Tag Archives: Turkey

What’s happening to the scientists in Turkey?

In the wake of the July 15-16, 2016 attempted coup in Turkey, there have been widespread reprisals including one focused on the scientific community. An Aug. 3, 2016 news item on the Al Jazeera website describes a situation at Turkey’s national science research council,

Turkish police have raided the offices of the national science research council, private broadcaster NTV reported.

Many people were detained in the raid on the offices of the Scientific and Technological Research Council of Turkey (Tubitak) in the northwestern province of Kocaeli on Wednesday [Aug. 3, 2016], NTV said.

Tubitak funds science research projects in universities and the private sector and employs more than 1,500 researchers, according to its website.

An Aug. 3, 2016 CBC (Canadian Broadcasting Corporation) news item adds some detail,

… a Tubitak official told Reuters the raid had happened on Sunday [July 31, 2016], adding he did not have any details about the number of detentions. He declined to comment further.

The raid on TÜBİTAK takes place within the context of widespread retaliation. A July 20, 2016 article by John Bohannon for Science magazine describes the situation,

In the wake of a failed coup attempt last weekend, the Turkish government has brought higher education to a grinding halt. It appears to be part of a massive political purge in which the government has arrested and fired thousands of people. And educators across the country are bracing for more bad news after the government this week suspended teachers and academic deans. “They are restructuring academia,” says Caghan Kizil, a Turkish molecular biologist based at the Dresden University of Technology in Germany who has been in close communication with colleagues in Turkey. “People are very scared and not hopeful.”

In the span of a few days, more than 45,000 civil servants in the military and judiciary have been fired or suspended. Although there are ambiguous and conflicting media reports, it appears that some 15,000 staff members of the ministry of education also were fired, 21,000 teachers lost their professional licenses, and more than 1500 university deans were all but ordered to resign.

The latest clampdown took place yesterday [July 19, 2016] when the government ordered universities to call back Turkish academics from abroad. “They want to take the universities under their full control,” says Sinem Arslan, a Turk doing a political science Ph.D. at the University of Essex in the United Kingdom. “Academic freedoms will no longer exist. I don’t think that anybody will be able to work on research areas that are considered taboo by the government or write anything that criticizes the government.”

With its latest raid, the Turkish government has raised concerns about Turkish scientists and the American Association for the Advancement of Science (AAAS) has produced a letter in response. From an Aug. 3, 2016 AAAS news release,

As the Turkish government restores order after the failed coup, the American Association for the Advancement of Science (AAAS) and seven other leading science and engineering societies today expressed concern for the human rights of the Turkish scientific community, which has reportedly been subject to restrictions including travel bans and the ordered return of Turkish academics working abroad.

“The future prosperity and security of any nation depends on its ability to be a knowledge-based, innovative society and to a considerable extent on the work of its scientists, engineers, academics, and researchers,” the science group wrote, in a letter to President Recep Tayyip Erdoğan of Turkey.

They emphasized that the health of the scientific enterprise requires that scientists have freedom to think independently and innovatively and are able to engage with scientists around the world. Noting that the Turkish government had previously stated that “democracy, freedom, and the rule of law are nonnegotiable in Turkey,” the science organizations urged President Erdoğan to “follow through on this pledge to fully respect human rights, the rule of law, and due process” to protect both citizens and the scientific community.

The letter was signed by AAAS CEO Rush Holt, executive publisher of the Science family of journals, as well as the leaders of the American Anthropological Association, the American Association of Geographers, the American Physical Society, the American Sociological Association, the American Statistical Association, Sigma Xi, and the Society for the Psychological Study of Social Issues.

“Reports of forced resignations, suspensions, and travel bans affecting thousands of Turkish scientists and academics are deeply troubling, and deeply problematic for any civil society,” said Rush Holt, CEO of AAAS and executive publisher of the Science family of journals. “We urge President Erdoğan to follow through on his pledge to protect basic human rights, the rule of law, and academic freedoms for citizens and scholars alike.”

This is not the first time in this decade that the Turkish government has ordered repressive measures against scientists. Here’s more from my Sept. 9, 2011 posting, a time when Erdogan was Prime Minister,

Scientists in Turkey are threatening to walk out on the Turkish Academy of Sciences due to some recent government initiatives affecting the academy’s governance. From the Sept.9, 2011 news item on physorg.com,

Members of TÜBA [founded in 1993], the Turkish Academy of Sciences, are threatening to resign en masse in order to fight a decree issued by the government of Turkey that would strip the Academy of its autonomy.

The decree, issued on 27th August, which was just after the start of a nine-day holiday in Turkey, says that one-third of the members of the academy will now be appointed by the government and a further one-third by the Council of Higher Education, which is also a government body. [emphasis mine] Only the remaining one-third will be elected by current members. The president and vice-president of the academy will in future be appointed by the government rather than by sitting members. In addition, honorary members will lose their voting rights and the age at which members are deemed honorary will be reduced from 70 to 67.

A Sept. 7, 2011 editorial in Nature provides a more comprehensive description of what was then occurring,

On the eve of a week-long holiday to celebrate the end of the fasting period of Ramadan, the Turkish government executed an extraordinary scientific coup. On 27 August, it issued a decree with immediate effect, giving itself tighter control of Turkey’s two main scientific organizations: the funding agency TÜBİTAK and the Turkish Academy of Sciences (TÜBA), the governance of which is now so altered that it can no longer be considered an academy at all.

The move has startled and appalled Turkish scientists. It should also sound an alarm bell throughout Turkish society. The government of Prime Minister Recep Tayyip Erdoğan is also taking greater control of other sectors through a series of decrees requiring no parliamentary debate. …

This time scientists are being targeted along with many other groups and, if rumours are even partially correct, government actions are more severe than they were in 2011.

