Tag Archives: Turkey

Nanotechnology in the Security Systems; NATO Science for Peace and Security workshops

An Aug. 19, 2014 news item on Nanowerk features a new publication from NATO (North Atlantic Treaty Organization) which seems to be the outcome of a 2013 workshop, Note: A link has been removed,

The topics discussed at the NATO Advanced Research Workshop “Nanotechnology in the Security Systems” included nanophysics, nanotechnology, nanomaterials, sensors, biosensors security systems, explosive detection.

A new book in the NATO Science for Peace and Security Series C: Environmental Security covers the findings from this workshop: Nanotechnology in the Security Systems.

The 2013 workshop (information about the upcoming 2014 workshop after this) took place in the Ukraine, which seems strangely ironic given the current situation where Russia has ‘intervened’ in the Crimea and where one group or another shot down an Air Malaysia flight over Ukraine airspace,

NATO ADVANCED RESEARCH WORKSHOP
29 September – 3 October 2013 ,
YALTA , UKRAINE

NANOTECHNOLOGY IN THE SECURITY SYSTEMS (NSS-2013)

(http://www.natonano.com)

CO-DIRECTORS:
Bonca Janez (J.Stefan Institute, Ljublyana, Slovenia)
Kruchinin Sergei (Bogolyubov Institute for Theoretical Physics, Ukraine)

INTERNATIONAL COMMITTEE :
Balatsky Alexandr (Los Alamos National laboratory,USA )
Logan David (Oxford University,UK)

ARW is supported by NATO.

Co-sponsor is Ministry of Ukraine for Education and Science.

The main objective of this Advanced Research Workshop is to bring together leading experts on key current topics in nanotechnology ,security systems and sensor and biosensor in order to review recent developments and to outline new directions for nanotechnology research. Topids will include physics of graphene, nanomaterials, CRBN agents.

Time and Location

The ARW will be held from 29 September – 3 October 2013 at the “Yalta” Hotel (three star) in Yalta (Crimea, Ukraine). Yalta is a world-famous health resort and the centre of a large resort area stretchening for more than 70 km along the southern coast of the Crimea. [emphasis mine]

All partipants of the ARW will be accommodated in the hotel. There is auditorium seating 100, which is fitted with modern acoustic equipment. Breakfast, lunch and dinner will be served for all participants. At the hotel there is an indoor swimming pool with heated sea water.

Participants may travel to the ARW from Kiev international airport. You can use the regular flight (Boeing) Kiev – Simferopol(Yalta) – Kiev, leaving Kiev on September 29 at 18:45 and leaving Simferopol on October 3 at 21:10. The price of tickets Kiev-Simferopol-Kiev is 160 EURO. There are direct flights from many Cities to Simferopol.

This year’s workshop will be held in Turkey, From the Worcester Polytechnic Institute (US) website’s NATO Advanced Research Workshop in Nanotechnology (2014) webpage,

NATO Advanced Research Workshop in Nanotechnology to Aid Chemical and Biological Defence

September 22-26, 2014

Rixos Downtown Hotel

Antalya, Turkey

The NATO Science for Peace and Security Program has identified Defense against CBRN Agents and Environmental Security as key priority areas.  Nanomaterials and nanotechnology can play a vital role in the detection and decontamination of chemical and biological threat agents. They also can be used in protective technologies. The ability to control matter on an atomic and/or molecular scale provides new opportunities to use materials. The area of sensing is a particularly relevant example in which nanotechnology can be useful, by exploiting the unique properties and phenomena exerted by matter at the nano-scale. Rather than just thinking in terms of miniaturization of sensors and devices, it is possible to imagine entirely new technologies that are developed to exploit novel nano-scale phenomena. Combining nanotechnology with biomolecular systems, we have the power of nanobiotechnology to achieve improved detection, decontamination and protection against chemical and bio-agents.

The purpose of this ARW will be to bring together a diverse group of international civilian researchers focused on nanoscience and nanotechnology problems that are relevant to chemical and biological defence needs, in order to share the state-of-the-art in the field, identify accomplishments, and to discuss the challenges and opportunities present in the field. The work discussed here will form a blueprint for researchers in the area of nanotechnology for chemical and biological defense, especially for future research in detection, decontamination and protection.

Confirmed Invited Speakers:
Professor Terri Camesano     Worcester Polytechnic Institute     USA
Dr. N. Chanisvili     IBMV Tbilisi     Georgia [Country]
Dr. Ario DeMarco     University of Nova Gorica     Slovenia
Dr. Mario Boehme     TU Darmstadt     Germany
Dr. Audrey Beaussart     Université Catholique de Louvain     Belgium
Dr. Jêrôme Duval     Ecole Nationales Supérieure de Géologie     France
Dr. Mladen Franko     University of Nova Gorica     Slovenia
Professor Perena Gouma     SUNY Stony Brook     USA
Dr. Roland Grunow     Robert Koch Institut     Germany
Professor Giorgi Kvesitadze   Tbilisi State University and Georgia Technical University    Georgia
Professor Raj Mutharasan     Drexel University     USA
Dr. Michele Penza     ENEA, Brindisi     Italy
Dr. Irena Ciglenecki-Jusic     Institut Ruđer Bošković     Croatia
Professor Sadunishvili Tinatin     Durmishidze Institute of Biochemistry and Biotechnology, Agrarian University of Georgia     Georgia
Dr. Polonca Trebse     University of Nova Gorica     Slovenia
Professor Monique van Hoek     George Mason University     USA
Professor David Wright     Vanderbilt University     USA
Dr Ahmet Ozgur Yazaydin     University College London     UK

*******This workshop is supported by the NATO Science for Peace and Security Programme

*******Please note that all scholarships for financial support for the conference are full.

Contact Professor Terri A. Camesano, [email protected] for informatio about the scholarships.

