Tag Archives: Tram T. Dang

Emory University’s Shuming Nie discusses Iron Man 3 and nanotechnology and researchers develop an injectable nano-network

I have written about Iron Man 3 before (my May 11, 2012 posting) in the context of its nanotechnology inspirations, specifically, the Extremis Armor. For anyone not familiar with the story, I have a few bits which will bring you up to speed before getting to Shuming Nie’s commentary and some recent research into injectable nano-networks, which seems highly relevant to the Iron Man 3 discourse. First, here’s an excerpt from my May 11, 2012 posting,

In a search for Extremis, I found out that this story reboots the Iron Man mythology by incorporating nanotechnology and alchemy to create a new armor, the Extremis Armor, from the Extremis Armor website (I strongly suggest going to the website and reading the full text which includes a number of illustrative images if you find this sort of thing interesting),

When a bio-tech weapon of mass destruction was unleashed, Tony Stark threw himself onto the bleeding edge between science and alchemy, combining nanotechnology and his Iron Man armor.  The result, which debuted in Iron Man, Vol. IV, issue 5, was the Extremis Armor, Model XXXII, Mark I, which made him the most powerful hero in the world–but not without a price.

There were two key parts to this Extremis-enhanced suit.  The first part is the golden Undersheath, the protective interface between Stark’s nervous system and the second chief part, the External Suit Devices (ESDs), a.k.a. the red armor plating.

The Undersheath to the Iron Man suit components was super-compressed and stored in the hollows of Stark’s bones. The sheath material exited through skeletal pores and slid between all cells to self-assemble a new “skin” around him.  This skin provides a complete interface to the Iron Man suit components and can perform numerous other functions. (The process in reverse withdrew the Undersheath back into these specially modified areas of Tony Stark’s bone marrow tissue.)

The Undersheath is a nano-network that incorporates peptide-peptide logic (PPL), a molecular computational system made of superconducting plastic impregnated molecular chains. [my emphasis added for May.6.13 posting]  The PPL handles, among other things: memory, critical logic paths, comparative “truth” tables, automatic response look-up tables, data storage, communication, and external sensing material interface.

The lattice assembly is a stress-compression truss with powered interstitial joints.  This can surround the PPL material and guide it through Stark’s body.  This steerable, motile lattice framework is commanded by the PPL molecule computational mentality.  The metallic component to the lattice is a controlled mimetic artifact that can take on the characteristics of most elements.  Even unusual combinations of behaviors such as extreme hardness and flexibility.

The combination of the two nano-scale materials allows for a very dense non-traditional computer that can change the fabric of its design in very powerful ways. The incorporation of the Undersheath in Stark’s entire nervous system renders reflex-level computer responses to pan-spectrum stimuli.

Anthony Stark’s Bio/Metalo-Mimetic Material concept is a radical departure from the traditional solid-state underpinnings of his prior Iron Man suit designs.  Making use of nano-scale assembly technology, “smart” molecules can be made atom by atom. The design allows for simple computers to be linked into a massive parallel computer that synthesizes human thought protocols.

The External Suit Devices (ESDs), the red armor plates, were made via mega-nano technology that has assembled atoms into large, discreet effectors.  This allows for the plates to be collapsable to very small volumes for easy storage and carried in Stark’s briefcase. The ESDs were commanded by the Undersheath and were self-powered by high-capacity Kasimer plates.  They were equipped with large arrays of nano-fans that allow flight.  Armoring-up was done by drawing the suit to Stark via a vectored repulsor field, just lightly pushing them from different angles.

The armor’s memory-metal technology renders it lightweight and flexible while not in use, but extremely durable when polarized.  The armor was strong, of course, but it could be made even stronger by rerouting repulsor input to reinforce the armor’s mass.

Stark’s skin is now a part of the suit, when engaged.  [emphasis mine] Comfort is relative because the suit rapidly responds to any discomfort, from impacts to high temperatures, from itching to scratching.  The suit’s protocols include semi-autonomy when needed.  Where Stark ends and the suit begins is flexible.  The exact nature of the artificial Extremis Virus is not known (especially because Stark recompiled the dose, then tweaked the nutrients and suspended metals, radically altering Maya Hansen’s [the character Rebecca Hall will reputedly play] formulations).  The effect it has had on Stark’s body is to allow the presence of so much alien material within his body without trauma.