The Canadian nano scene as seen by the OECD (Organization for Economic Cooperation and Development)

I’ve grumbled more than once or twice about the seemingly secret society that is Canada’s nanotechnology effort (especially health, safety, and environment issues) and the fact that I get most my information from Organization for Economic Cooperation and Development (OECD) documents. That said, thank you to Lynne Bergeson’s April 8, 2016 post on Nanotechnology Now for directions to the latest OECD nano document,

The Organization for Economic Cooperation and Development recently posted a March 29, 2016, report entitled Developments in Delegations on the Safety of Manufactured Nanomaterials — Tour de Table. … The report compiles information, provided by Working Party on Manufactured Nanomaterials (WPMN) participating delegations, before and after the November 2015 WPMN meeting, on current developments on the safety of manufactured nanomaterials.

It’s an international roundup that includes: Australia, Austria, Belgium, Canada, Germany, Japan, Korea, the Netherlands, Switzerland, Turkey, United Kingdom, U.S., and the European Commission (EC), as well as the Business and Industry Advisory Committee to the OECD (BIAC) and International Council on Animal Protection in OECD Programs (ICAPO).

As usual, I’m focusing on Canada. From the DEVELOPMENTS IN DELEGATIONS ON THE SAFETY OF MANUFACTURED NANOMATERIALS – TOUR DE TABLE Series on the Safety of Manufactured Nanomaterials No. 67,

National  developments  on  human  health  and  environmental  safety  including  recommendations, definitions, or discussions related to adapting or applying existing regulatory systems or the drafting of new laws/ regulations/amendments/guidance materials A consultation document on a Proposed Approach to Address Nanoscale Forms of Substances on the Domestic  Substances  List was  published  with  a  public  comment  period  ending on  May  17,  2015. The proposed approach outlines the Government’s plan to address nanomaterials considered in commerce in Canada (on  Canada’s  public inventory).  The  proposal is a stepwise  approach to  acquire  and  evaluate information,  followed  by  any  necessary  action. A  follow-up  stakeholder  workshop  is  being  planned  to discuss  next  steps  and  possible  approaches  to prioritize  future  activities. The  consultation document  is available at: http://www.ec.gc.ca/lcpe-cepa/default.asp?lang=En&n=1D804F45-1

A mandatory information gathering survey was published on July 25, 2015. The purpose of the survey is to collect information to determine the commercialstatus of certain nanomaterials in Canada. The survey targets  206  substances  considered  to  be  potentially  in commerce  at  the  nanoscale. The  list  of  206 substances was developed using outcomes from the Canada-United States Regulatory Cooperation Council (RCC)  Nanotechnology  Initiative  to  identify nanomaterial  types. These  nanomaterial  types  were  cross-referenced  with  the Domestic  Substances  List to  develop  a  preliminary  list  of  substances  which are potentially intentionally manufactured at the nanoscale. The focus of the survey aligns with the Proposed Approach to  Address  Nanoscale  Forms  of  Substances  on  the Domestic  Substances  List (see  above)  and certain  types  of  nanomaterials  were  excluded  during the  development  of  the  list  of  substances. The information  being  requested  by  the  survey  includes substance  identification,  volumes,  and  uses.  This information will feed into the Government’s proposed approach to address nanomaterials on the Domestic Substances List. Available at: http://gazette.gc.ca/rp-pr/p1/2015/2015-07-25/html/notice-avis-eng.php

Information on:

a.risk  assessment  decisions, including  the  type  of:  (a)  nanomaterials  assessed; (b) testing recommended; and (c) outcomes of the assessment;

Four substances were notified to the program since the WPMN14 – three surface modified substances and  one  inorganic  substance.  No  actions,  including  additional  data requests,  were  taken  due  to  low expected  exposures  in  accordance  with  the New  Substances  Notifications  Regulations  (Chemicals and Polymers) (NSNR) for two of the substances.  Two of the substances notified were subject to a Significant New Activity Notice. A Significant New Activity notice is an information gathering tool used to require submission  of  additional  information  if  it  is suspected  that  a  significant  new  activity  may  result in  the substance becoming toxic under the Canadian Environmental Protection Act, 1999.

b.Proposals, or modifications to previous regulatory decisions

As  part  of  the  Government’s  Chemicals  Management Plan,  a  review  is  being  undertaken  for  all substances  which  have  been  controlled through  Significant  New  Activity  (SNAc)  notices (see  above).  As part  of  this  activity,  the  Government  is  reviewing past  nanomaterials  SNAc  notices  to  see  if  new information  is  available  to  refine  the  scope  and information  requirements.    As  a  result  of  this  review, 9 SNAc  notices  previously  in  place  for  nanomaterials have  been  rescinded.    This  work  is  ongoing,  and  a complete review of all nanomaterial SNAcs is currently planned to be completed in 2016.

Information related to good practice documents

The Canada-led,  ISO  standards project, ISO/DTR  19716 Nanotechnologies — Characterization  of cellulose  nanocrystals, [emphasis mine] initiated  in  April 2014, is  now at Committee  Draft  (CD)  3-month  ISO ballot, closing    Aug 31, 2015. Ballot comments will be addressed during JWG2 Measurement and Characterization working  group meetings  at  the 18th Plenary  of  ISO/TC229, Nanotechnologies,  being held in Edmonton, Alberta, Sep. 28 – Oct. 2, 2015.

Research   programmes   or   strategies   designed   to  address   human   health   and/   or environmental safety aspects of nanomaterials

Scientific research

Environment Canada continues to support various academic and departmental research projects. This research has to date included studying fate and effects of nanomaterials in the aquatic, sediment, soil, and air  compartments. Funding  in  fiscal  2015-16  continues  to  support  such  projects,  including  sub-surface transportation, determining key physical-chemical parameters to predict ecotoxicity, and impacts of nano-silver [silver nanoparticles]  addition  to  a  whole  lake  ecosystem [Experimental Lakes Area?]. Environment  Canada  has  also  partnered  with  the National Research  Council  of  Canada  recently  to  initiate  a project  on  the  development  of  test  methods  to identify surfaces of nanomaterials for the purposes of regulatory identification and to support risk assessments. In addition,  Environment  Canada  is  working  with  academic laboratories in  Canada  and  Germany  to  prepare guidance to support testing of nanoparticles using the OECD Test Guideline for soil column leaching.

