Tag Archives: tobacco

Revising history with science and art

Caption: The 2000-year-old pipe sculpture’s bulging neck is evidence of thyroid disease as a result of iodine deficient water and soil in the ancient Ohio Valley. Credit: Kenneth Tankersley

An October 4, 2018 news item on ScienceDaily describes the analytic breakthrough,

Art often imitates life, but when University of Cincinnati anthropologist and geologist Kenneth Tankersley investigated a 2000-year-old carved statue on a tobacco pipe, he exposed a truth he says will rewrite art history.

Since its discovery in 1901, at the Adena Burial Mound in Ross County, Ohio, archaeologists have theorized that the the 8-inch pipe statue—carved into the likeness of an Ohio Valley Native American—represented an achondroplastic dwarf (AD). People with achondroplasia typically have short arms and legs, an enlarged head, and an average-sized trunk, the same condition as Emmy Award-winning actor Peter Dinklage from HBO’s “Game of Thrones.”

“During the early turn of the century, this theory was consistent with actual human remains of a Native American excavated in Kentucky, also interpreted by archaeologists as being an achondroplastic dwarf,” says Tankersley.

This theory flourished in the scientific literature until the turn of the 21st century when Tankersley looked closer.

“Here we have a carved statue and human remains, both of achondroplasia from the same time period,” says Tankersley. “But what caught my eye on this pipe statue was an obvious tumor on the neck that looked remarkably like a goiter [or goitre] or thyroid tumor.”

An October 2, 2018 University of Cincinnati (UC) news release (also on EurekAlert but published Oct. 3, 2018), reveals more details,

Tankersley collaborated with Frederic Bauduer, a visiting biological anthropologist and paleopathologist from the University of Bordeaux, UC’s sister university in France, to ultimately dispel previous academic literature claiming the sculpture as portraying achondroplasia.

“In archaeological science, flesh does not survive, so many ancient maladies go unnoticed and are almost always impossible to get at from an archaeological standpoint,” says Tankersley. “So what struck me was how remarkably Bauduer was using ancient art from various periods of antiquity to argue for the paleopathology he presented.”

Using radiocarbon dating on textile and bark samples surrounding the pipe at the site, the Adena pipe dates to approximately 2000 years ago, to the earliest evidence of tobacco.

Traditionally, tobacco is considered a sacred plant to Native Americans in this region, and smoking tobacco played an important role in their ceremonies, but he points to tobacco smoking as being long associated with an increased prevalence of goiter in low iodine intake zones worldwide.

From a medical perspective, Bauduer found the physical characteristics, such as the short forehead and long bones of the upper and lower limbs, simply not adding up as an achondroplastic dwarf.

“We found the tumor in the neck, as well as the figure’s squatted stance — not foreshortened legs as was formerly documented in the literature — were both signs and symptoms of thyroid disease,” says Tankersley.

“We already know that iodine deficiencies can lead to thyroid tumors, and the Ohio Valley area, where this artifact was found, has historically had iodine depleted soils and water relative to the advance of an Ice Age glacier about 300,000 years ago.”

Students in a university lab look through microscopes.

Tankersley (top center) teaches archaeology students to date soil, bones and textiles using radiocarbon science.

Profile of ancient tobacco pipe sculpture portraying a Native American wearing ceremonial regalia.

The figure’s bulging neck (goiter) and appearance of short stature are actually results of iodine deficient thyroid disease. The legs are bent in a tilted squat likely during a Native American ceremonial dance.

Tankersley says the Ohio Valley region, before the introduction of iodized salt in the 1920s,
was part of the so-called U.S. “goiter belt” where goiter frequency was relatively high —  five to 15 incidences per thousand.

The lower limbs on the statue, previously documented in the literature as short in stature, are actually normal size in bone length, according to Bauduer. Upon closer inspection, both Bauduer and Tankersley agree that the figure is also portrayed in a tilted squat, a common gait anomaly found in people with hypothyroidism.

The figure has what appears to be an abdominal six-pack, but both researchers say the detailed physical features indeed portray a normal physique except for the telltale signs of thyroid disease.

“The fact that the bones of the figure are all normal size leads us to believe the squat portrays more of an abnormal gait while likely in the stance of a typical Native American ritual dance,” says Tankersley, who is one-quarter Native American himself and regularly attends ceremonial events throughout Ohio and Kentucky.

“The regalia the figure is wearing is also strongly indicative of ancient Native Ohio Valley Shawnee, Delaware and Ojibwa to the north and Miami Nation tribes in Indiana.