Because of the bio-interface between Tony and the armor, he could utilize the suit to its fullest potential and also instantly access computers and any digital system worldwide at the speed of thought.  He was biologically integrated with his armor, one with it, imbued with unprecedented powers and abilities.  He channeled and processed data, emergency signals, and satellite reconnaissance from every law enforcement, military, and intelligence service in the world–in his head.  He could send electronic signals and make phone calls with his mind.  He could see through satellites.  Plus he had the ability to transmit whatever he saw (from his visual cortex) to other people’s display screens.  The computer’s cybernetic link enables him to operate all of the armor’s functions, as well as providing a remote link to other computers (as Stark is now part of the armor this connection is seamless).  The armor’s system was connected to the global mainframe via StarkTech servers.

I also like this more generalized description of the technology in the Wikipedia essay on Extemis Comics (Note: A link has been removed),

Extremis has been referred to as a “virus” constantly since the story. The verbatim description offered by its inventor Maya Hansen, goes: “…Extremis is a super-soldier solution. It’s a bio-electronics package, fitted into a few billion graphite nanotubes and suspended in a carrier fluid. [emphasis mine] A magic bullet, like the original super-soldier serum—all fitted into a single injection. It hacks the body’s repair center—the part of the brain that keeps a complete blue print of the human body. When we’re injured, we refer to that area of the brain to heal properly. Extremis rewrites the repair center. In the first stage, the body essentially becomes an open wound. The normal human blueprint is being replaced with the Extremis blueprint. The brain is being told the body is wrong. Extremis protocol dictates that the subject be placed on life support and intravenously fed nutrients at this point. For the next two or three days, the patient remains unconscious within a cocoon of scabs. (…) Extremis uses the nutrients and body mass to grow new organs. Better ones…”

A Postmedia movie reviewer, Katherine Monk noted this about the plot in her May 3, 2013 review of Iron Man 3 ,

Apparently, back in the early days of genetic engineering, a brilliant, zit-faced scientist (Guy Pearce) offered Tony a piece of a lucrative patent that had the potential to alter the human body, and even regenerate amputated limbs.

Tony walked away from the offer as well as the pretty girl (Rebecca Hall) who worked for the genetic engineer, but in the opening sequence, we see the technology was successfully developed and tested. It makes people superhuman, but it can also make them spontaneously combust, leaving great craters and human casualties behind.

Now for the video commentary, Dr. Shuming Nie, Biomedical Engineering at Emory University, offers some scientific insight into the science and the fiction of ‘extremis’ as per Iron Man 3 in his YouTube video,

Keeping on the science theme,  researchers at North Carolina State University (NCSU) and other institutions announced an injectable nano-network for diabetics in a May 3, 2013 news release on EurekAlert,

In a promising development for diabetes treatment, researchers have developed a network of nanoscale particles that can be injected into the body and release insulin when blood-sugar levels rise, maintaining normal blood sugar levels for more than a week in animal-based laboratory tests. The work was done by researchers at North Carolina State University, the University of North Carolina at Chapel Hill, the Massachusetts Institute of Technology and Children’s Hospital Boston.

“We’ve created a ‘smart’ system that is injected into the body and responds to changes in blood sugar by releasing insulin, effectively controlling blood-sugar levels,” says Dr. Zhen Gu, lead author of a paper describing the work and an assistant professor in the joint biomedical engineering program at NC State and UNC Chapel Hill. “We’ve tested the technology in mice, and one injection was able to maintain blood sugar levels in the normal range for up to 10 days.”

Here’s how the smart system is achieved,

The new, injectable nano-network is composed of a mixture containing nanoparticles with a solid core of insulin, modified dextran and glucose oxidase enzymes. When the enzymes are exposed to high glucose levels they effectively convert glucose into gluconic acid, which breaks down the modified dextran and releases the insulin. The insulin then brings the glucose levels under control. The gluconic acid and dextran are fully biocompatible and dissolve in the body.

Each of these nanoparticle cores is given either a positively charged or negatively charged biocompatible coating. The positively charged coatings are made of chitosan (a material normally found in shrimp shells), while the negatively charged coatings are made of alginate (a material normally found in seaweed).

When the solution of coated nanoparticles is mixed together, the positively and negatively charged coatings are attracted to each other to form a “nano-network.” Once injected into the subcutaneous layer of the skin, the nano-network holds the nanoparticles together and prevents them from dispersing throughout the body. Both the nano-network and the coatings are porous, allowing blood – and blood sugar – to reach the nanoparticle cores.

“This technology effectively creates a ‘closed-loop’ system that mimics the activity of the pancreas in a healthy patient, releasing insulin in response to glucose level changes,” Gu says. “This has the potential to improve the health and quality of life of diabetes patients.”