Health  Canada  continues  its  research  efforts  to  investigate  the  effects  of  surface-modified  silica nanoparticles. The   aims   of   these   projects   are  to:   (1) study the importance of size and surface functionalization;  and  (2)  provide a genotoxic profile and  to  identify  mechanistic  relationships  of  particle properties  to  elicited  toxic  responses.  A manuscript reporting  the in  vitro genotoxic,  cytotoxic and transcriptomic  responses  following  exposure  to  silica  nanoparticles  has  recently  been  submitted to  a  peer reviewed journal and is currently undergoing review. Additional manuscripts reporting the toxicity results obtained to date are in preparation.

Information on public/stakeholder consultations;

A consultation document on a Proposed Approach to Address Nanoscale Forms of Substances on the Domestic  Substances  List was  published  with a  public  comment  period ending  on May  17,  2015  (see Question  1).  Comments  were  received  from approximately  20  stakeholders  representing  industry and industry  associations,  as  well  as  non-governmental  organizations. These  comments  will  inform  decision making to address nanomaterials in commerce in Canada.

Information on research or strategies on life cycle aspects of nanomaterials

Canada, along with Government agencies in the United States, Non-Governmental Organizations and Industry,  is  engaged  in  a  project  to  look  at releases  of  nanomaterials  from  industrial  consumer  matrices (e.g., coatings). The objectives of the NanoRelease Consumer Products project are to develop protocols or
methods (validated  through  interlaboratory  testing) to  measure  releases  of  nanomaterials  from  solid matrices as a result of expected uses along the material life cycle for consumer products that contain the nanomaterials. The  project  is  currently  in  the  advanced  stages  of Phase  3  (Interlaboratory  Studies).  The objectives of Phase 3 of the project are to develop robust methods for producing and collecting samples of CNT-epoxy  and  CNT-rubber  materials  under  abrasion  and  weathering scenarios,  and  to  detect  and quantify, to the extent possible, CNT release fractions. Selected laboratories in the US, Canada, Korea and the European Community are finalising the generation and analysis of sanding and weathering samples and the    results    are    being    collected    in    a   data    hub    for    further    interpretation    and    analysis.

Additional details about the project can be found at the project website: http://www.ilsi.org/ResearchFoundation/RSIA/Pages/NanoRelease1.aspx

Under the OECD Working Party on Resource Productivity and Waste (WPRPW), the expert group on waste containing nanomaterials has developed four reflection papers on the fate of nanomaterials in waste treatment  operations.  Canada  prepared the  paper  on  the  fate  of  nanomaterials in  landfills;  Switzerland on the  recycling  of  waste  containing  nanomaterials;  Germany  on  the  incineration  of  waste  containing nanomaterials;  and  France  on  nanomaterials  in wastewater  treatment.  The  purpose  of  these  papers is to provide  an  overview  of  the  existing  knowledge  on the  behaviour  of  nanomaterials  during  disposal operations and identify the information gaps. At the fourth meeting of the WPRPW that took place on 12-14 November 2013, three of the four reflection papers were considered by members. Canada’s paper was presented and discussed at the fifth meeting of the WPRPRW that took place on 8-10 December 2014. The four  papers  were  declassified  by  EPOC  in  June  2015, and  an  introductory  chapter  was  prepared  to  draw these  papers  together. The introductory  chapter  and accompanying  papers  will  be  published in  Fall  2015. At  the sixth  meeting  of  the  WPRPW  in  June – July  2015,  the  Secretariat  presented  a  proposal  for an information-sharing  platform  that  would  allow  delegates  to  share research  and  documents  related  to nanomaterials. During a trial phase, delegates will be asked to use the platform and provide feedback on its use at the next meeting of the WPRPW in December 2015. This information-sharing platform will also be accessible to delegates of the WPMN.

Information related to exposure measurement and exposure mitigation.

Canada and the Netherlands are co-leading a project on metal impurities in carbon nanotubes. A final version  of  the  report  is  expected  to  be ready for WPMN16. All  research has  been completed (e.g. all components are published or in press and there was a presentation by Pat Rasmussen to SG-08 at the Face-to-Face Meeting in Seoul June 2015). The first draft will be submitted to the SG-08 secretariat in autumn 2015. Revisions  will  be  based  on  early  feedback  from  SG-08  participants.  The  next  steps  depend  on  this feedback and amount of revision required.

Information on past, current or future activities on nanotechnologies that are being done in co-operation with non-OECD countries.

A webinar between ECHA [European Chemicals Agency], the US EPA [Environmental Protection Agency] and Canada was hosted by Canada on April 16, 2015. These are  regularly  scheduled  trilateral  discussions  to keep  each  other  informed  of  activities  in  respective jurisdictions.

In  March 2015, Health  Canada  hosted  3  nanotechnology knowledge  transfer sessions  targeting Canadian  government  research  and  regulatory  communities  working  in  nanotechnology.  These  sessions were  an  opportunity  to  share  information  and perspectives  on  the  current  state  of  science supporting  the regulatory  oversight  of  nanomaterials with  Government.  Presenters  provided  detailed  outputs  from  the OECD WPMN including: updates on OECD test methods and guidance documents; overviews of physical-chemical properties, as well as their relevance to toxicological testing and risk assessment; ecotoxicity and fate   test   methods;   human   health   risk   assessment   and   alternative   testing   strategies;   and exposure measurement  and  mitigation.  Guest  speakers  included  Dr  Richard  C.  Pleus  Managing  Director  and  Director of Intertox, Inc and Dr. Vladimir Murashov Special Assistant on Nanotechnology to the Director of National Institute for Occupational Safety and Health (NIOSH).