As for the book produced from the 2013 (?) workshop, here’s a link for purchasing,

Nanotechnology in the Security Systems (NATO Science for Peace and Security Series C: Environmental Security) Paperback – September 14, 2014 by Janez Bonca (Editor), Sergei Kruchinin (Editor)

ISBN-13: 978-9401790529 ISBN-10: 9401790523 Edition: 2015th

If you are applying for a scholarship to the 2014 workshop, good luck!

Reducing animal testing for nanotoxicity—PETA (People for the Ethical Treatment of Animals) presentation at NanoTox 2014

Writing about nanotechnology can lead you in many different directions such as the news about PETA (People for the Ethical Treatment of Animals) and its poster presentation at the NanoTox 2014 conference being held in Antalya, Turkey from April 23 – 26, 2014. From the April 22, 2014 PETA news release on EurekAlert,

PETA International Science Consortium Ltd.’s nanotechnology expert will present a poster titled “A tiered-testing strategy for nanomaterial hazard assessment” at the 7th International Nanotoxicology Congress [NanoTox 2014] to be held April 23-26, 2014, in Antalya, Turkey.

Dr. Monita Sharma will outline a strategy consistent with the 2007 report from the US National Academy of Sciences, “Toxicity Testing in the 21st Century: A Vision and a Strategy,” which recommends use of non-animal methods involving human cells and cell lines for mechanistic pathway–based toxicity studies.

Based on the current literature, the proposed strategy includes thorough characterization of nanomaterials as manufactured, as intended for use, and as present in the final biological system; assessment using multiple in silico and in vitro model systems, including high-throughput screening (HTS) assays and 3D systems; and data sharing among researchers from government, academia, and industry through web-based tools, such as the Nanomaterial Registry and NanoHUB

Implementation of the proposed strategy will generate meaningful information on nanomaterial properties and their interaction with biological systems. It is cost-effective, reduces animal use, and can be applied for assessing risk and making intelligent regulatory decisions regarding the use and disposal of nanomaterials.

PETA’s International Science Consortium has recently launched a nanotechnology webpage which provides a good overview of the basics and, as one would expect from PETA, a discussion of relevant strategies that eliminate the use of animals in nanotoxicity assessment,

What is nano?

The concept of fabricating materials at an atomic scale was introduced in 1959 by physicist Richard Feynman in his talk entitled “There’s Plenty of Room at the Bottom.” The term “nano” originates from the Greek word for “dwarf,” which represents the very essence of nanomaterials. In the International System of Units, the prefix “nano” means one-billionth, or 10-9; therefore, one nanometer is one-billionth of a meter, which is smaller than the thickness of a sheet of paper or a strand of hair.  …

Are there different kinds of nano?

The possibility of controling biological processes using custom-synthesized materials at the nanoscale has intrigued researchers from different scientific fields. With the ever increasing sophistication of nanomaterial synthesis, there has been an exponential increase in the number and type of nanomaterials available or that can be custom synthesized. Table 1 lists some of the nanomaterials that are currently available.

….

Oddly, given the question ‘Are there different kinds of nano?’, there’s no mention of nanobots.  Still it’s understandable that they’d focus on nanomaterials which are, as far as I know, the only ‘nano’ anything tested for toxicity. On that note, PETA’s Nanotechnology page offers this revelatory listing (scroll down about 3/4 of the way),

The following are some of the web-based tools being used by nanotoxicologists and material scientists:

Getting back to the NanoTox conference being held now in Antalya, I noticed a couple of familiar names on the list of keynote speakers (scroll down about 15% of the way), Kostas Kostarelos (last mentioned in a Feb. 28, 2014 posting about scientific publishing and impact factors’ scroll down about 1/2 way) and Mark Wiesner (last mentioned in a Nov. 13, 2013 posting about a major grant for one of his projects).

Call for papers: conference on sound art curation

It’s not exactly data sonification (my Feb. 7, 2014 posting about sound as a way to represent research data) but there’s a call for papers (deadline March 31, 2014) for a conference focused on curating sound art. Lanfranco Aceti, an academic, an artist and a curator whom I met some years ago at a conference sent me a March 20, 2014 announcement,

OCR (Operational and Curatorial Research in Art, Design, Science and Technology) is launching a series of international conferences with international partners.

Sound Art Curating is the first conference to take place in London, May 15-17, 2014 at Goldsmiths and at the Courtauld Institute of Art [both located in London, England].