For anyone who’s interested in researching further, heres’ a citation for and a link to the paper,

Injectable Nano-Network for Glucose-Mediated Insulin Delivery by Zhen Gu, Alex A. Aimetti, Qun Wang, Tram T. Dang, Yunlong Zhang, Omid Veiseh, Hao Cheng, Robert S. Langer, and Daniel G. Anderson. ACS Nano, Article ASAP DOI: 10.1021/nn400630x Publication Date (Web): May 2, 2013

Copyright © 2013 American Chemical Society

The paper is behind a paywall. Meanwhile, there are discussions about moving these injectable nano-networks into human clinical trials. As Nie notes, Iron Man 3 hints at new medical technologies which will be achievable in the next 10 or so years, although we may have to wait 100 to 150 years for  Extremis armor.

Gluing blood vessels with mussel goo

The University of British Columbia [UBC] Dec. 11, 2012 news release states,

A University of British Columbia researcher has helped create a gel – based on the mussel’s knack for clinging to rocks, piers and boat hulls – that can be painted onto the walls of blood vessels and stay put, forming a protective barrier with potentially life-saving implications.

Co-invented by Assistant Professor Christian Kastrup while a postdoctoral student at the Massachusetts Institute of Technology, the gel is similar to the amino acid that enables mussels to resist the power of churning water. The variant that Kastrup and his collaborators created, described in the current issue of the online journal PNAS [Proceeings of the National Academy of Sciences of the US] Early Edition, can withstand the flow of blood through arteries and veins.

Here’s the citation and a link to the article (which is behind a paywall),

Painting blood vessels and atherosclerotic plaques with an adhesive drug depot by Christian J. Kastrup, Matthias Nahrendorf, Jose Luiz Figueiredo, Haeshin Lee, Swetha Kambhampati, Timothy Lee, Seung-Woo Cho, Rostic Gorbatov, Yoshiko Iwamoto, Tram T. Dang, Partha Dutta, Ju Hun Yeon, Hao Cheng, Christopher D. Pritchard, Arturo J. Vegas, Cory D. Siegel, Samantha MacDougall, Michael Okonkwo, Anh Thai, James R. Stone, Arthur J. Coury, Ralph Weissleder, Robert Langer, and Daniel G. Anderson.  PNAS, December 11, 2012 DOI: 10.1073/pnas.1217972110

For those of a more technical turn of mind, here’s the abstract (from PNAS),

The treatment of diseased vasculature remains challenging, in part because of the difficulty in implanting drug-eluting devices without subjecting vessels to damaging mechanical forces. Implanting materials using adhesive forces could overcome this challenge, but materials have previously not been shown to durably adhere to intact endothelium under blood flow. Marine mussels secrete strong underwater adhesives that have been mimicked in synthetic systems. Here we develop a drug-eluting bioadhesive gel that can be locally and durably glued onto the inside surface of blood vessels. In a mouse model of atherosclerosis, inflamed plaques treated with steroid-eluting adhesive gels had reduced macrophage content and developed protective fibrous caps covering the plaque core. Treatment also lowered plasma cytokine levels and biomarkers of inflammation in the plaque. The drug-eluting devices developed here provide a general strategy for implanting therapeutics in the vasculature using adhesive forces and could potentially be used to stabilize rupture-prone plaques.

The news release describes the work layperson’s terms,

The gel’s “sheer strength” could shore up weakened vessel walls at risk of rupturing – much like the way putty can fill in dents in a wall, says Kastrup, a member of the Department of Biochemistry and Molecular Biology and the Michael Smith Laboratories.

By forming a stable barrier between blood and the vessel walls, the gel could also prevent the inflammation that typically occurs when a stent is inserted to widen a narrowed artery or vein; that inflammation often counteracts the opening of the vessel that the stent was intended to achieve.

The widest potential application would be preventing the rupture of blood vessel plaque. When a plaque ruptures, the resulting clot can block blood flow to the heart (triggering a heart attack) or the brain (triggering a stroke). Mice treated with a combination of the gel and an anti-inflammatory steroid had more stable plaque than a control group of untreated mice.

“By mimicking the mussel’s ability to cling to objects, we created a substance that stays in place in a very dynamic environment with high flow velocities,” says Kastrup, a member of UBC’s Centre for Blood Research.

Robert Langer, one of the paper’s co-authors, was mentioned here in an Aug. 27, 2012 posting about nanoelectronics, tissue engineering, and medicine.