.

The bits I emphasized in the publisher’s description of the book “science centres, university courses and research, publications and conferences as well as tell the national stories of science communication” set up tension between a ‘national story of science communication’ and a ‘national story of institutionalized and/or academic science communication’.

Clearly, the authors had an almost impossible task and by including citizen science and social media and some independent actors they made an attempt to recognize the totality. Still, I wish they had managed even a sentence or two mentioning some of these other communities of interest and/or noting the omissions.

Here’s more about the difficulties I think the authors encountered.

It’s all about central Canada

As noted with other problems, this one happened to me too (in my 2010 – 19 Canadian science culture overview). It’s as if the provinces of Ontario and Québec exert a centrifugal force throughout every aspect of our nationhood including our science and science communication. Almost everything tracks back to those provinces.

The authors have mentioned most of the provinces, although none of the three Northern territories, in their chapter, evidence they made an attempt. What confounds me is the 7 pp. of 21 pp. of text dedicated to Québec alone, in addition to the Québec mentions in the other 14 pp. If there was a problem with word count, couldn’t they have shaved off a paragraph or two to include some or all of the omissions I noted earlier? Or added a paragraph or two to the chapter?

Framing and authors

By framing the discussion about Canada within the ‘two culture’ paradigm, the authors made things difficult for themselves. Take a look at the title and first sentence for the chapter,

CANADA
One country, two cultures: Two routes to science communication

This chapter provides an account of modern science communication in Canada, including historical factors influencing its development, and the development of the distinct Province of Quebec. …

The title and discussion frame the article so tightly that anything outside the frame is an outlier, i.e., they ‘baked’ in the bias. It’s very similar to the problem in scientific research where you have to be careful about your research question because asking the wrong question or framing it poorly will result in problematic research.

Authors

It’s not unusual for family members to work in the same field and even work together (Marie and Pierre Curie spring to mind). I believe the failure to acknowledge (I checked the introduction, the acknowledgements, and the Canada chapter) the relationship between one of the authors (Alexandre Schiele, son) of the Canada chapter to one of the book’s editors (Bernard Schiele, father) was an oversight. (Both also have some sort of affiliation with the Université du Québec à Montréal [UQAM]).

Anyway, I hope subsequent editions of the book will include an acknowledgement. These days, transparency is important, eh?

Having gotten that out of the way, I was curious about the ‘Canada’ authors and found this on p. 204,

Contributors

Dr Michelle Riedlinger is an associate professor at the University of the Fraser Valley, British Columbia, Canada, and secretary of the PCST Network [Public Communication of Science and Technology Network] and her career spans the practical and theoretical sides of science communication.

Dr Alexandre Schiele holds a PhD in communication science (Sorbonne) and another in political science (University of Quebec). He is working on a project ‘Mapping the New Science Communication Landscape in Canada’.

Dr Germana Barata is a science communication researcher at the Laboratory of Advanced Studies in Journalism (Labjor) at the State University of Campinas, Brazil, and a member of the Scientific Committee of the PCST Network.

Outsiders often provide perceptive and thoughtful commentary. I did not find any discernible trace of that perspective n the chapter despite all three authors having extensive experience in other countries.

Riedlinger is more strongly associated with Australia than Canada (source: Riedlinger’s biography on the Public Communication of Science and Technology Network). As of July 2020, she is a senior lecturer at Australia’s Queensland University of Technology (QUT).

Interestingly, she is also a Board member of the Science Writers and Communicators of Canada (SWCC) (source: her QUT biography). I’ll get back to this membership later.

Barata is (or was?) a research associate at Simon Fraser University’s Canada Scholar Communications Lab (ScholCommLab) (source: Barata’s SFU biography) in addition to her work in Brazil.

Those two would seem to cover the southern hemisphere. The third gives us the northern hemisphere.

A. Schiele (source: his CV on ResearchGate) is (or was?) a researcher at the UQAM (Université du Québec à Montréa) East Asia Observatory and is (or was?) at (source: profile on Academia.edu) The Hebrew University of Jerusalem’s Louis Frieberg Center for East Asian Studies.

After looking at their biographies and CV, the Canada book chapter is even more disappointing. Yes, the authors were constrained by the book’s raison d’être and the way they framed their chapter but , perhaps, there’s something more to the story?