“The traditional headdress, pierced ears with expanded spool earrings and loincloth with serpentine motif on the front and feathered bustle on back are also still worn by local Native tribes during ceremonial events today.”

Artistic clues

Portrait of Dr. Frederic Bauduer, biological pathologist from University of Bordeaux in France, on an ancient architectural balcony.

Frederic Bauduer, biological anthropologist, paleopathologist and critical collaborator on this research from the University of Bordeaux, UC’s sister university in France. photo/Frederic Bauduer

In addition to figures found in South America and Mesoamerica, Tankersley says the Adena pipe is the first known example of a goiter depicted in ancient Native North American art and one of the oldest from the Western Hemisphere.

“The other real take here is that a lot of people ask, ‘What is the value of ancient art?’” asserts Tankersley. “Well, here’s an example of ancient art that tells a deeper story. And similar indigenous art representations found in South America and Mesoamerica strengthen our hypothesis.”

Tankersley is interested in looking deeper for pathologies and maladies portrayed on other ancient artifacts from Native Americans thousands of years ago here in the Ohio Valley and elsewhere.

“Art history is beginning to help substantiate many scientific hypotheses,” says Tankersley. “Because artists are such keen students of anatomy, artisans such as this ancient Adena pipe sculptor could portray physical maladies with great accuracy, even before they were aware of what the particular disease was.”

Here’s a link to and a citation for the paper,

Medical Hypotheses Evidence of an ancient (2000 years ago) goiter attributed to iodine deficiency in North America by F. Bauduer, K. Barnett Tankersley. Medical Hypotheses Volume 118, September 2018, Pages 6-8 DOI: https://doi.org/10.1016/j.mehy.2018.06.011

This paper looks like it’s behind a paywall.

Are plants and brains alike?

The answer to the question about whether brains and plants are alike is the standard ‘yes and no’. That said, there are some startling similarities from a statistical perspective (from a July 6, 2017 Salk Institute news release (also received via email; Note: Links have been removed),

Plants and brains are more alike than you might think: Salk scientists discovered that the mathematical rules governing how plants grow are similar to how brain cells sprout connections. The new work, published in Current Biology on July 6, 2017, and based on data from 3D laser scanning of plants, suggests there may be universal rules of logic governing branching growth across many biological systems.

“Our project was motivated by the question of whether, despite all the diversity we see in plant forms, there is some form or structure they all share,” says Saket Navlakha, assistant professor in Salk’s Center for Integrative Biology and senior author of the paper. “We discovered that there is—and, surprisingly, the variation in how branches are distributed in space can be described mathematically by something called a Gaussian function, which is also known as a bell curve.”

Being immobile, plants have to find creative strategies for adjusting their architecture to address environmental challenges, like being shaded by a neighbor. The diversity in plant forms, from towering redwoods to creeping thyme, is a visible sign of these strategies, but Navlakha wondered if there was some unseen organizing principle at work. To find out, his team used high-precision 3D scanning technology to measure the architecture of young plants over time and quantify their growth in ways that could be analyzed mathematically.

“This collaboration arose from a conversation that Saket and I had shortly after his arrival at Salk,” says Professor and Director of the Plant Molecular and Cellular Biology Laboratory Joanne Chory, who, along with being the Howard H. and Maryam R. Newman Chair in Plant Biology, is also a Howard Hughes Medical Investigator and one of the paper’s coauthors. “We were able to fund our studies thanks to Salk’s innovation grant program and the Howard Hughes Medical Institute.”

The team began with three agriculturally valuable crops: sorghum, tomato and tobacco. The researchers grew the plants from seeds under conditions the plants might experience naturally (shade, ambient light, high light, high heat and drought). Every few days for a month, first author Adam Conn scanned each plant to digitally capture its growth. In all, Conn scanned almost 600 plants.

“We basically scanned the plants like you would scan a piece of paper,” says Conn, a Salk research assistant. “But in this case the technology is 3D and allows us to capture a complete form—the full architecture of how the plant grows and distributes branches in space.”

From left: Adam Conn and Saket Navlakha
From left: Adam Conn and Saket Navlakha Credit: Salk Institute

Each plant’s digital representation is called a point cloud, a set of 3D coordinates in space that can be analyzed computationally. With the new data, the team built a statistical description of theoretically possible plant shapes by studying the plant’s branch density function. The branch density function depicts the likelihood of finding a branch at any point in the space surrounding a plant.