The call for paper will close March 31, 2014 and it can be accessed at this link:
http://ocradst.org/blog/2014/01/25/histories-theories-and-practices-of-sound-art/

The conference website is available at this link: http://ocradst.org/soundartcurating/

I did get more information about the OCR from their About page,

Operational and Curatorial Research in Contemporary Art, Design, Science and Technology (OCR) is a research center that focuses on research in the fine arts. Its projects are characterized by elements of interdisciplinarity and transdiciplinarity. OCR engages with public and private institutions worldwide in order to foster innovation and best practices through collaborations and synergies.

OCR has two international outlets: the Media Exhibition Platform (MEP), a platform for peer reviewed exhibitions, and Contemporary Art and Culture (CAC), a peer-reviewed publishing platform for academic texts, artists’ books and catalogs.

Lanfranco Aceti is the founder and director of OCR, MEP and CAC, and has worked in the field for over twenty years.

Here’s more about what the organizers are looking for from the Call for Papers webpage,

Traditionally, the curator has been affiliated to the modern museum as the persona who manages an archive, and arranges and communicates knowledge to an audience, according to fields of expertise (art, archaeology, cultural or natural history etc.). However, in the later part of the 20th century the role of the curator changes – first on the art-scene and later in other more traditional institutions – into a more free-floating, organizational and ’constructive’ activity that allows the curator to create and design new wider relations, interpretations of knowledge modalities of communication and systems of dissemination to the wider public.

This shift is parallel to a changing role of the artist, that from producer becomes manager of its own archives, structures for displays, arrangements and recombinatory experiences that design interactive or analog journeys through sound artworks and soundscapes. Museums and galleries, following the impact of sound artworks in public spaces and media based festivals, become more receptive to aesthetic practices that deny the ‘direct visuality’ of the image and bypass, albeit partially, the need for material and tangible objects. Sound art and its related aesthetic practices re-design ways of seeing, imaging and recalling the visual in a context that is not sensory deprived but sensory alternative.

This is a call for studies into the histories, theories and practices of sound art production and sound art curating – where the creation is to be considered not solely that of a single material but of the entire sound art experience and performative elements.

We solicit and encourage submissions from practitioners and theoreticians on sound art and curating that explore and are linked to issues related to the following areas of interest:

  • Curating Interfaces for Sound + Archives
  • Methodologies of Sound Art Curating
  • Histories of Sound Art Curating
  • Theories of Sound Art Curating
  • Practices and Aesthetics of Sound Art
  • Sound in Performance
  • Sound in Relation to Visuals

Chairs: Lanfranco Aceti, Janis Jefferies, Morten Søndergaard and Julian Stallabrass

Conference Organizers: James Bulley, Jonathan Munro, Irene Noy and Ozden Sahin

The event is supported by LARM [Danish interdisciplinary radiophonic project; Note: website is mixed Danish and English language], Kasa Gallery, Goldsmiths, the Courtauld Institute of Art and Sabanci University.

With the participation and support of the Sonics research special interest group at Goldsmiths, chaired by Atau Tanaka and Julian Henriques.

The event is part of the Graduate Festival at Goldsmiths and the Graduate research projects at the Courtauld Institute of Art.

250 words abstract submissions. Please send your submissions to: [email protected]

Deadline: March 31, 2014.

Good luck!

Putting a new spin on it: Whirling Dervishes and physics and ballet dancers and neuroscience

Many years ago I was dragged to a movie about J. Krishnamurti (a philosopher and spiritual teacher; there’s more in this Wikipedia essay) which, for some reason, featured Whirling Dervishes amongst many other topics. Watching those dervishes was hypnotic and I now find out it was also an experience in physics, according to a Nov. 26, 2013 news item on ScienceDaily,

A force that intricately links the rotation of the Earth with the direction of weather patterns in the atmosphere has been shown to play a crucial role in the creation of the hypnotic patterns created by the skirts of the Whirling Dervishes.

This is according to an international group of researchers who have demonstrated how the Coriolis force is essential for creating the archetypal, and sometimes counterintuitive, patterns that form on the surface of the Whirling Dervishes skirts by creating a set of very simple equations which govern how fixed or free-flowing cone-shaped structures behave when rotating.

The Nov. 26, 2013 Institute of Physics (IOP) news release on EurekAlert (also on the IOP website but dated Nov. 27, 2013), which originated the news item, gives an explanation of Whirling Dervishes and describes the research further,

The Whirling Dervishes, who have become a popular tourist attraction in Turkey, are a religious movement who commemorate the 13th-century Persian poet, Rumi, by spinning on the spot and creating mesmerising patterns with their long skirts. A YouTube video of the Whirling Dervishes in action can be viewed here: https://www.youtube.com/watch?v=L_Cf-ZxDfZA.

Co-author of the study James Hanna, from Virginia Polytechnic Institute and State University, said: “The dancers don’t do much but spin around at a fixed speed, but their skirts show these very striking, long-lived patterns with sharp cusp-like features which seem rather counterintuitive.”

Hanna, along with Jemal Guven at the Universidad Nacional Autónoma de México and Martin Michael Müller at Université de Lorraine, found that it was the presence of a Coriolis force that was essential in the formation of the different patterns.

The Coriolis effect accounts for the deflection of objects on a rotating surface and is most commonly encountered when looking at the Earth’s rotations and its effect on the atmosphere around it. The rotation of the Earth creates the Coriolis force which causes winds to be deflected clockwise in the Northern Hemisphere and anti-clockwise in the Southern Hemisphere – it is this effect which is responsible for the rotation of cyclones.