The future of science communication and the ‘elephant in the room’

At the conclusion of the Canada chapter (pp. 194-6), there’s this,

4. The future for modern science communication in Canada

Recent surveys of Canadian science communicators identified though Twitter and Instagram show that, compared to traditional science communication professionals, social media communicators are younger, paid less (or not at all) for their science communication activities, and have been communicating for fewer years than other kinds of science communicators (Riedlinger, Barata and Schiele [A], 2019). They are more likely to have a science background (rather than communication, journalism or education background) and are less likely to be members of professional associations. These communicators tend to be based in Ontario, Quebec and British Columbia, and communicate with each other through their own informal networks. Canadian social media science communicators are primarily located in the provinces identified by Schiele [B] and Landry (2012) as the most prolific regions for science communication in Canada, where Canada’s most prestigious and traditional universities are located, and where the bulk of Canada’s population is concentrated. While some science journalists and communicators in Canada mourn the perceived loss of control over science communication as a loss of quality and accuracy, others welcome digital technology for the public engagement potential it offers. For example, Canadian science Instagram communicator Samantha Yammine [emphasis mine] was recently criticised in a Sciencemagazine op-ed piece for trivialising scientific endeavours on social media (Wright, 2018). However, supporters of Yammine argued that she was successfully responding to the Instagram medium in her communication (see, for example, Lougheed, 2018 [emphasis mine]; Marks, 2018). Science has subsequently published an article by Yammine and other social media communicators on the benefits of social media for science communication (Yammine, Liu, Jarreau and Coe, 2018). Social media platforms are allowing space for sociopolitically motivated communicators in Canada to work productively. The impact of these social media science communication efforts is difficult to assess; yet open science for consensus building and support for science in society efforts are needed in Canada now more than ever.

Canada has seen increased investments in science as described by the Naylor Report and the Global Young Academy, but science communication and outreach efforts are still needed to support science culture nationally (Boon, 2017a) [emphasis mine]. Funding for activities happens at the federal level through agency funding; however, Canadian scientists, science communicators and science policymakers have criticised some recent initiatives for being primarily aimed at youth rather than adults, supporting mainly traditional and established organisations rather than innovative science communication initiatives, and having limited connection with the current and broader community of science communicators in Canada. While some science communicators are actively advocating for greater institutional support for a wider range of science communication initiatives (see Boon, 2017b) [emphasis mine], governments and scientific communities have been slow to respond.

Austerity continues to dominate public policy in Quebec, and science culture has ceased to be a priority. The Society for the Promotion of Science and Technology dissolved in 2010 and State-sponsored PCST in Quebec has come to an end. PCST actors and networks in Quebec persevere although they face difficulties in achieving an online presence in a global, yet overwhelmingly Anglophone, social media environment. However, the European Union program Horizon 2020 may very well encourage a new period of renewed government interest in science communication.

As a preface to the next subsection, I want to note that the relationships and networks I’m describing are not problematic or evil or sinister in and of themselves. We all work with friends and acquaintances and, even, family when we can. If not, we find other ways to establish affiliations such as professional and informal networks.

The advantages include confidence in the work quality, knowing deadlines will be met and that you’ll be treated fairly and acknowledged, getting a fast start, etc. There are many advantages and one of the biggest disadvantages (in my opinion) is ‘group think’, i.e., the tendency for a group to unconsciously reinforce each other’s biases.

Weirdly, outsiders such as myself have a similar problem. While people within networks tend to get reinforcing feedback, ‘group think’, outsiders don’t get much, if any. Without feedback you’re at the mercy of your search techniques and you tend to reinforce your own biases and shortsightedness (you’re inside your own echo chamber). In the end research needs to take those shortcomings, biases, and beliefs into account.

Networks and research can be a trap

All three authors are in one fashion or another closely associated with the PCST Network. Two (Riedlinger and Barata) are board or executive members of the PCST Network and one (A. Schiele) has familial relationship with a book editor (B. Schiele) who is himself an executive member of the PCST Network. (Keep tuned, there’s one more network of relationships coming up.)

Barata, Riedlinger, and A. Schiele were the research team for the ‘Mapping the New Science Communication Landscape in Canada’ project as you can see here. (Note: Oops! There’s a typo in the project title on the webpage, which, unexpectedly, is hosted by Brazil’s Laboratory of Advanced Studies in Journalism [Labjor] where Barata is a researcher.)

My points about ‘Mapping …’ and the Canada book chapter,

  1. The Canada book chapter’s ‘The impact of new and emerging technology …’ has roots that can be traced back to the ‘Mapping’ project, which focused on social media (specifically, Instagram and Twitter).
  2. The ‘Mapping’ project is heavily dependent on one network (not PCST).
  3. The Canada chapter is listed as one of the ‘Mapping’ project’s publications. (Source: Project’s Publications page).
  4. The ‘Impact’ subsection sets the tone for a big chunk of the final subsection, ‘The future …’ both heavily dependent on the ‘Mapping’ project.
  5. The ‘Mapping’ project has a few problems, which I describe in the following.

In the end, two sections of the Canada chapter are heavily dependent on one research project that the authors themselves conducted.

Rather than using an authoritative style, perhaps the authors could have included a sentence indicating that more research is needed before making definitive statements about Canadian science communication and its use of new and emerging technologies and about its future.

