Tag Archives: turmeric

Curcumin gel for burns and scalds

The curcumin debate continues (see my  Jan. 26, 2017 posting titled: Curcumin: a scientific literature review concludes health benefits may be overstated for more about that). In the meantime, scientists at the University of California at Los Angeles’ (UCLA) David Geffen School of Medicine found that curcumin gel might be effective as a treatment for burns. From a March 14, 2017 Pensoft Publishers news release on EurekAlert (Note: Links have been removed),

What is the effect of Topical Curcumin Gel for treating burns and scalds? In a recent research paper, published in the open access journal BioDiscovery, Dr. Madalene Heng, Clinical Professor of Dermatology at the David Geffen School of Medicine, stresses that use of topical curcumin gel for treating skin problems, like burns and scalds, is very different, and appears to work more effectively, when compared to taking curcumin tablets by mouth for other conditions.

“Curcumin gel appears to work much better when used on the skin because the gel preparation allows curcumin to penetrate the skin, inhibit phosphorylase kinase and reduce inflammation,” explains Dr Heng.

In this report, use of curcumin after burns and scalds were found to reduce the severity of the injury, lessen pain and inflammation, and improve healing with less than expected scarring, or even no scarring, of the affected skin. Dr. Heng reports her experience using curcumin gel on such injuries using three examples of patients treated after burns and scalds, and provides a detailed explanation why topical curcumin may work on such injuries.

Curcumin is an ingredient found in the common spice turmeric. Turmeric has been used as a spice for centuries in many Eastern countries and gives well known dishes, such as curry, their typical yellow-gold color. The spice has also been used for cosmetic and medical purposes for just as long in these countries.

In recent years, the medicinal value of curcumin has been the subject of intense scientific studies, with publication numbering in the thousands, looking into the possible beneficial effects of this natural product on many kinds of affliction in humans.

This study published reports that topical curcumin gel applied soon after mild to moderate burns and scalds appears to be remarkably effective in relieving symptoms and improved healing of the affected skin.

“When taken by mouth, curcumin is very poorly absorbed into the body, and may not work as well,” notes Dr. Heng. “Nonetheless, our tests have shown that when the substance is used in a topical gel, the effect is notable.”

The author of the study believes that the effectiveness of curcumin gel on the skin – or topical curcumin – is related to its potent anti-inflammatory activity. Based on studies that she has done both in the laboratory and in patients over 25 years, the key to curcumin’s effectiveness on burns and scalds is that it is a natural inhibitor of an enzyme called phosphorylase kinase.

This enzyme in humans has many important functions, including its involvement in wound healing. Wound healing is the vital process that enables healing of tissues after injury. The process goes through a sequence of acute and chronic inflammatory events, during which there is redness, swelling, pain and then healing, often with scarring in the case of burns and scalds of the skin. The sequence is started by the release of phosphorylase kinase about 5 mins after injury, which activates over 200 genes that are involved in wound healing.

Dr. Heng uses curcumin gel for burns, scalds and other skin conditions as complementary treatment, in addition to standard treatment usually recommended for such conditions.

Caption: These are results from 5 days upon application of curcumin gel to burns, and results after 6 weeks. Credit: Dr. Madalene Heng

Here’s a link to and a citation for the paper,

Phosphorylase Kinase Inhibition Therapy in Burns and Scalds by Madalene Heng. BioDiscovery 20: e11207 (24 Feb 2017) https://doi.org/10.3897/biodiscovery.20.e1120

This paper is in an open access journal.

Curcumin: a scientific literature review concludes health benefits may be overstated

Given the number of times I’ve featured ‘curcumin research’, it seems only right to include this latest work. A Jan. 11, 2017 American Chemical Society (ACS) news release (also on EurekAlert) describes the results of a review of the scientific literature on curcumin’s (a constituent of turmeric) medicinal effectiveness,

Curcumin, a compound in turmeric, continues to be hailed as a natural treatment for a wide range of health conditions, including cancer and Alzheimer’s disease. But a new review of the scientific literature on curcumin has found it’s probably not all it’s ground up to be. The report in ACS’ Journal of Medicinal Chemistry instead cites evidence that, contrary to numerous reports, the compound has limited — if any — therapeutic benefit.