“Because the sheet is conically symmetric, material can flow along its surface without stretching or deforming. You can think of the rotating Earth, for example, with the air of the atmosphere free to flow around it.

“The flow of a sheet of material is much more restrictive than the flow of the atmosphere, but nonetheless it results in Coriolis forces. What we found was that this flow, and the associated Coriolis forces, plays a crucial role in forming the dervish-like patterns,” Hanna continued.

By providing a basic mathematical description of the spinning skirts of the Dervishes, the researchers hope their future research will discern how different patterns are selected, how stable these patterns are and if gravity or any other effects make a qualitative difference.

The news release notes,

The equations, which have been published today, 27 November,[2013], in the Institute of Physics and German Physical Society’s New Journal of Physics, were able to reproduce the sharp peaks and gentle troughs that appear along the flowing surface of the Dervishes’ skirts and showed a significant resemblance to real-life images.

Here’s a link to and a citation for the paper,

Whirling skirts and rotating cones by Jemal Guven, J A Hanna, and Martin Michael Müller. New Journal of Physics Volume 15 November 2013 doi:10.1088/1367-2630/15/11/113055  Published 26 November 2013

© IOP Publishing and Deutsche Physikalische Gesellschaft

This paper is open access.

While the Whirling Dervishes and the fabric in their clothing provide insights into aspects of physics, ballet dancers are providing valuable information to neuroscientists and geriatric specialists with pirouettes, according to a Sept. 26, 2013 news item on ScienceDaily,

Scientists have discovered differences in the brain structure of ballet dancers that may help them avoid feeling dizzy when they perform pirouettes.

The research suggests that years of training can enable dancers to suppress signals from the balance organs in the inner ear.

The findings, published in the journal Cerebral Cortex, could help to improve treatment for patients with chronic dizziness. Around one in four people experience this condition at some time in their lives.

The Imperial College of London (ICL) Sept. 26, 2013 news release on EurekAlert (also on the ICL website but dated Sept. 27, 2013), which originated the news item, describes dizziness, this research, and ballet dancers’ unique brains in more detail,

Normally, the feeling of dizziness stems from the vestibular organs in the inner ear. These fluid-filled chambers sense rotation of the head through tiny hairs that sense the fluid moving. After turning around rapidly, the fluid continues to move, which can make you feel like you’re still spinning.

Ballet dancers can perform multiple pirouettes with little or no feeling of dizziness. The findings show that this feat isn’t just down to spotting, a technique dancers use that involves rapidly moving the head to fix their gaze on the same spot as much as possible.

Researchers at Imperial College London recruited 29 female ballet dancers and, as a comparison group, 20 female rowers whose age and fitness levels matched the dancers’.

The volunteers were spun around in a chair in a dark room. They were asked to turn a handle in time with how quickly they felt like they were still spinning after they had stopped. The researchers also measured eye reflexes triggered by input from the vestibular organs. Later, they examined the participants’ brain structure with MRI scans.

In dancers, both the eye reflexes and their perception of spinning lasted a shorter time than in the rowers.

Dr Barry Seemungal, from the Department of Medicine at Imperial, said: “Dizziness, which is the feeling that we are moving when in fact we are still, is a common problem. I see a lot of patients who have suffered from dizziness for a long time. Ballet dancers seem to be able to train themselves not to get dizzy, so we wondered whether we could use the same principles to help our patients.”

The brain scans revealed differences between the groups in two parts of the brain: an area in the cerebellum where sensory input from the vestibular organs is processed and in the cerebral cortex, which is responsible for the perception of dizziness.

The area in the cerebellum was smaller in dancers. Dr Seemungal thinks this is because dancers would be better off not using their vestibular systems, relying instead on highly co-ordinated pre-programmed movements.

“It’s not useful for a ballet dancer to feel dizzy or off balance. Their brains adapt over years of training to suppress that input. Consequently, the signal going to the brain areas responsible for perception of dizziness in the cerebral cortex is reduced, making dancers resistant to feeling dizzy. If we can target that same brain area or monitor it in patients with chronic dizziness, we can begin to understand how to treat them better.”

Another finding in the study may be important for how chronic dizzy patients are tested in the clinic. In the control group, the perception of spinning closely matched the eye reflexes triggered by vestibular signals, but in dancers, the two were uncoupled.

“This shows that the sensation of spinning is separate from the reflexes that make your eyes move back and forth,” Dr Seemungal said. “In many clinics, it’s common to only measure the reflexes, meaning that when these tests come back normal the patient is told that there is nothing wrong. But that’s only half the story. You need to look at tests that assess both reflex and sensation.”

For the curious, here’s a link to and a citation for the paper,

The Neuroanatomical Correlates of Training-Related Perceptuo-Reflex Uncoupling in Dancers by Yuliya Nigmatullina, Peter J. Hellyer, Parashkev Nachev, David J. Sharp, and Barry M. Seemungal. Cereb. Cortex (2013) doi: 10.1093/cercor/bht266 First published online: September 26, 2013

Delightfully, this article too is open access.