The second network and other issues

Counterintuitively, I’m starting with the acknowledgements in the materials produced by the three authors for their ‘Mapping’ project and then examining the Canada chapter’s ‘Impact of new emerging and technologies …’ subsection before getting back to the Canada chapter’s final subsection ‘The future …’.

The authors’ 2019 paper is interesting. You can access the title, “The landscape of science communication in contemporary Canada: A focus on anglophone actors and networks” here on Academia.edu and you can access the author’s 2018 paper “Using social media metrics to identify science communicators in Canada” for the 2018 Science & You conference in Beijing, China here on ResearchGate. Both appear to be open access. That is wonderful and much appreciated.

The 2019 and 2018 papers’ Acknowledgements have something interesting (excerpt from 2019 paper),

This study was supported by the Social Sciences and Humanities Research Council of Canada through Grant (892-2017-2019) to Juan Pablo Alperin [there’s a bit more info. about the grant on Alperin’s CV in the Grants subsection] and Michelle Riedlinger. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We would like to thank the Science Writers and Communicators of Canada (SWCC) for their partnership in this project. [emphasis mine] In particular, we are grateful for the continued support and assistance of Shelley McIvor, Janice Benthin and Tim Lougheed [emphasis mine] from SWCC, and Stéphanie Thibault from l’Association des communicateurs scientifiques du Québec (ACS).

It seems the partnership with SWCC very heavily influenced the text found in the Canada chapter’s subsection ‘The impact of new and emerging technologies on science communication (p. 187),

2.12. The impact of new and emerging technologies on science communication

Coupled with government ambivalence towards science communication over the last decade, Canada has experienced the impact of new and emerging technologies and changing economic conditions. These changes have reshaped the mainstream media landscape in many parts of the world, including Canada, and the effects have been exacerbated by neoliberal agendas. The changes and their impacts on Canadian journalism were captured in the Canadian survey report The Shattered Mirror (2017). The survey found that Canadians prefer to be informed through the media but on their own timelines and with little or no cost to themselves.

Canada’s science media have responded to new media in many ways. For example, in 2005, CBC’s Quirks and Quarks became the first major CBC radio show to be made available as a free podcast. Canada’s very active blogging community has been developing from the early 2000s, and recent digital initiatives are helping redefine what independent science communication looks like. These initiatives include Science Borealis, launched in 2013 [emphasis mine] (Science Borealis, 2018), Hakai Magazine [emphasis mine] launched in 2015 (Hakai Magazine, n.d.), and The Conversation Canada launched in 2017 (The Conversation Canada, 2018). Twitter, Instagram and YouTube are also supporting a growing number of science communicators engaging a diverse range of publics in digital spaces. …

[assume my emphasis for this paragraph; I didn’t have the heart to make any readers struggle through that much bolding] In 2016, the Canadian Science Writers Association changed its name to the Science Writers and Communicators of Canada Association (SWCC) to reflect the new diversity of its membership as well as the declining number of full-time journalists in mass media organisations. SWCC now describes itself as a national alliance of professional science communicators in all media, to reflect the blurring boundaries between journalism, science communication and public relations activities (SWCC, 2017). In 2017, SWCC launched the People’s Choice Awards for Canada’s favourite science site and Canada’s favourite blog to reflect the inclusion of new media.

Given that so much of the relatively brief text in this three paragraph subsection is devoted to SWCC and the examples of new media science practitioners (Science Borealis, Hakai Magazine, and Samantha Yammine) are either associated with or members of SWCC, it might have been good idea to make the relationship between the organization and the three authors a little more transparent.

We’re all in this together: PCST, SWCC, Science Borealis, Hakai Magazine, etc.

Here’s a brief recapitulation of the relationships so far: Riedlinger and Barata, both co-authors of the Canada chapter, are executive/board/committee members of the Public Communication of Science and Technology (PCST) network. As well, Bernard Schiele one of the co-editors of the book is also a committee member of PCST (source: PCST webpage) and, as noted earlier, he’s related to the third co-author of the Canada chapter, Alexandre Schiele.

Plus, Riedlinger is one of the book’s editors.

Interestingly, four of the seven editors for the book are members of the PCST network.

More connections:

  • Remember Riedlinger is also a board member of the Science Writers and Communicators of Canada (SWCC)?
  • One of the founding members* of Science Borealis (a Canadian science blog aggregator), Sarah Boon is the managing editor for Science Borealis (source: Boon’s LinkedIn profile) and also a member of the SWCC (source: About me webpage on Watershed Notes). *Full disclosure: I too am a co-founding member of Science Borealis.*
    • Boon’s works and works from other SWCC members (e.g., Tim Lougheed) are cited in the conclusion for the Canada chapter.
  • Hakai Magazine and Science Borealis both cited as “… recent digital initiatives … helping redefine what independent science communication looks like.”
    • Hakai’s founding and current editor-in-chief is Jude Isabella, a past board member of the *SWCC’s predecessor organization Canadian Science Writers Association (source: Dec. 11, 2020 communication from Ms. Isabella)*

In short, there are many interlaced relationships.