On   March   4-5, 2015, Industry   Canada   and   NanoCanada co-sponsored  “Commercializing Nanotechnology  in  Canada”,  a  national  workshop  that brought  together  representatives  from  industry, academia and government to better align Canada’s efforts in nanotechnology.  This workshop was the first of  its  kind  in  Canada. It  also  marked  the  official  launch  of  NanoCanada (http://nanocanada.com/),  a national  initiative  that  is  bringing  together stakeholders  from  across  Canada  to  bridge  the  innovation  gap and stimulates emerging technology solutions.

It’s nice to get an update about what’s going on. Despite the fact this report was published in 2016 the future tense is used in many of the verbs depicting actions long since accomplished. Maybe this was a cut-and-paste job?

Moving on, I note the mention of the Canada-led,  ISO  standards project, ISO/DTR  19716 Nanotechnologies — Characterization  of cellulose  nanocrystals (CNC). For those not familiar with CNC, the Canadian government has invested hugely in this material derived mainly from trees, in Canada. Other countries and jurisdictions have researched nanocellulose derived from carrots, bananas, pineapples, etc.

Finally, it was interesting to find out about the existence of  NanoCanada. In looking up the Contact Us page, I noticed Marie D’Iorio’s name. D’Iorio, as far as I’m aware, is still the Executive Director for Canada’s National Institute of Nanotechnology (NINT) or here (one of the National Research Council of Canada’s institutes). I have tried many times to interview someone from the NINT (Nils Petersen, the first NINT ED and Martha Piper, a member of the advisory board) and more recently D’Iorio herself only to be be met with a resounding silence. However, there’s a new government in place, so I will try again to find out more about the NINT, and, this time, NanoCanada.

Nanotechnology-enabled cleansers in Turkish baths

This item about Turkish baths came to me via Chinese news agency Xinhua. In a March 10, 2016 news item on ShanghaiDaily.com,

It is very common to take a bath, yet it is quite a different experience to bathe in Istanbul’s famed hamams, or bath houses.

Bathing in a hamam is similar to that of a sauna, but is more closely related to ancient Greek and ancient Roman bathing practices, and it involves services like washing, aromatherapy oil massage, reflexology, Indian head massage and facial clay mask.

Both tourists and local Turks alike are fans of Turkish baths, said Banu Cagdas, the owner of Cagaloglu.

As customers are flocking and their number growing, hygiene appears to be the most important issue for Turkish baths.

“Visually there is nothing,” said Cagdas. “It looks like every corner is clean and no one can see the germs and viruses with the naked eye.”

Generally, Turkish baths have been using the traditional ways to maintain the state of hygiene, like bleach.

“The sterilization with bleach, especially a long-lasting sterilization, is very difficult to achieve,” Cagdas said, noting that after two hours of the cleaning, micro-organisms and bacteria start to reproduce again due to the warm and humid environment.

Fungal infections are among the most common diseases in Turkish baths. “Then comes all kind of genital diseases,” said Cagdas.

The team is turning to a cleaning agent developed by Turkish engineers from Sabanci University in Istanbul. The product, the result of five-year efforts based on nanotechnology, is called Antimics.

Antimics can stunt the production of germs, viruses, bacteria and fungi.

“We have been applying the solution to Cagaloglu bath once a month and we observe the rate of bacterium has been dropping each time even further,” Menceoglu told Xinhua.

She explained that Antimics enables the bath’s surface to be covered with a tiny antimicrobial coating and “no single microbe, virus or bacterium can hold on to after the application.”

“Every time we do the cleaning we witness that the bacteria level has been dropping drastically,” she said.

In addition, the eco-friendly new product is not harmful to humans, as opposed to the traditional disinfectant detergents that contain chemicals.

It is possible to get more information about the product (Antimic Nanotego Facebook page and on antimic.com) but you do need Turkish language reading skills.

Observing silica microspheres leads to theories about schools of fish and human crowds

Researchers developing theories about the crowd behaviour of tiny particles believe the theories may have some relevance to macro world phenomena.

[downloaded from http://www.ucl.ac.uk/news/news-articles/0316/090316-crowd-control]

[downloaded from http://www.ucl.ac.uk/news/news-articles/0316/090316-crowd-control]

From a March 9, 2016 news item on Nanowerk,

Crowds formed from tiny particles disperse as their environment becomes more disordered, according to scientists from UCL [University College London, UK], Bilkent University [Turkey] and Université Pierre et Marie Curie [France].

The new mechanism is counterintuitive and might help describe crowd behaviour in natural, real-world systems where many factors impact on individuals’ responses to either gather or disperse.

“Bacterial colonies, schools of fish, flocking birds, swarming insects and pedestrian flow all show collective and dynamic behaviours which are sensitive to changes in the surrounding environment and their dispersal or gathering can be sometimes the difference between life and death,” said lead researcher, Dr Giorgio Volpe, UCL Chemistry.

A March 9, 2016 UCL press release (also on EurekAlert), which originated the news item, expands on the theme,

“The crowd often has different behaviours to the individuals within it and we don’t know what the simple rules of motion are for this. If we understood these and how they are adapted in complex environments, we could externally regulate active systems. Examples include controlling the delivery of biotherapeutics in nanoparticle carriers to the target in the body, or improving crowd security in a panic situation.”

The study, published today in Nature Communications, investigated the behaviour of active colloidal particles in a controllable system to find out the rules of motion for individuals gathering or dispersing in response to external factors.

Colloidal particles are free to diffuse through a solution and for this study suspended silica microspheres were used. The colloidal particles became active with the addition of E. coli bacteria to the solution. Active colloidal particles were chosen as a model system because they move of their own accord using the energy from their environment, which is similar to how animals move to get food.