I love these kinds of stories where two very different branches of science find information of interest in something as ordinary as spinning around.

Courtesy: Imperial College of London (downloaded from: http://www3.imperial.ac.uk/newsandeventspggrp/imperialcollege/newssummary/news_26-9-2013-17-43-4]

Courtesy: Imperial College of London (downloaded from: http://www3.imperial.ac.uk/newsandeventspggrp/imperialcollege/newssummary/news_26-9-2013-17-43-4]

Here are some Whirling Dervishes,

Istanbul - Monestir Mevlevi - Dervixos dansaires Credit: Josep Renalias [downloaded from: http://en.wikipedia.org/wiki/File:Istanbul_-_Monestir_Mevlevi_-_Dervixos_dansaires.JPG]

Istanbul – Monestir Mevlevi – Dervixos dansaires Credit: Josep Renalias [downloaded from: http://en.wikipedia.org/wiki/File:Istanbul_-_Monestir_Mevlevi_-_Dervixos_dansaires.JPG]

ETA Nov. 28, 2013: I was most diverted by the Nov. 27, 2013 Virginia Tech news release (also on EurekAlert) which describes how two physicists and an engineer came to study Whirling Dervishes,

James Hanna likes to have fun with his engineering views of physics.

So when he and his colleague Jemal Guven visited their friend Martin Michael Müller in France on a rainy, dreary day, the three intellects decided to stay in. Guven, absent-mindedly switching between channels on the television, stumbled upon a documentary on whirling dervishes, best described as a Sufi religious order, who commemorate the teachings of 13th century Persian mystic and poet Rumi through spinning at a fixed speed in their floor length skirts.

“Their skirts showed these very striking, long-lived patterns,” Hanna, the engineer, recalled.

The film caused physicists Guven and Müller to think about structures with conical symmetry, or those shapes that can be defined as a series of straight lines emanating from a single point. By contrast, Hanna, the engineer with a physicist’s background, thought about rotating flexible structures, namely strings or sheets.

Head of Turkey’s R&D (research and development) agency says nanotechnology will continue as a main Turkish research focus

Given the recent international fascination with protests in the Turkish capital of Istanbul, it’s easy to forget that there are many other activities taking place in Turkey just as they always do. This July 18, 2013 World Bulletin news item is a reminder that scientific research and policymaking continue,

Turkey would not trail behind global developments in the area of nanotechnology, said Arif Adli, Deputy Chairman of Scientific and Technological Research Council of Turkey (TUBITAK).

Adli said Thursday [July 18, 2013?]  nanotechnology is included among the eight major fields that research in Turkey is oriented towards.

“Nanotechnology has in recent years become a leading area in the world,” he said. “Turkey needs to keep up with this global trend.”

Turkey ranks modestly in terms of research in nanotechnology but has a number of notable research centers, Adli said.

“Turkey is in fact ahead of many countries, but is not at the same level as the US or Japan. …

There is a website/blog that features Turkish and international nanotechnology research and information, NanoTürkiye. It’s written mostly in Turkish but there is some information in English such as an embedded video in this April 16, 2013 posting about memristor research in Ireland. This site is maintained by Ahmet Yükseltürk, a graduate student at Turkey’s Bilkent University. Ahmet’s twitter handle is: @nanoturkiye or you can view his feed: https://twitter.com/nanoturkiye

Social and/or scientific unrest in Spain, Canada, the UK, Egypt, and Turkey

The latest scientist protest took place in Spain on Friday, June 14, 2013 according to Michele Catanzaro’s June 14, 2013 article for Nature magazine,

Scientists gathered in public meetings in 19 Spanish cities this morning under the slogan ‘Let’s save research’. The gatherings were called by the Letter for Science movement, a coalition that includes the main scientific organizations of the country.

According to the movement, 5,000 scientists in Madrid marched …

Scientists, after seeing Spain’s investment in science double from the late 1990s to 2009, have watched as budgets have been cut and the science ministry has been eliminated (2011). Earlier this year, the government announced that science funding would not be increased until 2014. A recent June 4,2013 announcement that science projects would receive some additional funding does not appear to have appeased scientists.

While Spanish scientists are the latest to protest, they are not alone.

In Canada, there was a July 10, 2012 protest, the Death of Evidence Rally, which attracted either 1,500 or several hundred protestors (as is often the case, police estimates were considerably lower than organizers’ estimates). I have coverage from the day of the event in my July 10, 2013 posting and a roundup of  post-event commentary in my July 13, 2013 posting. Again, the issue was funding but the situation seems to have been exacerbated by the ‘muzzle’ put on Canadian government scientists.

For anyone not familiar with the situation, scientists working for various government departments have been informed over a period of years (muzzle edicts have been handed out in a staggered fashion to various departments; there’s a brief description in my Sept. 16, 2010 posting; and, there’s an update about the current legal action regarding the ‘muzzle’ in my April 8, 2013 posting [scroll down about 75% of the way])  that they could no longer speak directly to media. Since this is often a Canadian scientist’s primary form of public outreach, having to to hand all requests to the communications section of their department means that someone not familiar with the science may be crafting the messages or simply refusing to answer any or all questions for reasons that may not be clear to the scientist or the person asking the questions.