Turmeric, a spice often added to curries and mustards because of its distinct flavor and color, has been used for centuries in traditional medicine. Since the early 1990’s, scientists have zeroed in on curcumin, which makes up about 3 to 5 percent of turmeric, as the potential constituent that might give turmeric its health-boosting properties. More than 120 clinical trials to test these claims have been or are in the process of being run by clinical investigators. To get to the root of curcumin’s essential medicinal chemistry, the research groups of Michael A. Walters and Guido F. Pauli teamed up to extract key findings from thousands of scientific articles on the topic.

The researchers’ review of the vast curcumin literature provides evidence that curcumin is unstable under physiological conditions and not readily absorbed by the body, properties that make it a poor therapeutic candidate. Additionally, they could find no evidence of a double-blind, placebo-controlled clinical trial on curcumin to support its status as a potential cure-all. But, the authors say, this doesn’t necessarily mean research on turmeric should halt [emphasis mine]. Turmeric extracts and preparations could have health benefits, although probably not for the number of conditions currently touted. The researchers suggest that future studies should take a more holistic approach to account for the spice’s chemically diverse constituents that may synergistically contribute to its potential benefits.

Here’s a link to and citation for the paper,

The Essential Medicinal Chemistry of Curcumin by Kathryn M. Nelson, Jayme L. Dahlin, Jonathan Bisson, James Graham, Guido F. Pauli, and Michael A. Walters. J. Med. Chem., Article ASAP DOI: 10.1021/acs.jmedchem.6b00975 Publication Date (Web): January 11, 2017

Copyright © 2017 American Chemical Society

This paper is open access.

Synthite and its new ‘nano’ line of intensely coloured natural extracts

Synthite Industries, an Indian firm, has just announced a new line of intensely coloured natural extracts  using a nanotechnology process. There’s a little more detail in an Aug. 25, 2016 news article by Robin Wyers for foodingredientsfirst.com,

Indian extracts company Synthite has introduced a new line of colors derived from a nanotechnology process that offers a much brighter and better hue and therefore requires far lower dosages in use. Vextrano is the result of incessant research and scientific deliberations with an aim to give key characteristics to spices and spice derived products at an elemental level. The purpose of the exercise is multi-faceted with a view to develop an array of novel products that can achieve customized applications in food, beverage, cosmetics and pharmaceutical industries.

Ashish Sharma (…) at Synthite briefly explained the concept to FoodIngredientsFirst: “This is a new product range which we commercialized in the market two months ago. We have bought a new plant for the production of these products. We are deriving this range from natural sources. For red colors we are using chili or paprika. For yellow, turmeric, and for green colors we are using black pepper [piperin]. …

“The key thing,” he notes, “is that when we are reducing the size of the particles to a very small level [to a particle level of 180-200 mesh], the dispersion of the light in any solvent is very good. That’s why you get the hue of the color much better.” In scientific terms, the process of maximizing the various active ingredients in a spice by reducing the size and inter molecular porosity to a feasible and ideal extent, without altering its molecular structure, leads to reduced energy consumption, waste generation and time required to achieve the end result in an application.

Sharma stresses that there are no regulatory issues around the use of this new line.  …

Synthite is just starting to roll the product out into market. …

So far, however, the product is only being sold in India, but it will be exported too, with the next promotion occurring at Fi South America, which is currently taking place in Sao Paolo, Brazil.

Vextrano is positioned as a vision for the future based on value addition to the bio-ingredients from spices. Synthite’s range includes: turmeric, spinach, piperine, marigold, paprika, black pepper, annatto and lutein.

Synthite Industries has a Wikipedia entry (Synthite Industrial Chemicals); Note: Links have been removed),

Synthite Industries Ltd (Synthite) is an Indian oleoresin extraction firm, supplying ingredients to the major food, fragrance and flavour houses. The company is based in Kochi. In 2008, it had 30% of the world’s market share,.[1][2]

The company was established in 1972 with 20 employees. It was founded by C.V. Jacob, who started the company after working in civil construction for two decades. Initially it produced industrial chemicals before shifting to oleoresins.[3] The oleoresin business was initially based on research by the Central Food Technological Research Institute in Mysore. However, the technology developed was not yet mature, and it took several years of additional research and development by Synthite to make the technology viable. It took another four years before they convinced food producers that they could produce quality products on time.[2]

By 2008, it has grown to 450 crore and 1200 employees, with a 2012 goal of 1,000 crore.[1] The company achieved this goal, with a total of 2,000 employees. The company only began selling directly to consumers in its native India in 2014.[4] Some of its major clients include Nestle, Bacardi and Pepsi.[4] The company is currently run by the founder’s son, Viju Jacob.[5]

The company produces oleoresin spices, essential oils, food colors, and sprayed products. It also has products that are organic and fair-trade. The company also has investments in realty and hospitality.[1]

You can find Synthite here but I haven’t found anything about Vextrano on that site. However, there is a LinkedIn account for Vextrano here.