Initially, the active colloidal particles gathered at the centre of the area illuminated by a smooth beam which provided an active potential. Disorder was introduced using a speckle beam pattern which disordered the attractive potential and caused the colloids to disperse from the area at a rate of 0.6 particles per minute over 30 minutes. The particles switched between gathering and dispersing proportional to the level of external disorder imposed.

Erçağ Pinçe, who is first author of the study with Dr Sabareesh K. P. Velu, both Bilkent University, said: “We didn’t expect to see this mechanism as it’s counterintuitive but it might already be at play in natural systems. Our finding suggests there may be a way to control active matter through external factors. We could use it to control an existing system, or to design active agents that exploit the features of the environment to perform a given task, for example designing distinct depolluting agents for different types of polluted terrains and soils.”

Co-author, Dr Giovanni Volpe, Bilkent University, added: “Classical statistical physics allows us to understand what happens when a system is at equilibrium but unfortunately for researchers, life happens far from equilibrium. Behaviours are often unpredictable as they strongly depend on the characteristic of the environment. We hope that understanding these behaviours will help reveal the physics behind living organisms, but also help deliver innovative technologies in personalised healthcare, environmental sustainability and security.”

The team now plan on applying their findings to real-life situations to improve society. In particular, they want to exploit the main conclusions from their work to develop intelligent nanorobots for applications in drug-delivery and environmental sustainability that are capable of efficiently navigate through complex natural environments.

Here’s a link to and a citation for the paper,

Disorder-mediated crowd control in an active matter system by Erçağ Pinçe, Sabareesh K. P. Velu, Agnese Callegari, Parviz Elahi, Sylvain Gigan, Giovanni Volpe, & Giorgio Volpe. Nature Communications 7, Article number: 10907 doi:10.1038/ncomms10907 Published 09 March 2016

This is an open access paper.

Global overview of nano-enabled food and agriculture regulation

First off, this post features an open access paper summarizing global regulation of nanotechnology in agriculture and food production. From a Sept. 11, 2015 news item on Nanowerk,

An overview of regulatory solutions worldwide on the use of nanotechnology in food and feed production shows a differing approach: only the EU and Switzerland have nano-specific provisions incorporated in existing legislation, whereas other countries count on non-legally binding guidance and standards for industry. Collaboration among countries across the globe is required to share information and ensure protection for people and the environment, according to the paper …

A Sept. 11, 2015 European Commission Joint Research Centre press release (also on EurekAlert*), which originated the news item, summarizes the paper in more detail (Note: Links have been removed),

The paper “Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries” reviews how potential risks or the safety of nanotechnology are managed in different countries around the world and recognises that this may have implication on the international market of nano-enabled agricultural and food products.

Nanotechnology offers substantial prospects for the development of innovative products and applications in many industrial sectors, including agricultural production, animal feed and treatment, food processing and food contact materials. While some applications are already marketed, many other nano-enabled products are currently under research and development, and may enter the market in the near future. Expected benefits of such products include increased efficacy of agrochemicals through nano-encapsulation, enhanced bioavailability of nutrients or more secure packaging material through microbial nanoparticles.

As with any other regulated product, applicants applying for market approval have to demonstrate the safe use of such new products without posing undue safety risks to the consumer and the environment. Some countries have been more active than others in examining the appropriateness of their regulatory frameworks for dealing with the safety of nanotechnologies. As a consequence, different approaches have been adopted in regulating nano-based products in the agri/feed/food sector.

The analysis shows that the EU along with Switzerland are the only ones which have introduced binding nanomaterial definitions and/or specific provisions for some nanotechnology applications. An example would be the EU labelling requirements for food ingredients in the form of ‘engineered nanomaterials’. Other regions in the world regulate nanomaterials more implicitly mainly by building on non-legally binding guidance and standards for industry.

The overview of existing legislation and guidances published as an open access article in the Journal Regulatory Toxicology and Pharmacology is based on information gathered by the JRC, RIKILT-Wageningen and the European Food Safety Agency (EFSA) through literature research and a dedicated survey.

Here’s a link to and a citation for the paper,

Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries by Valeria Amenta, Karin Aschberger, , Maria Arena, Hans Bouwmeester, Filipa Botelho Moniz, Puck Brandhoff, Stefania Gottardo, Hans J.P. Marvin, Agnieszka Mech, Laia Quiros Pesudo, Hubert Rauscher, Reinhilde Schoonjans, Maria Vittoria Vettori, Stefan Weigel, Ruud J. Peters. Regulatory Toxicology and Pharmacology Volume 73, Issue 1, October 2015, Pages 463–476 doi:10.1016/j.yrtph.2015.06.016

This is the most inclusive overview I’ve seen yet. The authors cover Asian countries, South America, Africa, and the MIddle East, as well as, the usual suspects in Europe and North America.

Given I’m a Canadian blogger I feel obliged to include their summary of the Canadian situation (Note: Links have been removed),

4.2. Canada

The Canadian Food Inspection Agency (CFIA) and Public Health Agency of Canada (PHAC), who have recently joined the Health Portfolio of Health Canada, are responsible for food regulation in Canada. No specific regulation for nanotechnology-based food products is available but such products are regulated under the existing legislative and regulatory frameworks.11 In October 2011 Health Canada published a “Policy Statement on Health Canada’s Working Definition for Nanomaterials” (Health Canada, 2011), the document provides a (working) definition of NM which is focused, similarly to the US definition, on the nanoscale dimensions, or on the nanoscale properties/phenomena of the material (see Annex I). For what concerns general chemicals regulation in Canada, the New Substances (NS) program must ensure that new substances, including substances that are at the nano-scale (i.e. NMs), are assessed in order to determine their toxicological profile ( Environment Canada, 2014). The approach applied involves a pre-manufacture and pre-import notification and assessment process. In 2014, the New Substances program published a guidance aimed at increasing clarity on which NMs are subject to assessment in Canada ( Environment Canada, 2014).