The looking glass and a lack of self-criticism

Reviewing this work put some shortcomings of and biases in my own work into high relief. It’s one of the eternal problems, blindness, whether it’s a consequence of ‘group think’ or a failure to get out of your own personal bubble. Canadian science communication/culture is a big topic and it’s easy to get trapped in your own bubble or your group’s bubble.

As far as I can tell from reading the conference paper (2018) and the paper published in Cultures of Science (2019), there is no indication in the text that the researchers critiqued their own methodology.

Specifically,. most of the respondents to their survey were from one of two professional science communication organizations (SWCC and ACS [Association des communicateurs scientifiques du Québec]). As for the folks the authors found on Twitter and Instagram, those people had to self-identify as science communicators or use scicomm, commsci, vulgarisation and sciart as hashtags. If you didn’t use one of those hashtags, you weren’t seen. Also, ‘sciart’ can be called ‘artsci’ so, why wasn’t that hashtag also used?

In short, the research seems to have a rather narrow dataset, which is not a problem in and of itself, as long as it’s noted in your paper. Unfortunately, the authors didn’t and that problem/weakness followed the researchers into the book.

Remember the subsection: ‘2.12. The impact of new and emerging technologies on science communication’? As noted, it was heavily influenced by the co-authors own research and in this book, those words attain great authority as they are writing about Canada’s science communication and the ‘The future for modern science communication in Canada‘.

Getting back briefly to connections or, in this case, a lack of. There seems to have been one ‘outside’ editor/reviewer (source: Acknowledgements] for the book, Ranjan Chaudhuri, Associate Professor at National Institute of Industrial Engineering Mumbai (source: Chaudhuri’s LinkedIn profile). He’s the only person amongst the authors and the editors for whom I could find no connection to PCST.

(Book editors who weren’t previously mentioned: Joan Leach and Bruce V. Lewenstein were both invited speakers at the 2016 PCST Talk in Istanbul, Turkey and Peter Broks presented in 2004 at the PCST conference in Barcelona, Spain and his work was presented at a 2018 PCST conference in Dunedin, New Zealand.)

Chaudhuri doesn’t seem to have any connection and the other three seem to have, at best, a weak connection to PCST. That leaves four ‘outsiders’ to critically review and edit chapters from 39 countries. It’s an impossible job.

So, what is the future of science communication in Canada?

In the end, I have love for and two big problems with the Canada chapter.

What were they thinking?

Maybe someone could help me understand why the final paragraph of the Canada chapter is about Québec, the PCST, and the European Union’s Horizon 2020 science funding initiative.

Ending the chapter with the focus, largely, on one province, **an international organization (PCST) incorporated in Australia**, and a European science funding initiative that sunsets in 2020 to be replaced by Horizon Europe 2021-27 confounds me.

Please, someone out there, please help me. How do these impact or set the future for science communication in Canada?

Aside: the authors never mention Québec’s Agence Science-Presse. It’s an independent media outlet founded in 1978 and devoted, as you can see from the name, entirely to science. It seems like an odd omission.

Now, I have another question.

What about other realities, artificial intelligence, and more?

Why didn’t the authors mention virtual reality (VR)/augmented reality (AR)/mixed reality (MR)/cross reality (XR) and others? What about artificial intelligence (AI) and automated writing, i.e., will we need writers and communicators? (For anyone not familiar with the move to automate more of the writing process, see my July 16, 2014 posting “Writing and AI or is a robot writing this blog?” when Associated Press (AP) had made a deal with Automated Insights and my Sept. 16, 2019 posting “Automated science writing?” about some work at the Massachusetts Institute of Technology [MIT].)

It’s not exactly new but what impact are games of the virtual and real life types having?

All of these technologies and others on the horizon are certain to have an effect on the future of science communication in Canada.

Confession: I too missed these new and emerging technologies when pointing to the future in my own series. (sigh) Blindness affects all of us.

The future

I wish the authors had applied a little more imagination to the ‘future’ because I think it has major possibilities grounded in both new and emerging technologies and in hopes for greater inclusiveness (Indigenous communities, citizen scientists, elders, artists, and more) in the Canadian science communication effort. As for the possible impact these groups and technologies will have on institutionalized and noninstitutionalized science communication, I would dearly like to have seen mention of the possibility if not outright speculation.

The end

There is a lot to admire in the Canada chapter. Given the amount of history they were covering, the authors were admirably succinct and disciplined. There’s a lot to be learned in this chapter.

As for the flaws, as noted many times, I am subject to many of the same ones. I have often longed for a critical reader who can see what I can’t. In some ways, it’s the same problem academics face.