Getting back to last year’s Canadian rally, it seems to have been modeled on a UK protest where scientists gathered in London and staged a mock funeral to protest science funding policies, according to Adam Smith in a May 15, 2012 article for the Guardian newspaper.

Egyptian scientists too have expressed their displeasure. In 2011, they contributed to the ‘Arab Spring’ uprising against Hosni Mubarak as I noted in my Feb. 4, 2011 posting. For an insider’s perspective, you may want to check out, Eyptian journalist and Nature Middle East editor, Mohammed Yahia’s Feb. 2, 2011 article for Nature Middle East,

Anti-Mubarak protests continued into their eighth day across Egypt yesterday culminating in mass demonstrations in Egypt’s three main cities of Cairo, Alexandria and Suez. While the academic community did not kick-start the popular uprising, academics joined the ranks of protesters on the streets to demand political reform and an end to President Mubarak’s three decades in power.

Several senior academics took to the streets of Cairo to have their voices heard. Nature Middle East was on the ground to hear what they had to say on the state of science under Mubarak’s regime and what hopes they have for science under any new government.

Also in 2011, there was a situation with scientists in Turkey. According to my Sept. 9, 2011 posting, Turkish scientists were threatening to “resign en masse” from the Turkish Academy of Sciences when the government stripped the academy of its autonomy. The current protests in Turkey do not feature scientists and are focused on other issues (according to a June 17, 2013 article by Graham E. Fuller for the Christian Science Monitor). In Egypt, they were protesting a dictatorship; in Turkey, they are protesting an arrogant prime minister’s actions.  Although I have to wonder how Turkey’s Prime Minister and/or its military are going to react as the protests are continuing; I can’t be the only person concerned that a coup may be in Turkey’s near future.

Getting to my point and eliminating the segues, it seems that over the last two years scientists in various countries have been taking political action of one kind or another and my impression is that this represents a substantive shift in how scientists view their role in society.

600 BCE (before the common era) was a very good year for French wine

It’s quite the detective story, almost 20 years to unravel the mystery of where and when viniculture started in France. A Penn Museum June 3 (?), 2013 news release (also found on EurekAlert) provides some fascinating detail about the detective work and about wine,

9,000-year-old ancient Near Eastern ‘wine culture,’ traveling land and sea, reaches southern coastal France, via ancient Etruscans of Italy, in 6th-5th century BCE

Imported ancient Etruscan amphoras and a limestone press platform, discovered at the ancient port site of Lattara in southern France, have provided the earliest known biomolecular archaeological evidence of grape wine and winemaking—and point to the beginnings of a Celtic or Gallic vinicultural industry in France circa 500-400 BCE. Details of the discovery are published as “The Beginning of Viniculture in France” in the June 3, 2013 issue of Proceedings of the National Academy of Sciences (PNAS). Dr. Patrick McGovern, Director of the Biomolecular Archaeology Laboratory at the University of Pennsylvania Museum of Archaeology and Anthropology and author of Ancient Wine: The Search for the Origins of Viniculture (Princeton University Press, 2006) is the lead author on the paper, which was researched and written in collaboration with colleagues from France and the United States.

For Dr. McGovern, much of whose career has been spent examining the archaeological data, developing the chemical analyses, and following the trail of the Eurasian grapevine (Vitis vinifera) in the wild and its domestication by humans, this confirmation of the earliest evidence of viniculture in France is a key step in understanding the ongoing development of what he calls the “wine culture” of the world—one that began in the Turkey’s Taurus Mountains, [sic[ the Caucasus Mountains, and/or the Zagros Mountains of Iran about 9,000 years ago.

...

"Now we know that the ancient Etruscans lured the Gauls into the Mediterranean wine culture by importing wine into southern France. This built up a demand that could only be met by establishing a native industry, likely done by transplanting the domesticated vine from Italy, and enlisting the requisite winemaking expertise from the Etruscans."

The news release provides a high level (general with too few details for my taste) description of the technology used for this research,

After sample extraction, ancient organic compounds were identified by a combination of state-of-the-art chemical techniques, including infrared spectrometry, gas chromatography-mass spectrometry, solid phase microextraction, ultrahigh-performance liquid chromatography tandem mass spectrometry, and one of the most sensitive techniques now available, used here for the first time to analyze ancient wine and grape samples, liquid chromatography-Orbitrap mass spectrometry.

All the samples were positive for tartaric acid/tartrate (the biomarker or fingerprint compound for the Eurasian grape and wine in the Middle East and Mediterranean), as well as compounds deriving from pine tree resin. Herbal additives to the wine were also identified, including rosemary, basil and/or thyme, which are native to central Italy where the wine was likely made. (Alcoholic beverages, in which resinous and herbal compounds are more easily put into solution, were the principle medications of antiquity.)

Nearby, an ancient pressing platform, made of limestone and dated circa 425 BCE, was discovered. Its function had previously been uncertain. Tartaric acid/tartrate was detected in the limestone, demonstrating that the installation was indeed a winepress. Masses of several thousand domesticated grape seeds, pedicels, and even skin, excavated from an earlier context near the press, further attest to its use for crushing transplanted, domesticated grapes and local wine production. Olives were extremely rare in the archaeobotanical corpus at Lattara until Roman times. This is the first clear evidence of winemaking on French soil.