Canadian and US regulatory agencies are working towards harmonising the regulatory approaches for NMs under the US-Canada Regulatory Cooperation Council (RCC) Nanotechnology Initiative.12 Canada and the US recently published a Joint Forward Plan where findings and lessons learnt from the RCC Nanotechnology Initiative are discussed (Canada–United States Regulatory Cooperation Council (RCC) 2014).

Based on their summary of the Canadian situation, with which I am familiar, they’ve done a good job of summarizing. Here are a few of the countries whose regulatory instruments have not been mentioned here before (Note: Links have been removed),

In Turkey a national or regional policy for the responsible development of nanotechnology is under development (OECD, 2013b). Nanotechnology is considered as a strategic technological field and at present 32 nanotechnology research centres are working in this field. Turkey participates as an observer in the EFSA Nano Network (Section 3.6) along with other EU candidate countries Former Yugoslav Republic of Macedonia, and Montenegro (EFSA, 2012). The Inventory and Control of Chemicals Regulation entered into force in Turkey in 2008, which represents a scale-down version of the REACH Regulation (Bergeson et al. 2010). Moreover, the Ministry of Environment and Urban Planning published a Turkish version of CLP Regulation (known as SEA in Turkish) to enter into force as of 1st June 2016 (Intertek).

The Russian legislation on food safety is based on regulatory documents such as the Sanitary Rules and Regulations (“SanPiN”), but also on national standards (known as “GOST”) and technical regulations (Office of Agricultural Affairs of the USDA, 2009). The Russian policy on nanotechnology in the industrial sector has been defined in some national programmes (e.g. Nanotechnology Industry Development Program) and a Russian Corporation of Nanotechnologies was established in 2007.15 As reported by FAO/WHO (FAO/WHO, 2013), 17 documents which deal with the risk assessment of NMs in the food sector were released within such federal programs. Safe reference levels on nanoparticles impact on the human body were developed and implemented in the sanitary regulation for the nanoforms of silver and titanium dioxide and, single wall carbon nanotubes (FAO/WHO, 2013).

Other countries included in this overview are Brazil, India, Japan, China, Malaysia, Iran, Thailand, Taiwan, Australia, New Zealand, US, South Africa, South Korea, Switzerland, and the countries of the European Union.

*EurekAlert link added Sept. 14, 2015.

NATO (North Atlantic Treaty Organization) and nanotech biosensors

First mentioned here in an Aug. 19, 2014 posting in the context of a 2013 NATO workshop, the Worcester Polytechnic Institute (WPI; located in Massachusetts, US) is co-organizing a NATO (North Atlantic Treaty Organization) workshop to be held in 2014 in Turkey about nanoscale sensors for chemical and biological weapons. A Sept. 14, 2014 news item on Nanowerk provides a general description,

Advancing the front lines of research for the detection and decontamination of chemical and biological threats is the mission of an international scientific workshop organized by Worcester Polytechnic Institute (WPI) and the Georgian National Academy of Sciences, and is sponsored by the Science for Peace and Security Programme of the North Atlantic Treaty Organization (NATO).

A Sept. 11, 2014 WPI news release, which originated the news item gives details, not available for the Aug. 2014 posting, about specific biological/chemical weapons to be discussed ,

Part of NATO’s Advanced Research Workshop series, the event is titled “Nanotechnology to Aid Chemical and Biological Defense” and will take place September 22-26 in Antalya, Turkey.

The workshop will focus on nanoscale science and technology as applied to pathogens like Methicillin-resistant Staphylococcus aureus (MRSA), Francisella tularensis (tularemia), and Bacillus anthracis, the bacterium that causes anthrax. The goal is to eventually engineer new materials that can detect and defend against many biological and chemical agents at the atomic and molecular levels.

“Our hope is that by sharing the latest science and discussing the key challenges in the field we can accelerate technology development to help protect people around the world from these terrible threats,” said Terri Camesano, professor of chemical engineering and dean of graduate studies at WPI, who is the lead organizer and co-chair of the workshop.

More than 20 leading researchers from Europe and the United States, along with graduate students from their labs and collaborating institutions, will participate in four days of presentations and rigorous discussions on a wide range of aspects relevant to biological and chemical threats. In addition to co-chairing the event, Camesano will present a talk about the potential to use naturally occurring antimicrobial peptides to detect biological threats. The workshop is co-chaired by Giorgi Kvesitadze, president of the Georgian Academy of Sciences in Tiblisi, who will present current research on how certain microorganisms and plants metabolize toxins.

You can find the latest version of the NATO ARW (Advanced Research Workshop series) programme for the meeting in Turkey.

Nanotechnology in the Security Systems; NATO Science for Peace and Security workshops

An Aug. 19, 2014 news item on Nanowerk features a new publication from NATO (North Atlantic Treaty Organization) which seems to be the outcome of a 2013 workshop, Note: A link has been removed,

The topics discussed at the NATO Advanced Research Workshop “Nanotechnology in the Security Systems” included nanophysics, nanotechnology, nanomaterials, sensors, biosensors security systems, explosive detection.

A new book in the NATO Science for Peace and Security Series C: Environmental Security covers the findings from this workshop: Nanotechnology in the Security Systems.

The 2013 workshop (information about the upcoming 2014 workshop after this) took place in the Ukraine, which seems strangely ironic given the current situation where Russia has ‘intervened’ in the Crimea and where one group or another shot down an Air Malaysia flight over Ukraine airspace,

29 September – 3 October 2013 ,



Bonca Janez (J.Stefan Institute, Ljublyana, Slovenia)
Kruchinin Sergei (Bogolyubov Institute for Theoretical Physics, Ukraine)

Balatsky Alexandr (Los Alamos National laboratory,USA )
Logan David (Oxford University,UK)

ARW is supported by NATO.

Co-sponsor is Ministry of Ukraine for Education and Science.