Arbro Pharmaceuticals and its bioavailable curcumin

Curcumin (a constituent of the spice turmeric) is reputed to have health benefits and has been used in traditional medicine in Asia (notably India) for millenia. Recently scientists have been trying to render curcumin more effective which means increasing its bioavailability (my Nov. 7, 2014 posting features some of that research). According to an April 29, 2016 Arbro Pharmaceuticals press release, the goal of increased bioavailability has been reached and a product is now available commercially,

Arbro Pharmaceuticals has launched SNEC30, a patented highly bioavailable self-nanoemulsifying curcumin formulation in the dosage of 30mg.

Curcumin is the active ingredient of turmeric or haldi, which has been widely used in traditional medicine and home remedies in India for hundreds of years.

Clinical research conducted over the last 25 years has shown curcumin to be effective against various diseases like cancer, pain, inflammation, arthritis, ulcers, psoriasis, arteriosclerosis, diabetes and many more pro-inflammatory conditions.

Despite its effectiveness against so many medical conditions, scientists have come to believe that curcumin’s true potential has been limited by its poor bioavailability which is caused by the fact that it has poor solubility and extensive pre-systemic metabolism.

Arbro Pharmaceuticals partnered with Jamia Hamdard University to carry out research and develop a novel formulation, which can overcome curcumin’s poor bioavailability. The development project was jointly funded by Arbro and the Department of Science and Technology, Government of India under its DPRP (Drug and Pharmaceutical Research Programme) scheme.

SNEC30 is the outcome of this joint research and is based on a novel self-nanoemulsifying drug delivery systems (SNEDDS) for which patents have been filed and the US patent has been granted.

“There has been tremendous interest in the therapeutic potential of curcumin but its poor bioavailability was a limiting factor, our research group together with Arbro took the challenge and applied nanotechnology to overcome this limitation and achieve highest ever bioavailability for curcumin,” said Dr. Kanchan Kohli, Asst. Prof, Faculty of Pharmacy, Jamia Hamdard University, who is one of the main developers of the formulation.

Nanotechnology is the engineering of functional systems at the molecular scale (CRN – Centre for Responsible Nanotechnology). The name stems from the fact that the structures are in the nano-metre (10-9 mm) in range. In pharmaceutics, nano-formulations are used for targeted drug-delivery, particularly in cancer therapy. It also finds numerous other applications in medicine.

“Just 30mg of curcumin that is contained in one capsule of SNEC30 has shown higher blood levels than what can be achieved by consuming the curcumin content of 1kg of raw haldi or turmeric,” said Mr. Vijay Kumar Arora, Managing Director, Arbro Pharmaceuticals.

About Arbro Pharmaceuticals:

Arbro Pharmaceuticals is a 30-year-old research oriented company with its own research and development, testing and manufacturing facilities. Arbro has been manufacturing and exporting hundreds of formulations under its own brand name to more than 10 countries.

I am not endorsing this product but if you are interested the SNEC30 website is here. I believe Arbro Pharmaceuticals’ headquarters, the company which produces SNEC30, are located in India.

Researching a curcumin delivery system—a nutraceutical story

A Nov. 6, 2014 news item on ScienceDaily features research on delivering curcumin’s (a constituent of turmeric) health benefits more efficiently (there is a twist; for the impatient, you may want to scroll down to where I provide an excerpt from the university’s news release) from Ohio State University (US),

The health benefits of over-the-counter curcumin supplements might not get past your gut, but new research shows that a modified formulation of the spice releases its anti-inflammatory goodness throughout the body.

Curcumin is a naturally occurring compound found in the spice turmeric that has been used for centuries as an Ayurvedic medicine treatment for such ailments as allergies, diabetes and ulcers.