Thank you to the authors and the editors for an unexpected treat. Examining their work made it possible for me to cast a jaundiced eye on some of my own, becoming my own critical reader. Again, thank you to the authors and editors of this book. I just hope this critique proves useful to someone else too.

Links

For anyone who is curious, here’s a link to the authors’ interactive map of the new landscape (Twitter and Instagram) of science communication in Canada. BTW, I was charmed by and it looks like they’re still adding to the map.

My multipart series,

Part 1 covers science communication, science media (mainstream and others such as blogging) and arts as exemplified by music and dance: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (1 of 5).

Part 2 covers art/science (or art/sci or sciart) efforts, science festivals both national and local, international art and technology conferences held in Canada, and various bar/pub/café events: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (2 of 5).

Part 3 covers comedy, do-it-yourself (DIY) biology, chief science advisor, science policy, mathematicians, and more: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (3 of 5).

Part 4 covers citizen science, birds, climate change, indigenous knowledge (science), and the IISD Experimental Lakes Area: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (4 of 5).

Part 5: includes science podcasting, eco art, a Saskatchewan lab with an artist-in-residence, the Order of Canada and children’s science literature, animation and mathematics, publishing science, *French language science media,* and more: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (5 of 5).

Plus,

An addendum: where I make some corrections and include a reference to some ‘biopoetry’: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (an addendum).

There you have it, science communication in Canada, more or less, as a book chapter and as a multipart series warts and all.

*Original: “a past board member of the SWCC’ (source: homepage of Isabella’s eponymous website)” changed on Dec. 11, 2020 to”past board member of SWCC’s predecessor organization Canadian Science Writers Association (source: Dec. 11, 2020 communication from Ms. Isabella)”

**Original:”an Australian organization (PCST)” changed on Dec. 11, 2020 to “an international organization (PCST) incorporated in Australia”

Surprise! Surprise! 50th anniversary for TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics) and HR MacMillan Space Centre in Vancouver, Canada

I guess they wanted to keep it a secret? In any event, TRIUMF’s 2018 year of celebrating their 50th anniversary is almost over. Their celebratory website, TRIUMF50 lists two events (scroll down to see them) for October 2018 and nothing after that. One event is in Ottawa (which is titled ‘#DiscoverTHIS: TRIUMF, Science, and Society’ on the TRIUMF50 website) and the other in Vancouver (Canada). Then, there’s the the other 50th sciencish anniversary in Vancouver, this being celebrated by the HR MacMillan Space Centre.

TRIUMF’s two events

Weirdly, I found out about TRIUMF’s 50th anniversary after reading an October 1, 2018 Ingenium (formerly Canada Science and Technology Museums Corporation) news release (received via email) and digging further. First, the announcement about the Ottawa event,

#DISCOVERTHIS: […] THE MOTHER OF INVENTION […] CANADA SCIENCE AND TECHNOLOGY MUSEUM
October 3, 2018
Time: 7:30 p.m. – 9 p.m. (Doors open at 7 p.m.)
FEE: FREE (REGISTRATION REQUIRED)
LANGUAGE: ENGLISH ONLY
On October 3, join a team of experts from TRIUMF […], Canada’s particle accelerator centre, for an illuminating discussion. The event will take place at the museum, and will also include a screening of a short documentary that explores the possibility for TRIUMF to take up the reins as the world’s largest producer of actinium-225 (Ac-225), a radioisotope with promising potential as an anti-cancer therapy.

They have a more engaging and informative description on their event registration page,

#discoverTHIS: The Mother of Invention

Free

Actions and Detail Panel

Event Information

Description

Doors open 7:00pm

Programming begins in the Auditorium 7:30pm

Q+A to follow

If the adage is true that necessity is the mother of invention, then curiosity-driven research is the grandmother of the whole shebang. The internet, the cellphone, the PET scanner – or even further back – radio, penicillin, electricity: all these inventions and their impacts on our lives were made possible because of innovative people looking at scientific discoveries and asking, “What problem can I solve with this?”

How exactly does a scientist’s eureka moment turn into the internet, the satellite, the next generation of cancer therapy? Join a team of experts from TRIUMF, Canada’s particle accelerator centre, for an illuminating discussion that sheds light on the journey from our research to you.

The event will include a screening of “The Rarest Drug on Earth,” a short documentary that explores the possibility for TRIUMF to take up the reins as the world’s largest producer of actinium-225 (Ac-225), a radioisotope with promising potential as an anti-cancer therapy.

