Tag Archives: tissue printing

Cosmetics giant, L’Oréal, to 3D print skin

L’Oréal, according to a May 19, 2015 BBC (British Broadcasting Corporation) online news item, has partnered with Organovo, a 3D bioprinting startup, to begin producing skin,

French cosmetics firm L’Oreal is teaming up with bio-engineering start-up Organovo to 3D-print human skin.

It said the printed skin would be used in product tests.

Organovo has already made headlines with claims that it can 3D-print a human liver but this is its first tie-up with the cosmetics industry.

Experts said the science might be legitimate but questioned why a beauty firm would want to print skin. [emphasis mine]

L’Oreal currently grows skin samples from tissues donated by plastic surgery patients. It produces more than 100,000, 0.5 sq cm skin samples per year and grows nine varieties across all ages and ethnicities.

Its statement explaining the advantage of printing skin, offered little detail: “Our partnership will not only bring about new advanced in vitro methods for evaluating product safety and performance, but the potential for where this new field of technology and research can take us is boundless.”

The beauty and cosmetics industry has a major interest in technology, especially anything to do with the skin. I’m curious as to what kind of an expert wouldn’t realize that cosmetics companies test products on skin and might like to have a ready supply. Still, I have to admit to surprise when I first (2006) started researching nanotechnology;  L’Oréal at one point was the sixth largest nanotechnology patent holder in the US (see my Nanotech Mysteries Wiki page: Marketers put the buy in nano [scroll down to Penetration subhead]). In 2008 L’Oréal company representatives were set for a discussion on their nanotechnology efforts and the precautionary principle, which was to be hosted by the Wilson Center’s Project for Emerging Nanotechnologies (PEN). The company cancelled at a rather interesting time as I had noted in my June 19, 2008 posting. (scroll down about 40% of the way until you see mention of Dr. Andrew Maynard).

Back to 3D printing technology and cosmetics giants, a May 5, 2015 Organovo/L’Oréal press release provides more detail about the deal,

L’Oreal USA, the largest subsidiary of the world’s leading beauty company, has announced a partnership with 3-D bioprinting company Organovo Holdings, Inc. (NYSE MKT: ONVO) (“Organovo”).  Developed between L’Oreal’s U.S.-based global Technology Incubator and Organovo, the collaboration will leverage Organovo’s proprietary NovoGen Bioprinting Platform and L’Oreal’s expertise in skin engineering to develop 3-D printed skin tissue for product evaluation and other areas of advanced research.

This partnership marks the first-ever application of Organovo’s groundbreaking technology within the beauty industry.

“We developed our technology incubator to uncover disruptive innovations across industries that have the potential to transform the beauty business,” said Guive Balooch, Global Vice President of L’Oreal’s Technology Incubator.  “Organovo has broken new ground with 3-D bioprinting, an area that complements L’Oreal’s pioneering work in the research and application of reconstructed skin for the past 30 years. Our partnership will not only bring about new advanced in vitro methods for evaluating product safety and performance, but the potential for where this new field of technology and research can take us is boundless.”

Organovo’s 3D bioprinting enables the reproducible, automated creation of living human tissues that mimic the form and function of native tissues in the body.

“We are excited to be partnering with L’Oreal, whose leadership in the beauty industry is rooted in scientific innovation and a deep commitment to research and development,” said Keith Murphy, Chairman and Chief Executive Officer at Organovo. “This partnership is a great next step to expand the applications of Organovo’s 3-D bioprinting technology and to create value for both L’Oreal and Organovo by building new breakthroughs in skin modeling.”

I don’t have much information about Organovo here, certainly nothing about the supposed liver (how did I miss that?), but there is a Dec. 26, 2012 posting about its deal with software giant, Autodesk.

Autodesk in the tissue printing business

I came across the information about Autodesk’s venture into tissue printing in a Dec. 19, 2012 article by Kelsey Campbell-Dollaghan for Fast Company Co.Design.com (Note: Links have been removed),

Bioprinters–or 3-D printing hybrids that can print human tissue–have been around for a few years now. As the technology emerged, a single nagging question stuck out in the mind of this post-architecture school student: what’s the software of choice for a scientist modeling a human organ?

Today, an announcement from biomedical startup Organovo and software giant Autodesk goes a long way towards answering it. …

The Organovo Dec. 18, 2012 press release provides some detail about the deal,

Organovo Holdings, Inc. (OTCQX: ONVO) (“Organovo”), a creator and manufacturer of functional, three-dimensional human tissues for medical research and therapeutic applications, is working together with researchers at Autodesk, Inc., the leader in cloud-based design and engineering software, to create the first 3D design software for bioprinting.

The software, which will be used to control Organovo’s NovoGen MMX bioprinter, will represent a major step forward in usability and functionality for designing three-dimensional human tissues, and has the potential to open up bioprinting to a broader group of users.

This looks like it’s going to be a proprietary system, i.e., the software is designed for one type of hardware, Organovo’s hardware, reminiscent of the  late 1990s where printers in the graphic arts field were, in some cases, were trapped into proprietary computer-to-plate printing systems. There was an open source vs. proprietary systems competition which was eventually won by open source systems.

Organovo’s press release describes the technology they’ve developed,

Organovo’s 3D bioprinting technology is used to create living human tissues that are three-dimensional, architecturally correct, and made entirely of living human cells. The resulting structures can function like native human tissues, and represent an opportunity for advancement in medical research, drug discovery and development, and in the future, surgical therapies and transplantation.

The Dec. 17, 2012 article by Kim-Mai Cutler for TechCrunch adds more technical and business detail (Note: Link removed.),

Organovo, which went public earlier this year through a small cap offering and has a market cap of $98 million, manufactures a bioprinter that can create 1 millimeter-thick tissues. Based on research out of the University of Missouri, the company’s technology creates a bio-ink from cells and deposits new cells in a layer-by-layer matrix according to a computer design.

The Dec. 18, 2012 article by Joseph Flaherty for Wired magazine offers an analysis of the business advantages for both companies (Note: Links removed.),

Autodesk, the industry leader in CAD software, has announced it is partnering with biological printer manufacturer Organovo to create 3-D design software for designing and printing living tissue.

It’s an area of interest to Autodesk, whose software runs the industrial design and architecture worlds, allowing them to expand further into new fields by helping researchers interface with new tools.

“Autodesk is an excellent fit for developing new software for 3D bioprinters,” Organovo CEO Keith Murphy says in a press release. “This partnership will lead to advances in bioprinting, including both greater flexibility and throughput internally, and the potential long-term ability for customers to design their own 3D tissues for production by Organovo.”Jeff Kowalski, senior VP/CTO at Autodesk, echoes Murphy’s sentiment. “Bioprinting has the potential to change the world,” he says. “It’s a blend of engineering, biology and 3D printing, which makes it a natural for Autodesk. I think working with Organovo to explore and evolve this emerging field will yield some fascinating and radical advances in medical research.”

While this announcement is certainly big news, we’re multiple revisions away from 3-D printing replacement body parts. Even after the technical difficulties of printing organs or even tissue for live human use are worked through, any resulting process will need to be validated through complex clinical trials and a long review by the FDA and international authorities. Still, it will be exciting to see what medical researchers and DIY biohackers will do with these tools.

Oddly, as of today (Dec. 26, 2012) Autodesk has yet to post a press release about this deal on its own website.