Anecdotal and scientific evidence suggests curcumin promotes health because it lowers inflammation, but it is not absorbed well by the body. Most curcumin in food or supplements stays in the gastrointestinal tract, and any portion that’s absorbed is metabolized quickly.

A Nov. 6, 2014 Ohio State University news release by Emily Caldwell (also on EurekAlert), which originated the news item, explains the interest in curcumin in more detail and describes the research in more detail,

Many research groups are testing the compound’s effects on disorders ranging from colon cancer to osteoarthritis. Others, like these Ohio State University scientists, are investigating whether enabling widespread availability of curcumin’s biological effects to the entire body could make it useful both therapeutically and as a daily supplement to combat disease.

“There’s a reason why this compound has been used for hundreds of years in Eastern medicine. And this study suggests that we have identified a better and more effective way to deliver curcumin and know what diseases to use it for so that we can take advantage of its anti-inflammatory power,” said Nicholas Young, a postdoctoral researcher in rheumatology and immunology at Ohio State and lead author of the study.

Curcumin powder was mixed with castor oil and polyethylene glycol in a process called nano-emulsion (think vinaigrette salad dressing), creating fluid teeming with microvesicles that contain curcumin. This process allows the compound to dissolve and be more easily absorbed by the gut to enter the bloodstream and tissues.

Feeding mice this curcumin-based drug shut down an acute inflammatory reaction by blocking activation of a key protein that triggers the immune response. The researchers were also the first to show that curcumin stops recruitment of specific immune cells that, when overactive, are linked to such problems as heart disease and obesity.

Young and his colleagues, including co-senior authors Lai-Chu Wu and Wael Jarjour of the Division of Rheumatology and Immunology at Ohio State’s Wexner Medical Center, now want to know if curcumin in this form can counter the chronic inflammation that is linked to sickness and age-related frailty. They have started with animal studies testing nano-emulsified curcumin’s ability to prevent or control inflammation in a lupus model.

“We envision that this nutraceutical could be used one day both as a daily supplement to help prevent certain diseases and as a therapeutic drug to help combat the bad inflammation observed in many diseases,” Young said. “The distinction will then be in the amount given – perhaps a low dose for daily prevention and higher doses for disease suppression.”

The term nutraceutical refers to foods or nutrients that provide medical or health benefits.

This news release notes the latest research is built on previous work,

The curcumin delivery system was created in Ohio State’s College of Pharmacy, and these researchers previously showed that concentrations of the emulsified curcumin in blood were more than 10 times higher than of curcumin powder suspended in water.

A more precise description of the current research is then provided (from the news release),

… From there, the researchers launched experiments in mice and cell cultures, generating artificial inflammation and comparing the effects of the nano-emulsified curcumin with the effects of curcumin powder in water or no treatment at all. [emphasis mine]

The researchers injected mice with lipopolysaccharide, a bacteria cell wall extract that stimulates an immune reaction in animals. Curcumin can target many molecules, but the research team zeroed in on NF-kB, a protein that is known to play an important role in the immune response.

In a specialized imaging machine, mice receiving plain curcumin lit up with bioluminescent signals indicating that NF-kB was actively triggering an immune response, while mice receiving nano-emulsified curcumin showed minimal signs – a 22-fold reduction – that the protein had been activated at all.

Knowing that curcumin delivered in this way could shut down NF-kB activation throughout the animals’ bodies, researchers looked for further details about the compound’s effects on inflammation. They found that nano-emulsified curcumin halted the recruitment of immune cells called macrophages that “eat” invading pathogens but also contribute to inflammation by secreting pro-inflammatory chemicals. And in cells isolated from human blood samples, macrophages were stopped in their tracks.

“This macrophage-specific effect of curcumin had not been described before,” Young said. “Because of that finding, we propose nano-emulsified curcumin has the best potential against macrophage-associated inflammation.”

Inflammation triggered by overactive macrophages has been linked to cardiovascular disease, disorders that accompany obesity, Crohn’s disease, rheumatoid arthritis, inflammatory bowel disease, diabetes and lupus-related nephritis.

Here’s a link to and a citation for the paper,

Oral Administration of Nano-Emulsion Curcumin in Mice Suppresses Inflammatory-Induced NFκB Signaling and Macrophage Migration by Nicholas A. Young, Michael S. Bruss, Mark Gardner, William L. Willis, Xiaokui Mo, Giancarlo R. Valiente, Yu Cao, Zhongfa Liu, Wael N. Jarjour, and Lai-Chu Wu. PLOS ONE Published: November 04, 2014 DOI: 10.1371/journal.pone.0111559

This paper is open accesss.