This model revealed three properties of growth: separability, self-similarity and a Gaussian branch density function. Separability means that growth in one spatial direction is independent of growth in other directions. According to Navlakha, this property means that growth is very simple and modular, which may let plants be more resilient to changes in their environment. Self-similarity means that all the plants have the same underlying shape, even though some plants may be stretched a little more in one direction, or squeezed in another direction. In other words, plants don’t use different statistical rules to grow in shade than they do to grow in bright light. Lastly, the team found that, regardless of plant species or growth conditions, branch density data followed a Gaussian distribution that is truncated at the boundary of the plant. Basically, this says that branch growth is densest near the plant’s center and gets less dense farther out following a bell curve.

The high level of evolutionary efficiency suggested by these properties is surprising. Even though it would be inefficient for plants to evolve different growth rules for every type of environmental condition, the researchers did not expect to find that plants would be so efficient as to develop only a single functional form. The properties they identified in this work may help researchers evaluate new strategies for genetically engineering crops.

Previous work by one of the paper’s authors, Charles Stevens, a professor in Salk’s Molecular Neurobiology Laboratory, found the same three mathematical properties at work in brain neurons. “The similarity between neuronal arbors and plant shoots is quite striking, and it seems like there must be an underlying reason,” says Stevens. “Probably, they both need to cover a territory as completely as possible but in a very sparse way so they don’t interfere with each other.”

The next challenge for the team is to identify what might be some of the mechanisms at the molecular level driving these changes. Navlakha adds, “We could see whether these principles deviate in other agricultural species and maybe use that knowledge in selecting plants to improve crop yields.”

Should you not be able to access the news release, you can find the information in a July 6, 2017 news item on ScienceDaily.

For the paper, here’s a link and a citation,

A Statistical Description of Plant Shoot Architecture by Adam Conn, Ullas V. Pedmale4, Joanne Chory, Charles F. Stevens, Saket Navlakha. Current Biology DOI: http://dx.doi.org/10.1016/j.cub.2017.06.009 Publication stage: In Press Corrected Proof July 2017

This paper is behind a paywall.

Here’s an image that illustrates the principles the researchers are attempting to establish,

This illustration represents how plants use the same rules to grow under widely different conditions (for example, cloudy versus sunny), and that the density of branches in space follows a Gaussian (“bell curve”) distribution, which is also true of neuronal branches in the brain. Credit: Salk Institute

Nanobionic plant materials

This is a bioinspired story with a bit of a twist. From a March 30, 2015 news item on Nanowerk (Note: A link has been removed),

Humans have been inspired by nature since the beginning of time. We mimic nature to develop new technologies, with examples ranging from machinery to pharmaceuticals to new materials. Planes are modelled on birds and many drugs have their origins in plants. Researchers at the Department of Mechanical and Process Engineering [ETH Zurich; Swiss Federal Institute of Technology] have taken it a step further: in order to develop an extremely sensitive temperature sensor they took a close look at temperature-sensitive plants. However, they did not mimic the properties of the plants; instead, they developed a hybrid material that contains, in addition to synthetic components, the plant cells themselves (“Plant nanobionic materials with a giant temperature response mediated by pectin-Ca2+”). [emphasis mine] “We let nature do the job for us,” explains Chiara Daraio, Professor of Mechanics and Materials.

The scientists were able to develop by far the most sensitive temperature sensor: an electronic module that changes its conductivity as a function of temperature. “No other sensor can respond to such small temperature fluctuations with such large changes in conductivity. Our sensor reacts with a responsivity at least 100 times higher compared to the best existing sensors,” says Raffaele Di Giacomo, a post-doc in Daraio’s group.

The scientists have provided an illustration of their concept using a tobacco leaf as the backdrop,

ETH scientists used cells form the tobacco plant to build the by far most sensitive temperature sensor. (Illustration: Daniele Flo / ETH Zurich)

ETH scientists used cells form the tobacco plant to build the by far most sensitive temperature sensor. (Illustration: Daniele Flo / ETH Zurich)

A March 31, 2015 ETH Zurich press release, which despite the release date originated the news item, describes the concept in more detail,

It has been known for decades that plants have the extraordinary ability to register extremely fine temperature differences and respond to them through changes in the conductivity of their cells. In doing so, plants are better than any man-made sensor so far.