The main objective of this Advanced Research Workshop is to bring together leading experts on key current topics in nanotechnology ,security systems and sensor and biosensor in order to review recent developments and to outline new directions for nanotechnology research. Topids will include physics of graphene, nanomaterials, CRBN agents.

Time and Location

The ARW will be held from 29 September – 3 October 2013 at the “Yalta” Hotel (three star) in Yalta (Crimea, Ukraine). Yalta is a world-famous health resort and the centre of a large resort area stretchening for more than 70 km along the southern coast of the Crimea. [emphasis mine]

All partipants of the ARW will be accommodated in the hotel. There is auditorium seating 100, which is fitted with modern acoustic equipment. Breakfast, lunch and dinner will be served for all participants. At the hotel there is an indoor swimming pool with heated sea water.

Participants may travel to the ARW from Kiev international airport. You can use the regular flight (Boeing) Kiev – Simferopol(Yalta) – Kiev, leaving Kiev on September 29 at 18:45 and leaving Simferopol on October 3 at 21:10. The price of tickets Kiev-Simferopol-Kiev is 160 EURO. There are direct flights from many Cities to Simferopol.

This year’s workshop will be held in Turkey, From the Worcester Polytechnic Institute (US) website’s NATO Advanced Research Workshop in Nanotechnology (2014) webpage,

NATO Advanced Research Workshop in Nanotechnology to Aid Chemical and Biological Defence

September 22-26, 2014

Rixos Downtown Hotel

Antalya, Turkey

The NATO Science for Peace and Security Program has identified Defense against CBRN Agents and Environmental Security as key priority areas.  Nanomaterials and nanotechnology can play a vital role in the detection and decontamination of chemical and biological threat agents. They also can be used in protective technologies. The ability to control matter on an atomic and/or molecular scale provides new opportunities to use materials. The area of sensing is a particularly relevant example in which nanotechnology can be useful, by exploiting the unique properties and phenomena exerted by matter at the nano-scale. Rather than just thinking in terms of miniaturization of sensors and devices, it is possible to imagine entirely new technologies that are developed to exploit novel nano-scale phenomena. Combining nanotechnology with biomolecular systems, we have the power of nanobiotechnology to achieve improved detection, decontamination and protection against chemical and bio-agents.

The purpose of this ARW will be to bring together a diverse group of international civilian researchers focused on nanoscience and nanotechnology problems that are relevant to chemical and biological defence needs, in order to share the state-of-the-art in the field, identify accomplishments, and to discuss the challenges and opportunities present in the field. The work discussed here will form a blueprint for researchers in the area of nanotechnology for chemical and biological defense, especially for future research in detection, decontamination and protection.

Confirmed Invited Speakers:
Professor Terri Camesano     Worcester Polytechnic Institute     USA
Dr. N. Chanisvili     IBMV Tbilisi     Georgia [Country]
Dr. Ario DeMarco     University of Nova Gorica     Slovenia
Dr. Mario Boehme     TU Darmstadt     Germany
Dr. Audrey Beaussart     Université Catholique de Louvain     Belgium
Dr. Jêrôme Duval     Ecole Nationales Supérieure de Géologie     France
Dr. Mladen Franko     University of Nova Gorica     Slovenia
Professor Perena Gouma     SUNY Stony Brook     USA
Dr. Roland Grunow     Robert Koch Institut     Germany
Professor Giorgi Kvesitadze   Tbilisi State University and Georgia Technical University    Georgia
Professor Raj Mutharasan     Drexel University     USA
Dr. Michele Penza     ENEA, Brindisi     Italy
Dr. Irena Ciglenecki-Jusic     Institut Ruđer Bošković     Croatia
Professor Sadunishvili Tinatin     Durmishidze Institute of Biochemistry and Biotechnology, Agrarian University of Georgia     Georgia
Dr. Polonca Trebse     University of Nova Gorica     Slovenia
Professor Monique van Hoek     George Mason University     USA
Professor David Wright     Vanderbilt University     USA
Dr Ahmet Ozgur Yazaydin     University College London     UK

*******This workshop is supported by the NATO Science for Peace and Security Programme

*******Please note that all scholarships for financial support for the conference are full.

Contact Professor Terri A. Camesano, terric@wpi.edu. for information* about the scholarships.

As for the book produced from the 2013 (?) workshop, here’s a link for purchasing,

Nanotechnology in the Security Systems (NATO Science for Peace and Security Series C: Environmental Security) Paperback – September 14, 2014 by Janez Bonca (Editor), Sergei Kruchinin (Editor)

ISBN-13: 978-9401790529 ISBN-10: 9401790523 Edition: 2015th

If you are applying for a scholarship to the 2014 workshop, good luck!

* ‘informatio’ corrected to ‘information’ on Nov. 21,2014.

Reducing animal testing for nanotoxicity—PETA (People for the Ethical Treatment of Animals) presentation at NanoTox 2014

Writing about nanotechnology can lead you in many different directions such as the news about PETA (People for the Ethical Treatment of Animals) and its poster presentation at the NanoTox 2014 conference being held in Antalya, Turkey from April 23 – 26, 2014. From the April 22, 2014 PETA news release on EurekAlert,

PETA International Science Consortium Ltd.’s nanotechnology expert will present a poster titled “A tiered-testing strategy for nanomaterial hazard assessment” at the 7th International Nanotoxicology Congress [NanoTox 2014] to be held April 23-26, 2014, in Antalya, Turkey.

Dr. Monita Sharma will outline a strategy consistent with the 2007 report from the US National Academy of Sciences, “Toxicity Testing in the 21st Century: A Vision and a Strategy,” which recommends use of non-animal methods involving human cells and cell lines for mechanistic pathway–based toxicity studies.