I have an Oct. 1, 2014 posting which features research on curcumin for healing wounds and on tumerone for stimulating the formation of stem cells in the brain.

Iran’s work on turmeric (curcumin) as an anti-cancer drug

It’s been a while since I’ve mentioned either Iran or curcumin (a constituent of turmeric) but an April 15, 2014 news item on Nanowerk has given me an opportunity to do both,

Nanotechnology researchers from Tarbiat Modarres University [Iran] produced a new drug capable of detecting and removing cancer cells using turmeric …

The compound is made of curcumin found in the extract of turmeric, and has desirable physical and chemical stability and prevents the proliferation of cancer cells.

An April 16, 2014 Iran Nanotechnology Initiative Council (INIC) news release, which despite its date appears to have originated the news item, fills in details about the research,

In this drug, curcumin with high efficiency (approximately 87%) was loaded in the polymeric nanocarrier, and it created a spherical structure with the size of 140 nm. The drug has high physical and chemical stability. The drug was used successfully in laboratory conditions in the treatment of a type of aggressive tumor in the central nervous system, called glioblastoma (GBM).

The interesting point is that the fatal effect of nanocurcumin on mature stem cells derived from marrow and natural cells of skin fibroblast is observed at a concentration higher than a concentration that is effective on cancer cells. In other words, no fatal effect on natural cells is observed at concentrations that are fatal to cancer cells. It shows that curcumin prefers to enter cancer cells.

The size range of the nanocarrier used in this research is 15-100 nm. Physical and chemical stability, non-toxicity, and biodegradability are among the main characteristics of the nanocarriers. Based on the results, the nanocarrier used in this research has no toxic effect on cells. In other words, all the death in the cells is caused by curcumin, and dendrosome only results in bioavailability and transference of the drug into the cells.

“The drug has the potential to affect a number of message delivery paths in the cells, one of which is cell proliferation path. Therefore, the drug prefers to enter cancer cells rather than various types of natural cells,” the researchers said.

Here’s a link to and a citation for the paper,

Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells by Maryam Tahmasebi Mirgani, Benedetta Isacchi, Majid Sadeghizadeh, Fabio Marra, Anna Rita Bilia, Seyed Javad Mowla, Farhood Najafi, & Esmael Babaei. International Journal of Nanomedicine, vol. 9, issue 1, January 2014, pp. 403-417.DOI: http://dx.doi.org/10.2147/IJN.S48136

This is an open access paper.

I last wrote about turmeric or more specifically curcumin in a December 25, 2011 posting about research at UCLA (University of California at Los Angeles).

At the nanoscale, grapefruit swings from being medication danger to medication enhancer

It’s known that grapefruit, despite its health benefits, can inhibit (or even a pose danger) to a medication’s effectiveness. Most of us have been warned at one time or another to avoid grapefruit juice when downing a pill. So, the news from the University of Louisville (Kentucky; UofL) about grapefruit as part of a drug delivery system seems a little counter-intuitive (from the May 22, 2013 news item on Azonano),

Grapefruits have long been known for their health benefits, and the subtropical fruit may revolutionize how medical therapies like anti-cancer drugs are delivered to specific tumor cells.

University of Louisville researchers have uncovered how to create nanoparticles using natural lipids derived from grapefruit, and have discovered how to use them as drug delivery vehicles. UofL scientists Huang-Ge Zhang, D.V.M., Ph.D., Qilong Wang, Ph.D., and their team today (May 21, 2013), published their findings in Nature Communications.

The May 21, 2013 University of Louisville news release by Julie Heflin, which originated the news item, describes how the nanoparticles are derived and their advantages,

“These nanoparticles, which we’ve named grapefruit-derived nanovectors (GNVs), are derived from an edible plant, and we believe they are less toxic for patients, result in less biohazardous waste for the environment and are much cheaper to produce at large scale than nanoparticles made from synthetic materials,” said Zhang, who holds the Founders Chair in Cancer Research at the Brown Cancer Center.

The researchers demonstrated that GNVs can transport various therapeutic agents, including anti-cancer drugs, DNA/RNA and proteins such as antibodies. Treatment of animals with GNVs seemed to cause less adverse effects than treatment with drugs encapsulated in synthetic lipids.