Hosted by science journalist Tim Lougheed, and featuring:

  • Kathryn Hayashi: President & CEO, TRIUMF Innovations
  • Morgan Dehnel: Founder and Chief Science & Innovation Officer, D-Pace
  • Beatrice Franke: TRIUMF Research Scientist – Physical Sciences
  • Andrew Robertson: PhD Student – Life Sciences

#discoverTHIS: La mère de l’invention

On dit que la nécessité est mère de l’invention. Si ce dicton est vrai, alors la curiosité qui alimente la recherche serait, elle, grand-mère de tout le processus. L’internet, le téléphone cellulaire, la tomographie par émission de positrons ou, si on remonte encore plus loin, la radio, la pénicilline et l’électricité, toutes ces inventions, qui ont changé nos vies, auraient été impossibles sans ces personnes innovatrices qui se sont intéressées aux découvertes scientifiques et qui se sont demandé quels problèmes elles pouvaient résoudre grâce à celles-ci. Mais comment l’éclair de génie d’un chercheur donne-t-il naissance à l’internet, au satellite ou à la nouvelle génération de traitement contre le cancer?

Joignez-vous à un groupe d’experts de TRIUMF, le Centre canadien d’accélération des particules, pour une discussion éclairante qui fera la lumière sur les étapes du processus, des chercheurs jusqu’à vous.

L’événement comprendra la projection du court documentaire The Rarest Drug on Earth, qui explore la possibilité que TRIUMF devienne le plus grand producteur mondial d’actinium-225 (AC-225), un radio-isotope prometteur dans le traitement contre le cancer.

La discussion, animée par le journaliste scientifique Tim Lougheed, mettra en vedette :

  • Kathryn Hayashi : présidente et directrice générale, TRIUMF Innovations
  • Morgan Dehnel : fondateur et agent en chef de la science et de l’innovation, D-Pace
  • Beatrice Franke : chercheuse scientifique chez TRIUMF – sciences physiques
  • Andrew Robertson : doctorant – sciences de la vie

Date and Time

Wed, 3 October 2018

7:30 PM – 9:00 PM EDT

Add to Calendar

Location

Canada Science and Technology Museum

1867 Saint Laurent Boulevard

Ottawa, ON K1G 5A3

View Map

Register here.

As for the Vancouver event, it’s titled ‘Catching Ghosts: Using Neutrinos to Unveil the Universe‘ and will be held at Science World at Telus World of Science (everyone calls it Science World) on October 23, 2018,

Catching Ghosts: Using Neutrinos to Unveil the Universe

On a clear night, away from the bright lights of Vancouver, you can see the incredible expanse of the universe before you. To study these far-away celestial bodies, scientists use a “radiation toolkit” to observe our universe and understand how the galaxies we see today came to be. Some types of radiation, such as infrared radiation, can sense stars in their infancy, not yet hot enough to shine visible light. Others, like x-rays and gamma rays, can reveal matter being sucked into a black hole.

When it comes to studying the nuclear processes in the heart of stars, scientists must turn to neutrinos: subatomic particles that are currently flying unbeknownst through your body by the billions, right this second. These elusive little particles are an excellent probe into the core of the sun and distant supernovae, but they are notoriously difficult to detect. Difficult, but not impossible.

On Tuesday, October 23, join Dr. Stanley Yen, TRIUMF Research Scientist, for his talk, Detecting the Ghost Particles of the Universe.

Date: October 23, 2018
Doors open at 6:30pm
Lecture begins at 7:00pm

Register

This lecture is presented in partnership by TRIUMF and Science World as part of the TRIUMF 50th Anniversary Unveiling the Universe Lecture Series.

Some may have noticed that I’m still referring to TRIUMF as Canada’s National Laboratory for Particle and Nuclear Physics. I know it has changed but I prefer it to the latest one, TRIUMF (Canada’s particle accelerator centre).

HR MacMillan Space Centre’s 50th anniversary

The centre has two upcoming celebratory events, here’s more from the ‘Life in the Universe’ event page,

Life in the Universe
An evening of music and astronomy

Join the H.R. MacMillan Space Centre in celebrating their 50th anniversary with a very special evening of music under the cosmic visuals of the Planetarium Star Theatre. Composer Thomas Beckman will be premiering an original work “Life in the Universe” inspired by the unique character of the planets in our solar system and the wonders of our Universe. The suite will be performed by Thomas Beckman and the Borealis String Quartet.

Thomas Beckman, CMC  [Canadian Music Centre] associate composer, has written for a wide range of ensembles that include the Borealis String Quartet, the Vancouver Symphony orchestra, the Prince George Symphony orchestra, the Postmodern Camerata and the Vancouver Youth Choir. For the past several years he has served as Festival Composer for the Artists for Conservation organization, as the in-house-composer for the Canadian Aboriginal AIDS Network and as a freelance film composer for several award-winning independent documentaries. With an MMus in western classical performance from the University of British Columbia, Thomas also serves as principal violist of the Vancouver Pops Symphony and the Prince George Symphony orchestra, and performs solo with his looping project for a number of events held by the H.R. MacMillan Space Centre, Semperviva Yoga studios, and the Vancouver Maritime Museum. Thomas’ latest project has been to create the Jean Coulthard Music Video series in collaboration with the Canadian Music Centre as a means to empower local composers in BC.