Here's what the ancient wine press looks like,

Caption: This is an ancient pressing platform from Lattara, seen from above. Note the spout for drawing off a liquid. It was raised off the courtyard floor by four stones. Masses of grape remains were found nearby. Credit: Photograph courtesy of Michael Py, copyright l'Unité de Fouilles et de Recherches Archéologiques de Lattes.

Caption: This is an ancient pressing platform from Lattara, seen from above. Note the spout for drawing off a liquid. It was raised off the courtyard floor by four stones. Masses of grape remains were found nearby.
Credit: Photograph courtesy of Michael Py, copyright l’Unité de Fouilles et de Recherches Archéologiques de Lattes.

Here’s how McGovern describes his work and its relationship to the history of viniculture in Europe and the ancient Near East, from the news release,

For nearly two decades, Dr. McGovern has been following the story of the origin and expansion of a worldwide “wine culture”—one that has its earliest known roots in the ancient Near East, circa 7000-6000 BCE, with chemical evidence for the earliest wine at the site of Hajji Firiz in what is now northern Iran, circa 5400-5000 BCE. Special pottery types for making, storing, serving and drinking wine were all early indicators of a nascent “wine culture.”

Viniculture—viticulture and winemaking—gradually expanded throughout the Near East. From the beginning, promiscuous domesticated grapevines crossed with wild vines, producing new cultivars. Dr. McGovern observes a common pattern for the spreading of the new wine culture: “First entice the rulers, who could afford to import and ostentatiously consume wine. Next, foreign specialists are commissioned to transplant vines and establish local industries,” he noted. “Over time, wine spreads to the larger population, and is integrated into social and religious life.”

Wine was first imported into Egypt from the Levant by the earliest rulers there, forerunners of the pharaohs, in Dynasty 0 (circa 3150 BCE). By 3000 BCE the Nile Delta was being planted with vines by Canaanite viniculturalists. As the earliest merchant seafarers, the Canaanites were also able to take the wine culture out across the Mediterranean Sea. Biomolecular archaeological evidence attests to a locally produced, resinated wine on the island of Crete by 2200 BCE.

“As the larger Greek world was drawn into the wine culture, “ McGovern noted, “the stage was set for commercial maritime enterprises in the western Mediterranean. Greeks and the Phoenicians—the Levantine successors to the Canaanites—vied for influence by establishing colonies on islands and along the coasts of North Africa, Italy, France, and Spain. The wine culture continued to take root in foreign soil—and the story continues today.”

Where wine went, so other cultural elements eventually followed—including technologies of all kinds and social and religious customs—even where another fermented beverage made from different natural products had long held sway. In the case of Celtic Europe, grape wine displaced a hybrid drink of honey, wheat/barley, and native wild fruits (e.g., lingonberry and apple) and herbs (such as bog myrtle, yarrow, and heath

I wonder why wine displaced Celtic Europe’s hybrid honey drink. Did wine taste better and/or did get folks drunk faster?

For anyone who’s interested in the research, here’s a link to and a citation for the paper,

Beginning of viniculture in France by Patrick E. McGovern, Benjamin P. Luley, Nuria Rovira, Armen Mirzoiand, Michael P. Callahane, Karen E. Smithf, Gretchen R. Halla, Theodore Davidsona, and Joshua M. Henkina. Published online before print June 3, 2013, doi: 10.1073/pnas.1216126110 PNAS June 3, 2013

The paper is behind a paywall.

Richard Branson, take your hands off my nano

RUSNANO (Russian Corporation of Nanotechnologies) fascinates me such that I’ve posted about the organization and its ‘wheeling and dealing’ several times with my RUSNANO and 12BF’s clean energy investment fund [July 24, 2012] and Russian government sells 10% holding in RUSNANO [June 25, 2012] postings being the latest until now.  Virgin Group and RUSNANO have announced a new, joint emerging market fund. From the Nov. 14, 2012 news item on Nanowerk,

Virgin Group, Virgin Green Fund and RUSNANO Capital announced the formation of VGF Emerging Market Growth I. L. P. = with commitments of over $200 million.

The Fund will invest in buyout and growth equity opportunities in mid-cap companies. It will target the resource efficiency, consumer sustainability and renewable energy sectors in Russia, Turkey and CEE [Central Europe and Russia Fund Inc.]. The Fund will benefit from the Virgin and RUSNANO brands, deal flow and local investing experience.

The Oct. 31, 2012 RUSNANO news release (which originated the news item) provides this detail,

The Emerging Market Fund is set up by Shai Weiss, Evan Lovell, Brooks Preston and Tamas Szalai. Weiss and Lovell are theco-foundingpartners of the Virgin Green Fund. Preston formerly of Wolfensohn & Company and Szalai of Bancroft Private Equity will lead the investment team.  Andrew Reicher, the former head of CEE Private Equity for Credit Suisse and Chief Investment Officer at Actis, is the non-executive chairman of the investment committee. Collectively, the team brings the experience of investing USD $2 billion in emerging markets through more than 50 transactions. [emphasis mine]

Anatoly Chubais, RUSNANO CEO and Chairman of the Executive Board: “Renewable energy and energy efficiency technologies will provide answers to the key global challenges of natural resources depletion and environment pollution. Developing solutions will be impossible without the use of nanotechnology. I believe the fund will find great opportunities to invest in growth companies in Russia and take them into global markets.”