“Our GNVs can be modified to target specific cells — we can use them like missiles to carry a variety of therapeutic agents for the purpose of destroying diseased cells,” he said. “Furthermore, we can do this at an affordable price.”

The therapeutic potential of grapefruit derived nanoparticles was further validated through a Phase 1 clinical trial for treatment of colon cancer patients. So far, researchers have observed no toxicity in the patients who orally took the anti-inflammatory agent curcumin encapsulated in grapefruit nanoparticles.

The UofL scientists also plan to test whether this technology can be applied in the treatment of inflammation related autoimmune diseases like rheumatoid arthritis.

Here’s a link to and a citation for the researchers’ paper,

Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids by Qilong Wang, Xiaoying Zhuang, Jingyao Mu, Zhong-Bin Deng, Hong Jiang, Xiaoyu Xiang, Baomei Wang, Jun Yan, Donald Miller, & Huang-Ge Zhang. Nature Communications 4, 1867 doi:10.1038/ncomms2886 Published 21 May 2013

This paper is behind a paywall.

As for the dangers of grapefruit-medication interactions, ABC (American Broadcasting Corporation) has a Nov. 26, 2012 news item featuring then new research suggesting that even more medications are affected by grapefruit/grapefruit juice than had previously been believed,

It has long been known that grapefruit juice can pose dangerous — and even deadly — risks when taken along with certain medications. Now, experts warn the list of medications that can result in these interactions is longer than many may have believed.

In a new report released Monday in the Canadian Medical Association Journal [CMAJ], researchers at the University of Western Ontario said that while 17 drugs were identified in 2008 as having the potential to cause serious problems when taken with grapefruit, this number has now grown to 43.

So how does a common breakfast fruit cause these problems? Grapefruits contain chemicals called furanocoumarins that interfere with how your body breaks down drugs before they enter the bloodstream. By preventing this normal breakdown of a drug, these chemicals in grapefruit can effectively cause a drug overdose and more severe side-effects.

Among the side effects sometimes seen with grapefruit-induced overdoses are heart rhythm problems, kidney failure, muscle breakdown, difficulty with breathing and blood clots. …

ABC provides a list of drugs that are affected by grapefruit here.

For interested parties, here’s a link to and a citation for the research on grapefruit-medication interactions,

Grapefruit–medication interactions: Forbidden fruit or avoidable consequences? by David G. Bailey, George Dresser, and J. Malcolm O. Arnold. CMAJ March 5, 2013 185:309-316; published ahead of print November 26, 2012,

This paper is behind a paywall.

I have a couple of final comments. (1) It would seem that the grapefruit’s characteristics at the macroscale are not echoed at the nanoscale. (2) Interestingly, the grapefruit nanoparticles (grapefruit nanovectors [GNVs]) are being used to encapsulate curcumin (a constituent of turmeric). I wrote about turmeric and its healing properties in a Dec. 26, 2011 posting, which features a number of links to research in this area.

Turmeric, healing, and nanotechnology

Turmeric gives its distinctive yellow colour to the type of curry we always ate at home. All these years later, it’s a bit of a surprise to learn that turmeric has healing properties. From the Sept. 13, 2011 news item on MedicalXpress.com,

Curcumin, the main component in the spice turmeric, suppresses a cell signaling pathway that drives the growth of head and neck cancer, according to a pilot study using human saliva by researchers at UCLA’s Jonsson Comprehensive Cancer Center.

“This study shows that curcumin can work in the mouths of patients with head and neck malignancies and reduce activities that promote cancer growth,” Wang [Dr. Marilene Wang, senior author and professor of head and neck surgery] said. “And it not only affected the cancer by inhibiting a critical cell signaling pathway, it also affected the saliva itself by reducing pro-inflammatory cytokines within the saliva.”

Unfortunately, the amounts used in cooking are not sufficient for a cancer inhibiting effect,

To be effective in fighting cancer, the curcumin must be used in supplement form. Although turmeric is used in cooking, the amount of curcumin needed to produce a clinical response is much larger. Expecting a positive effect through eating foods spiced with turmeric is not realistic, Wang said.

There is a bit of a downside to the type of supplement they used in this study,

The curcumin was well tolerated by the patients and resulted in no toxic effects. The biggest problem was their mouths and teeth turned bright yellow.