Based on the current literature, the proposed strategy includes thorough characterization of nanomaterials as manufactured, as intended for use, and as present in the final biological system; assessment using multiple in silico and in vitro model systems, including high-throughput screening (HTS) assays and 3D systems; and data sharing among researchers from government, academia, and industry through web-based tools, such as the Nanomaterial Registry and NanoHUB

Implementation of the proposed strategy will generate meaningful information on nanomaterial properties and their interaction with biological systems. It is cost-effective, reduces animal use, and can be applied for assessing risk and making intelligent regulatory decisions regarding the use and disposal of nanomaterials.

PETA’s International Science Consortium has recently launched a nanotechnology webpage which provides a good overview of the basics and, as one would expect from PETA, a discussion of relevant strategies that eliminate the use of animals in nanotoxicity assessment,

What is nano?

The concept of fabricating materials at an atomic scale was introduced in 1959 by physicist Richard Feynman in his talk entitled “There’s Plenty of Room at the Bottom.” The term “nano” originates from the Greek word for “dwarf,” which represents the very essence of nanomaterials. In the International System of Units, the prefix “nano” means one-billionth, or 10-9; therefore, one nanometer is one-billionth of a meter, which is smaller than the thickness of a sheet of paper or a strand of hair.  …

Are there different kinds of nano?

The possibility of controling biological processes using custom-synthesized materials at the nanoscale has intrigued researchers from different scientific fields. With the ever increasing sophistication of nanomaterial synthesis, there has been an exponential increase in the number and type of nanomaterials available or that can be custom synthesized. Table 1 lists some of the nanomaterials that are currently available.


Oddly, given the question ‘Are there different kinds of nano?’, there’s no mention of nanobots.  Still it’s understandable that they’d focus on nanomaterials which are, as far as I know, the only ‘nano’ anything tested for toxicity. On that note, PETA’s Nanotechnology page offers this revelatory listing (scroll down about 3/4 of the way),

The following are some of the web-based tools being used by nanotoxicologists and material scientists:

Getting back to the NanoTox conference being held now in Antalya, I noticed a couple of familiar names on the list of keynote speakers (scroll down about 15% of the way), Kostas Kostarelos (last mentioned in a Feb. 28, 2014 posting about scientific publishing and impact factors’ scroll down about 1/2 way) and Mark Wiesner (last mentioned in a Nov. 13, 2013 posting about a major grant for one of his projects).

Call for papers: conference on sound art curation

It’s not exactly data sonification (my Feb. 7, 2014 posting about sound as a way to represent research data) but there’s a call for papers (deadline March 31, 2014) for a conference focused on curating sound art. Lanfranco Aceti, an academic, an artist and a curator whom I met some years ago at a conference sent me a March 20, 2014 announcement,

OCR (Operational and Curatorial Research in Art, Design, Science and Technology) is launching a series of international conferences with international partners.

Sound Art Curating is the first conference to take place in London, May 15-17, 2014 at Goldsmiths and at the Courtauld Institute of Art [both located in London, England].

The call for paper will close March 31, 2014 and it can be accessed at this link:

The conference website is available at this link: http://ocradst.org/soundartcurating/

I did get more information about the OCR from their About page,

Operational and Curatorial Research in Contemporary Art, Design, Science and Technology (OCR) is a research center that focuses on research in the fine arts. Its projects are characterized by elements of interdisciplinarity and transdiciplinarity. OCR engages with public and private institutions worldwide in order to foster innovation and best practices through collaborations and synergies.

OCR has two international outlets: the Media Exhibition Platform (MEP), a platform for peer reviewed exhibitions, and Contemporary Art and Culture (CAC), a peer-reviewed publishing platform for academic texts, artists’ books and catalogs.

Lanfranco Aceti is the founder and director of OCR, MEP and CAC, and has worked in the field for over twenty years.

Here’s more about what the organizers are looking for from the Call for Papers webpage,

Traditionally, the curator has been affiliated to the modern museum as the persona who manages an archive, and arranges and communicates knowledge to an audience, according to fields of expertise (art, archaeology, cultural or natural history etc.). However, in the later part of the 20th century the role of the curator changes – first on the art-scene and later in other more traditional institutions – into a more free-floating, organizational and ’constructive’ activity that allows the curator to create and design new wider relations, interpretations of knowledge modalities of communication and systems of dissemination to the wider public.

This shift is parallel to a changing role of the artist, that from producer becomes manager of its own archives, structures for displays, arrangements and recombinatory experiences that design interactive or analog journeys through sound artworks and soundscapes. Museums and galleries, following the impact of sound artworks in public spaces and media based festivals, become more receptive to aesthetic practices that deny the ‘direct visuality’ of the image and bypass, albeit partially, the need for material and tangible objects. Sound art and its related aesthetic practices re-design ways of seeing, imaging and recalling the visual in a context that is not sensory deprived but sensory alternative.

This is a call for studies into the histories, theories and practices of sound art production and sound art curating – where the creation is to be considered not solely that of a single material but of the entire sound art experience and performative elements.

We solicit and encourage submissions from practitioners and theoreticians on sound art and curating that explore and are linked to issues related to the following areas of interest:

  • Curating Interfaces for Sound + Archives
  • Methodologies of Sound Art Curating
  • Histories of Sound Art Curating
  • Theories of Sound Art Curating
  • Practices and Aesthetics of Sound Art
  • Sound in Performance
  • Sound in Relation to Visuals

Chairs: Lanfranco Aceti, Janis Jefferies, Morten Søndergaard and Julian Stallabrass

Conference Organizers: James Bulley, Jonathan Munro, Irene Noy and Ozden Sahin

The event is supported by LARM [Danish interdisciplinary radiophonic project; Note: website is mixed Danish and English language], Kasa Gallery, Goldsmiths, the Courtauld Institute of Art and Sabanci University.

With the participation and support of the Sonics research special interest group at Goldsmiths, chaired by Atau Tanaka and Julian Henriques.

The event is part of the Graduate Festival at Goldsmiths and the Graduate research projects at the Courtauld Institute of Art.

250 words abstract submissions. Please send your submissions to: info@ocradst.org

Deadline: March 31, 2014.

Good luck!