Di Giacomo experimented with tobacco cells in a cell culture. “We asked ourselves how we might transfer these cells into a lifeless, dry material in such a way that their temperature-sensitive properties are preserved,” he recounts. The scientists achieved their objective by growing the cells in a medium containing tiny tubes of carbon. These electrically conductive carbon nanotubes formed a network between the tobacco cells and were also able to penetrate the cell walls. When Di Giacomo dried the nanotube-cultivated cells, he discovered a woody, firm material that he calls ‘cyberwood’. In contrast to wood, this material is electrically conductive thanks to the nanotubes, and interestingly the conductivity is temperature-dependent and extremely sensitive, just like in living tobacco cells.

The scientists considered  the new material’s (cyberwood) properties and possible future applications (from the news release),

As demonstrated by experiments, the cyberwood sensor can identify warm bodies even at distance; for example, a hand approaching the sensor from a distance of a few dozen centimetres. The sensor’s conductivity depends directly on the hand’s distance from the sensor.

According to the scientists, cyberwood could be used in a wide range of applications; for instance, in the development of a ‘touchless touchscreen’ that reacts to gestures, with the gestures recorded by multiple sensors. Equally conceivable might be heat-sensitive cameras or night-vision devices.

The Swiss researchers along with a collaborator at the University of Salerno (Italy) did further research into the origins of the material’s behaviour (from the news release),

The ETH scientists, together with a collaborator at the University of Salerno, Italy, not only subjected their new material’s properties to a detailed examination, they also analysed the origins of their extraordinary behaviour. They discovered that pectins and charged atoms (ions) play a key role in the temperature sensitivity of both living plant cells and the dry cyberwood. Pectins are sugar molecules found in plant cell walls that can be cross-linked, depending on temperature, to form a gel. Calcium and magnesium ions are both present in this gel. “As the temperature rises, the links of the pectin break apart, the gel becomes softer, and the ions can move about more freely,” explains Di Giacomo. As a result, the material conducts electricity better when temperature increases.

The news release goes on to mention a patent and future plans,

The scientists submitted a patent application for their sensor. In ongoing work, they are now further developing it such that it functions without plant cells, essentially with only pectin and ions. Their goal is to create a flexible, transparent and even biocompatible sensor with the same ultrahigh temperature sensitivity. Such a sensor could be moulded into arbitrary shapes and produced at extremely low cost. This will open the door to new applications for thermal sensors in biomedical devices, consumer products and low cost thermal cameras.

Here’s a link to and a citation for the paper,

Plant nanobionic materials with a giant temperature response mediated by pectin-Ca2+ by Raffaele Di Giacomo, Chiara Daraio, and Bruno Maresca. Published online before print March 30, 2015, doi: 10.1073/pnas.1421020112 PNAS March 30, 2015

This paper is behind a paywall.

Nanotechnology, tobacco plants, and the Ebola virus

Before presenting information about the current Ebola crisis and issues with vaccines and curatives, here’s a description of the disease from its Wikipedia entry,

Ebola virus disease (EVD) or Ebola hemorrhagic fever (EHF) is a disease of humans and other primates caused by an ebola virus. Symptoms start two days to three weeks after contracting the virus, with a fever, sore throat, muscle pain, and headaches. Typically nausea, vomiting, and diarrhea follow, along with decreased functioning of the liver and kidneys. Around this time, affected people may begin to bleed both within the body and externally. [1]

As for the current crisis in countries situated on the west coast of the African continent, there’s this from an Aug. 14, 2014 news item on ScienceDaily,

The outbreak of Ebola virus disease that has claimed more than 1,000 lives in West Africa this year poses a serious, ongoing threat to that region: the spread to capital cities and Nigeria — Africa’s most populous nation — presents new challenges for healthcare professionals. The situation has garnered significant attention and fear around the world, but proven public health measures and sharpened clinical vigilance will contain the epidemic and thwart a global spread, according to a new commentary by Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Dr. Fauci’s Aug. 13, 2014 commentary (open access) in the New England Journal of Medicine provides more detail (Note: A link has been removed),

An outbreak of Ebola virus disease (EVD) has jolted West Africa, claiming more than 1000 lives since the virus emerged in Guinea in early 2014 (see figure) Ebola Virus Cases and Deaths in West Africa (Guinea, Liberia, Nigeria, and Sierra Leone), as of August 11, 2014 (Panel A), and Over Time (Panel B).). The rapidly increasing numbers of cases in the African countries of Guinea, Liberia, and Sierra Leone have had public health authorities on high alert throughout the spring and summer. More recent events including the spread of EVD to Nigeria (Africa’s most populous country) and the recent evacuation to the United States of two American health care workers with EVD have captivated the world’s attention and concern. Health professionals and the general public are struggling to comprehend these unfolding dynamics and to separate misinformation and speculation from truth.