As you might expect, the next study will be for a longer period,

The next step for Wang and her team is to treat patients with curcumin for longer periods of time to see if the inhibitory effects can be increased. They plan to treat cancer patients scheduled for surgery for a few weeks prior to their procedure. They’ll take a biopsy before the curcumin is started and then at the time of surgery and analyze the tissue to look for differences.

“There’s potential here for the development of curcumin as an adjuvant treatment for cancer,” Wang said. “It’s not toxic, well tolerated, cheap and easily obtained in any health food store. While this is a promising pilot study, it’s important to expand our work to more patients to confirm our findings.”

There have been two feature articles on Nanowerk about curcumin, its healing properties, which extend beyond treating head and neck cancer, and patents during fall 2011. From the Sept. 8, 2011 article, Nanotechnology-enhanced curcumin: Symbiosis of ancient wisdom of the East with modern medical science [Note: I have removed citation notes],

Turmeric (Curcuma longa L.) is the shining star among the cornucopia of traditional medicinal plants. It has a long history of usage in traditional medicine in India and China. Ancient Indians have known the medicinal properties of turmeric, thus curcumin, for several millennia.

The cultivation of turmeric plants began in Harappan civilization in 3000 BC and Susruta Samhita, dating back to 250 BC, highly recommends use of an ointment based on turmeric for relieving food poisoning effect. Turmeric was introduced to China from India by 700 A.D. and has been said to be long used as a medicinal herb. It has been used in Ayurvedic medicines internally as a stomach tonic and blood purifier, and topically in the prevention and treatment of skin diseases.

In the scientific literature there is a large body of evidence showing that curcuminoids exhibit a broad spectrum of biological and pharmacological activities including anti-oxidant, anti-inflammatory, anti-bacterial, anti-fungal, anti-parasitic, anti-mutagen, anti-cancer and detox properties. Curcumin’s unique ability to work through so many different pathways with its extraordinary antioxidant and anti-inflammatory attributes can have a positive influence in combating almost every known disease.

Extensive studies carried out by researchers around the globe have clearly demonstrated curcumin’s great potential as a thercurcuminapeutic agent, and have paved the way towards conducting clinical trials for a variety of diseases including cancer, cardiovascular, neurological and gastrointestinal disorders, multiple sclerosis, diabetes type II, skin diseases, cystic fibrosis, cataract etc.  [Note: There is also an extensive discussion of cancer treatment included in this article.]

Here are the active components (as understood by scientists currently),

The bio-active polyphenol component of turmeric is curcumin, also known as diferuloylmethane (C21H20O6), with an ability to prevent and cure diseases. Turmeric contains about 2-5% curcumin alone. Commercial curcumin contains three main types of curcuminoids, i.e., curcumin (diferuloylmethane or”Curcumin I” about 77%), demethoxy curcumin (“Curcumin II” ∼17%) and bis demethoxy curcumin (“Curcumin III” ∼3%)). Curcumin (diferuloylmethane renders its bright yellow color to turmeric. In addition to natural curcumin, several analogues of curcumin have been synthesized and studied. These include tetrahydrocurcumin (antioxidative), 4-hydroxy-3-methoxybenzoic acid methyl ester (HMBME), aromatic enone and dienone analogues, metal chelates of synthetic curcuminoids etc.

There has already been one court case regarding a curcumin patent,

Recently, turmeric came into the global limelight when the controversial patent “Use of Turmeric in Wound Healing” was awarded, in 1995, to the University of Mississippi Medical Center, USA. Indian Council of Scientific and Industrial Research (CSIR) aggressively contested this award of the patent. It was argued by them that turmeric has been an integral part of the traditional Indian medicinal system over several centuries, and therefore, is deemed to be ‘prior art’, hence is in the public domain. Subsequently, after protracted technical/legal battle USPTO decreed that turmeric is an Indian discovery and revoked the patent.

I wonder if this will set a precedent for other herbs and plants that are associated with specific cultures or indigenous groups as part of their healing tradition. Much of our modern pharamcopoeia is derived from traditional healing plants and the people who shared that knowledge have not shared in the benefits that large pharmaceutical companies have reaped.