‘More than 50 transactions’ doesn’t sound that impressive to me but perhaps that reflects my ignorance. I’m also surprised they don’t mention any specific successes from this previous experience of investing USD $2B.

Sir Richard Branson (founder and chairman of the Virgin Group) or someone who purports to be Branson posted about the announcement when it was made on Oct. 31, 2012 in Moscow on Richard’s blog (Note: I have removed links),

Seven years ago at the Clinton Global Initiative I pledged to invest the dividends from our transport business into renewable fuels and resource efficiency.

Since then we have invested in fuel companies, set up our Green Fund, founded the Carbon War Room and established The Earth Challenge – as well as making a number of investments in emerging fuel businesses.

Today, I’m back in Moscow – at the country’s largest technology forum – Open Innovations. We are launching our second Virgin Green Fund with our Russian partners Rusnano. This one is targeting the Emerging Markets and the exciting venture will invest in growth companies to improve energy efficiency and find the technologies and fuels of the future.

At the Forum I was quizzed by 100 of Russia’s brightest young entrepreneurs and encouraged them to build their businesses with a smile and look to throw some of the conformity that marks so much of Russian business. There is so much enthusiasm and opportunity in the country.

I hope successful ventures arise from this new fund. ETA Nov. 21, 2012: As for this posting’s headline, it’s a reference to the pervasiveness of the Virgin brand.

Turkish scientists and the government

Scientists in Turkey are threatening to walk out on the Turkish Academy of Sciences due to some recent government initiatives affecting the academy’s governance. From the Sept.9, 2011 news item on physorg.com,

Members of TÜBA [founded in 1993], the Turkish Academy of Sciences, are threatening to resign en masse in order to fight a decree issued by the government of Turkey that would strip the Academy of its autonomy.

The decree, issued on 27th August, which was just after the start of a nine-day holiday in Turkey, says that one-third of the members of the academy will now be appointed by the government and a further one-third by the Council of Higher Education, which is also a government body. [emphasis mine] Only the remaining one-third will be elected by current members. The president and vice-president of the academy will in future be appointed by the government rather than by sitting members. In addition, honorary members will lose their voting rights and the age at which members are deemed honorary will be reduced from 70 to 67.

(It’s interesting how many times governments try to sneak in news that might upset people just before a general holiday of some kind. I wonder how often it works?)

The International Human Rights Network of Academies and Scholarly Societies and the current academy’s scientists are trying to convince the government to rescind the decision. Meanwhile, there is talk of creating an independent academy (the current academy is publicly funded) but gaining financial resources presents a challenge.

You can find more details about TÜBA and the current situation here.

Nanowires in Turkey

Turkish researchers at Bilkent University in Ankara have recently discovered a means of reliably producing nanowires through a thermal size-reduction process that will be featured on the cover of Nature Materials July 2011 issue. From a June 17, 2011 news item in the Hürriyet Daily News (Istanbul),

A group of Turkish researchers at an Ankara university have manufactured the longest and thinnest nanowires ever produced, by employing a novel method to shrink matter 10-million fold.

The invention, discovered at Bilkent University’s National Nanotechnology Research Center, or UNAM, is set to appear on the cover of Nature Material magazine’s July edition.

“At this moment, we may not even be able to predict what things will be produced [in the future] using this method,” said Associate Professor Mehmet Bayýndýr who led the research team.

The research team was trying to obtain a patent for their invention, as well as preparing to apply to the Guinness Book of Records for producing the world’s longest and thinnest semiconductor nanowire.

Here’s a little more information about nanowires and some detail about the thermal-size reduction process from the study in Nature Materials’ (full article is behind a paywall) online publication,

Nanowires are arguably the most studied nanomaterial model to make functional devices and arrays. … Here we report a new thermal size-reduction process to produce well-ordered, globally oriented, indefinitely long nanowire and nanotube arrays with different materials. The new technique involves iterative co-drawing of hermetically sealed multimaterials in compatible polymer matrices similar to fibre drawing. Globally oriented, endlessly parallel, axially and radially uniform semiconducting and piezoelectric nanowire and nanotube arrays hundreds of metres long, with nanowire diameters less than 15 nm, are obtained. The resulting nanostructures are sealed inside a flexible substrate, facilitating the handling of and electrical contacting to the nanowires. Inexpensive, high-throughput, multimaterial nanowire arrays pave the way for applications including nanowire-based large-area flexible sensor platforms, phase-changememory, nanostructure-enhanced photovoltaics, semiconductor nanophotonics, dielectric metamaterials,linear and nonlinear photonics and nanowire-enabled high-performance composites.

For interested parties, here’s the citation:

Arrays of indefinitely long uniform nanowires and nanotubes by Mecit Yaman, Tural Khudiyev, Erol Ozur, Mehmet Kanik, Ozan Aktas, Ekin O. Ozgur, Hakan Deniz, Enes Korkut, and Mehmet Bayindir. Nature Materials July 2011. Published online June 12, 2011. doi:10.1038/nmat3038