The Borealis Quartet was founded in Vancouver, British Columbia in the fall of 2000 and rapidly establishing a stellar reputation. The Borealis has toured extensively in North America, Europe and Asia and performed to enthusiastic sold-out audiences in major cities, including New York, Washington, DC, Los Angeles, San Francisco, Rome, Mainz, Shanghai, Taipei, Beijing, Toronto, Montreal, Ottawa and, of course, in their home town of Vancouver. http://www.borealisstringquartet.com/ 

TICKETS: $35 early bird tickets until October 5th, $40 after.
Tickets available online through Eventbrite until 12:00pm on October 19th.

Tickets available for 7:30pm and 9:00pm shows.

Beer and wine will be available for purchase.

This is a 19+ event. All attendees will be required to provide photo ID upon entry.

Get tickets here.

Their second event is more family-oriented (from the 50th Anniversary Celebration Weekend event page),

We’re turning 50 – help us celebrate! Bring the entire family out and enjoy our programming and special activities on Saturday and Sunday. Discover more about our past 50 years of science and space education as we pull some gems from our archives and explore how producing shows in the planetarium has changed over the decades. Share your memories of the Space Centre on our memory wall and create a card for Canadian astronaut David Saint-Jacques as he prepares for his mission to the International Space Station in December. We’ll be testing your knowledge with trivia questions before each show in the Planetarium Star Theatre and we’ll have a birthday treat for all to eat.

$5 for general admission and children under 5 are free.

We will be open from 10:00am – 5:00pm on Saturday and Sunday for the celebration with activities running from 10:30am – 4:30pm.

Event Details

October 20, 2018 – 10:00am to October 21, 2018 – 5:00pm

1968 seems to have been quite the sciencish year in Vancouver.

One last anniversary and this is a national one, the Royal Astronomical Society of Canada (RASC) is celebrating its sesquicentennial (150th) in 2018 just one year after the country’s sesquicentennial in 2017. First mentioned here in a July 2, 2018 posting about celebratory events in Toronto, There don’t seem to be any more events planned for this year but RASC’s 150th Anniversary webpage lists resources such as podcasts and more for you delectation.

Chief science adviser/advisor for Canada (we’re still waiting)

I half-thought we might get an announcement about Canada’s new science adviser/advisor/officer during the 2016 Science Odyssey  (formerly Canada’s National Science and Technology Week) being held from May 6–15, 2016. Especially in light of Science Minister Kirsty Duncan’s May 6, 2016 article “Duncan: New federal science adviser will be key to evidence-based policy” for the Ottawa Citizen,

The creation of a permanent Chief Science Officer demonstrates our government’s commitment to making sure science finds its rightful place at the federal table. In the six months since arriving in office, I have consulted extensively – both domestically and internationally – on this position. I have examined how similar positions, often called a chief science adviser, work in other countries such as the United Kingdom, New Zealand, the United States and Israel. My survey of international models will help create a position that is modern and yet tailor-made to suit Canada.

To-date, I have received valuable input from more than 80 experts, stakeholders and parliamentary colleagues from across the political spectrum. They have provided views such as the importance of recruiting someone who can provide independent, transparent and non-partisan scientific advice to the prime minister and our government. Our consultations have also underscored the importance of building relationships between a Chief Science Officer and the research community that allow for the best scientific expertise to be part of decision-making at the highest levels of government.

Our stakeholders also emphasized the importance of appointing someone who would have access to and an open dialogue with federal scientists, along with other scientists across Canada and abroad.

And when I speak of scientists here, I mean all scientists. As Stephen J. Toope, president of the Federation for the Humanities and Social Sciences, wrote in the Citizen Friday [May 6, 2016], our lead scientist would be welcome to gather the best evidence from all scientific disciplines: the natural and applied sciences, engineering, health sciences and the social sciences and humanities. The officer would do so without the influence of political agendas. And with ease in both official languages.

I have learned from my consultations that in order for Canada to enhance its science advisory system and give this new position permanence, it is important to properly define and take the time necessary to recruit someone who has a deep respect for Canada’s scientists and the role of science in society. So far, I am encouraged that members of our stakeholder community and parliamentarians understand the need for a credible process to appoint a worthy individual who will serve our prime minister, our government, our citizens and scientists.

Tim Lougheed in a Feb. 29, 2016 article for the Canadian Science Policy Centre passed on a few thoughts from Sir Peter Gluckman, Chief Science Advisor (CSO; either advisor or adviser seems to be correct) to New Zealand’s Prime Minister,

So, the Canadian science adviser is supposed to have an impact on policy,

“There can be expectations that when you’re fighting for a science advisor you’re fighting for an in-house lobbyist for the science community,” he cautions. “But of course you’re not: you’re fighting for an in-house lobbyist for the use of science by government. There’s a really important difference.”