Back to the curcumin and the issue of low bioavailability (in Wang’s study mentioned earlier, patients were given 2 tablets totaling 1000 miligrams of curcumin and it seems that was done once),

In practice, only very low or undetectable levels of curcumin can be achieved in blood by oral administration of curcumin. The low bioavailability of curcumin has been attributed to its very low aqueous solubility, tendency to degrade in the gastroinenstinal tract in the physiological environment, high rate of metabolism, and rapid systemic elimination. The low bioavailability of curcumin has so far limited its medical use. It has been suggested that a person is required to consume large doses (about 12-20g/day) of curcumin in order to achieve its therapeutic effects on the human body. That means one has to swallow 24 to 40 curcumin capsules of 500mg each. These doses are considered to be too high, and therefore, not feasible to be incorporated in clinical trials due to unbearable after-taste to the palate, possibility of giving rise to nauseatic feeling and perceived toxicity issues.

Therefore, to achieve the maximum response of this potentially useful chemopreventive agent, a number of approaches such as the use of adjuvants like piperine, synthetic analogues, chelating of curcumin with metals, combination with other dietary agents etc. have been investigated. Nanotechnology-based novel strategies are being aggressively explored worldwide to enhance curcumin’s bioavailability and reduce perceived toxicity as they offer several other additional benefits such as improved cellular uptake, enhanced dissolution rates, excellent blood stability, controlled release functions, multifunctional design, enhancement in its pharmacological activities (e.g. antioxidant and antihepatoma activities) etc.

This article and the Dec. 22, 2011 article, Nanotechnology-enhanced curcumin – literature and patent analysis, on Nanowerk were both written by Dr. Yashwant Mahajan (by himself for the Sept. 8  article and with Ratnesh Kumar Gaur for the Dec. 22 article), Centre for Knowledge Management of Nanoscience and Technology (CKMNT). There is more detail about the nanotechnology-based strategies to increase bioavailability in the Dec. 22, 1011 article,

These approaches include solid-lipid nanoparticles, nanosuspension, nanoemulsion, cyclodextrin curcumin self assembly, hydrogel nanoparticles, curcumin-phospholipid complex and curcumin incorporated within polymer nanoparticles. The figure below shows these various nano-based approaches for drug delivery of curcumin in the form of a pie chart and this survey is based on 124 relevant patents for the period from 2001 to 2010. As depicted in this pie chart [in the article on Nanowerk] polymer nanoparticles play a dominant role (34%) followed by curcumin nanoemulsion (20%), nanosuspension (13%), phospholipids complex (12%), cyclodextrin curcumin self-assembly, hydrogel NPs and SLNs in decreasing order. The polymer nanoparticles-incorporated drug delivery systems are further subdivided into various classes of polymers such as generic polymers, liposomal, PEG, micelle, PLGA, and as can be seen, generic polymers, liposomal, PEG and micelle play a dominant role in decreasing order.

Curcumin is still being patented but it seems the focus on delivering curcumin more efficiently for therapeutic use,

The analysis reveals that Laila Pharmaceuticals Private Ltd., Chennai, India is the world leader with 8 patent applications to their credit and their main focus is on nanoemulsification of curcumin and its derivatives. Second in the ranking are Johns Hopkins University, USA, and University of North Texas, USA with 7 patent applications each to their credit and their inventions are directed towards use of polymer nanoparticle encapsulated curcumin and curcumin loaded with PLGA-nanoparticles, respectively. The analysis has also revealed that R&D institutes, universities and only a few small bio and pharma companies such as Laila Pharmaceuticals, Magforce Nanotechnologies, Bioderm Research, Nano Cutting Edge Technologies etc. are involved in the patenting activity.

I did check out the Centre for Knowledge Management of Nanoscience and Technology (CKMNT) where Dr. Mahajan works and which was launched in 2009. From the About Us page,

CKMNT was launched on 1st April 2009 at Hyderabad by the International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI) as one of its project centres. The centre has been set up to foster the exchange and dissemination of advanced technological knowledge and expertise to meet the needs of the nanoresearchers, industry, policy makers, financial institutions and venture capitalists. CKMNT has been partially funded by the Department of Science and Technology (DST), Govt. of India in a project mode and would help in fulfilling the objectives of the Nano Mission of DST.

The Centre’s team is made up of metallurgy and chemical engineering experts, none of whom seem to have worked in medicine or health care, which makes this interest in turmeric a little surprising.