In early 2014, EVD emerged in a remote region of Guinea near its borders with Sierra Leone and Liberia. Since then, the epidemic has grown dramatically, fueled by several factors. First, Guinea, Sierra Leone, and Liberia are resource-poor countries already coping with major health challenges, such as malaria and other endemic diseases, some of which may be confused with EVD. Next, their borders are porous, and movement between countries is constant. Health care infrastructure is inadequate, and health workers and essential supplies including personal protective equipment are scarce. Traditional practices, such as bathing of corpses before burial, have facilitated transmission. The epidemic has spread to cities, which complicates tracing of contacts. Finally, decades of conflict have left the populations distrustful of governing officials and authority figures such as health professionals. Add to these problems a rapidly spreading virus with a high mortality rate, and the scope of the challenge becomes clear.

Although the regional threat of Ebola in West Africa looms large, the chance that the virus will establish a foothold in the United States or another high-resource country remains extremely small. Although global air transit could, and most likely will, allow an infected, asymptomatic person to board a plane and unknowingly carry Ebola virus to a higher-income country, containment should be readily achievable. Hospitals in such countries generally have excellent capacity to isolate persons with suspected cases and to care for them safely should they become ill. Public health authorities have the resources and training necessary to trace and monitor contacts. Protocols exist for the appropriate handling of corpses and disposal of biohazardous materials. In addition, characteristics of the virus itself limit its spread. Numerous studies indicate that direct contact with infected bodily fluids — usually feces, vomit, or blood — is necessary for transmission and that the virus is not transmitted from person to person through the air or by casual contact. Isolation procedures have been clearly outlined by the Centers for Disease Control and Prevention (CDC). A high index of suspicion, proper infection-control practices, and epidemiologic investigations should quickly limit the spread of the virus.

Fauci’s article makes it clear that public concerns are rising in the US and I imagine that’s true of Canada too and many other parts of the world, not to mention the countries currently experiencing the EVD outbreak. In the midst of all this comes a US Food and Drug Administration (FDA) warning as per an Aug. 15, 2014 news item (originated by Reuters reporter Toni Clarke) on Nanowerk,

The U.S. Food and Drug Administration said on Thursday [Aug. 14, 2014] it has become aware of products being sold online that fraudulently claim to prevent or treat Ebola.

The FDA’s warning comes on the heels of comments by Nigeria’s top health official, Onyebuchi Chukwu, who reportedly said earlier Thursday [Aug. 14, 2014] that eight Ebola patients in Lagos, the country’s capital, will receive an experimental treatment containing nano-silver.

Erica Jefferson, a spokeswoman for the FDA, said she could not provide any information about the product referenced by the Nigerians.

The Aug. 14,  2014 FDA warning reads in part,

The U.S. Food and Drug Administration is advising consumers to be aware of products sold online claiming to prevent or treat the Ebola virus. Since the outbreak of the Ebola virus in West Africa, the FDA has seen and received consumer complaints about a variety of products claiming to either prevent the Ebola virus or treat the infection.

There are currently no FDA-approved vaccines or drugs to prevent or treat Ebola. Although there are experimental Ebola vaccines and treatments under development, these investigational products are in the early stages of product development, have not yet been fully tested for safety or effectiveness, and the supply is very limited. There are no approved vaccines, drugs, or investigational products specifically for Ebola available for purchase on the Internet. By law, dietary supplements cannot claim to prevent or cure disease.

As per the FDA’s reference to experimental vaccines, an Aug. 6, 2014 article by Caroline Chen, Mark Niquette, Mark Langreth, and Marie French for Bloomberg describes the ZMapp vaccine/treatment (Note: Links have been removed),

On a small plot of land incongruously tucked amid a Kentucky industrial park sit five weather-beaten greenhouses. At the site, tobacco plants contain one of the most promising hopes for developing an effective treatment for the deadly Ebola virus.

The plants contain designer antibodies developed by San Diego-based Mapp Biopharmaceutical Inc. and are grown in Kentucky by a unit of Reynolds American Inc. Two stricken U.S. health workers received an experimental treatment containing the antibodies in Liberia last week. Since receiving doses of the drug, both patients’ conditions have improved.

Tobacco plant-derived medicines, which are also being developed by a company whose investors include Philip Morris International Inc., are part of a handful of cutting edge plant-based treatments that are in the works for everything from pandemic flu to rabies using plants such as lettuce, carrots and even duckweed. While the technique has existed for years, the treatments have only recently begun to reach the marketplace.