Gluckman was honoured this February [2016] in Washington [DC] at the annual meeting of the American Association for the Advancement of Science, which gave him its 2015 Award for Science Diplomacy. He understands the need for diplomacy in any kind of CSO undertaking, especially whenever he has found himself wedged in between a political leadership seeking objective consultation and a research community disappointed with their share of government funding.

“When the roles of science advisors get conflated, they tend to get more politicized,” he explains. “What we try to do is to show that science can be an apolitical powerful input into better decision-making by governments.”

Canada [has] already long taken advantage of this powerful input through the Science Technology and Innovation Council, created in 2007, and before that the Council of Science and Technology Advisors, which dates back to 1996. However, the deliberations of these bodies largely took place behind closed doors and neither was ever intended to maintain the public accountability and profile of a CSO, who could easily become a lightning rod in exceptional circumstances such as those that highlighted Koop’s career.

“They’re going to have to earn the trust of the Prime Minister and the Cabinet,” says University of Ottawa Biology Professor Rees Kassen. “They have to show value and at the same time they have to show value to the country.”

Kassen, a longtime advocate of bridge-building between government and the research community, underscores that “country” refers to everyone, not just those two parties. In order to succeed, the CSO must be seen to benefit Canada as a whole.

“I would like to see the role of science advisor not rely solely on the heroic capabilities of one person,” he adds. “We have a very rich ecosystem of scientific knowledge creation, of scientific activity, of scientific translation — and potentially, of scientific advice.”

Kassen, a longtime advocate of bridge-building between government and the research community, underscores that “country” refers to everyone, not just those two parties. In order to succeed, the CSO must be seen to benefit Canada as a whole.

“I would like to see the role of science advisor not rely solely on the heroic capabilities of one person,” he adds. “We have a very rich ecosystem of scientific knowledge creation, of scientific activity, of scientific translation — and potentially, of scientific advice.”

Gluckman — who himself coordinates the work of a variety of other science advisors located in other parts of the New Zealand government, and collaborates closely with the Royal Society of New Zealand (the National Academy)— absolutely agrees. Moreover, he concludes that the effectiveness of any CSO will depend on how far and wide their influence extends.

“That really determines how this role works,” he says. “Ultimately if this person doesn’t report across the whole of government, they can’t do the role I’m talking about.”

Of course, there are some assumptions being made as Paul Cairney *notes* in his March 10, 2016 article for the Guardian about science advice and its impact on policy and policymakers,

… these efforts will fail if scientists and other experts fail to understand how the policy process works. To do so requires us to reject two romantic notions: first, that policymakers will ever think like scientists; and second, that there is a clearly identifiable point of decision at which scientists can contribute evidence to make a demonstrable impact.

To better understand how policymakers think, we need a full account of “bounded rationality.” This phrase describes the fact that policymakers can only gather limited information before they make decisions quickly. They will have made a choice before you have a chance to say “more research is needed”! To do so, they use two short cuts: rational ways to gather quickly the best evidence on solutions to meet their goals; and irrational ways – including drawing on emotions and gut feeling – to identify problems even more quickly.

This highlights a potential flaw in academic strategies. The most common response to bounded rationality in scientific articles is to focus on the supply of evidence: to develop a hierarchy of evidence, which often privileges randomised control trials; to generate knowledge; and to present it in a form that is understandable to policymakers.

We need to pay more attention to the demand for evidence, taking more account of lurches of policymaker attention, often driven by quick and emotional decisions. For example, there is no point in taking the time to make evidence-based solutions easier to understand if policymakers are no longer interested. Successful advocates recognise the value of emotional appeals and simple stories to draw attention to a problem.

To identify when and how to contribute evidence, we need to understand the complicated environment in which policymaking takes place. There is no “policy cycle” in which to inject scientific evidence at the point of decision. Rather, the policy process is messy and often unpredictable. It is a complex system in which the same injection of evidence can have no effect, or a major effect.

The article offers more insight into the issues with science advice, evidence, and policymaking. Coincidentally Cairney was promoting a new book at the time (from Cairney’s article),

… his new book The Politics of Evidence Based Policymaking, which was launched this week by the Alliance for Useful Evidence. More details are available on his website.

All this speculation has been quite interesting and I look forward to an announcement at some point. For those who’d like more opinions about the matter, there’s the Canadian Science Policy Centre’s Chief Science Officer: Insights and Recommendations webpage, which, as of May 19, 2016, hosts seven opinion pieces including one from Ted Hsu, former Liberal Member of Parliament, one of the few to hold a science degree (in his case, physics).

*’notes’ added on May 19,2016 at 1412 PDT.