Researchers try to identify the best antibodies in the lab, before testing them on mice, then eventually on monkeys. Mapp’s experimental drug, dubbed ZMapp, has three antibodies, which work together to alert the immune system and neutralize the Ebola virus, she [Erica Ollman Saphire, a molecular biologist at the Scripps Research Institute,] said.

This is where the tobacco comes in: the plants are used as hosts to grow large amounts of the antibodies. Genes for the desired antibodies are fused to genes for a natural tobacco virus, Charles Arntzen, a plant biotechnology expert at Arizona State University, said in an Aug. 4 [2014] telephone interview.

The tobacco plants are then infected with this new artificial virus, and antibodies are grown inside the plant. Eventually, the tobacco is ground up and the antibody is extracted, Arntzen said.

The process of growing antibodies in mammals risks transferring viruses that could infect humans, whereas “plants are so far removed, so if they had some sort of plant virus we wouldn’t get sick because viruses are host-specific,” said Qiang Chen, a plant biologist at Arizona State University in Tempe, Arizona, in a telephone interview.

There is a Canadian (?) company working on a tobacco-based vaccines including one for EVD but as the Bloomberg writers note the project is highly secret,

Another tobacco giant-backed company working on biotech drugs grown in tobacco plants is Medicago Inc. in Quebec City, which is owned by Mitsubishi Tanabe Pharma Corp. and Philip Morris. [emphasis mine]

Medicago is working on testing a vaccine for pandemic influenza and has a production greenhouse facility in North Carolina, said Jean-Luc Martre, senior director for government affairs at Medicago. Medicago is planning a final stage trial of the pandemic flu vaccine for next year, he said in a telephone interview.

The plant method is flexible and capable of making antibodies and vaccines for numerous types of viruses, said Martre. In addition to influenza, the company’s website says it is in early stages of testing products for rabies and rotavirus.

Medicago ‘‘is currently closely working with partners for the production of an Ebola antibody as well as other antibodies that are of interest for bio-defense,” he said in an e-mail. He would not disclose who the partners were. [emphasis mine]

I have checked both the English and French language versions of Medicago’s website and cannot find any information about their work on ebola. (The Bloomberg article provides a good overview of the ebola situation and more. I recommend reading it and/or the Aug. 15, 2014 posting on CTV [Canadian Television Network] which originated from an Associated Press article by Malcolm Ritter).

Moving on to more research and ebola, Dexter Johnson in an Aug. 14, 2014 posting (on his Nanoclast blog on the IEEE [Institute of Electrical and Electronics Engineers] website,) describes some work from Northeastern University (US), Note: Links have been removed,

With the Ebola virus death toll now topping 1000 and even the much publicized experimental treatment ZMapp failing to save the life of a Spanish missionary priest who was treated with it, it is clear that scientists need to explore new ways of fighting the deadly disease. For researchers at Northeastern University in Boston, one possibility may be using nanotechnology.

“It has been very hard to develop a vaccine or treatment for Ebola or similar viruses because they mutate so quickly,” said Thomas Webster, the chair of Northeastern’s chemical engineering department, in a press release. “In nanotechnology we turned our attention to developing nanoparticles that could be attached chemically to the viruses and stop them from spreading.”

Webster, along with many researchers in the nanotechnology community, have been trying to use gold nanoparticles, in combination with near-infrared light, to kill cancer cells with heat. The hope is that the same approach could be used to kill the Ebola virus.

There is also an Aug. 6, 2014 Northeastern University news release by Joe O’Connell describing the technique being used by Webster’s team,

… According to Web­ster, gold nanopar­ti­cles are cur­rently being used to treat cancer. Infrared waves, he explained, heat up the gold nanopar­ti­cles, which, in turn, attack and destroy every­thing from viruses to cancer cells, but not healthy cells.

Rec­og­nizing that a larger sur­face area would lead to a quicker heat-​​up time, Webster’s team cre­ated gold nanos­tars. “The star has a lot more sur­face area, so it can heat up much faster than a sphere can,” Web­ster said. “And that greater sur­face area allows it to attack more viruses once they absorb to the par­ti­cles.” The problem the researchers face, how­ever, is making sure the hot gold nanopar­ti­cles attack the virus or cancer cells rather than the healthy cells.

At this point, there don’t seem to be any curative measures generally available although some are available experimentally in very small quantities.