Tag Archives: UBC

The world’s smallest machines at Vancouver’s (Canada) May 27, 2014 Café Scientifique

Vancouver’s next Café Scientifique is being held in the back room of the The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), on Tuesday, May 27,  2014 at 7:30 pm. Here’s the meeting description (from the May 21, 2014 announcement),

Our speaker is Dr. Nicholas White from UBC Chemistry. The title and abstract of his talk is:

The world’s smallest machines

In the last 50 years, chemists have developed the ability to produce increasingly intricate and complex molecules. One example of this is the synthesis of “interlocked molecules”: two or more separate molecules that are mechanically threaded through one another (like links of a chain). These interlocked molecules offer potential use for a range of different applications. In particular they have been developed for use as molecular machines: devices that are only a few nanometers in size, but can perform physical work in response to a stimulus (e.g. light, heat). This talk will describe the development of interlocked molecules, and explore their potential applications as nano-devices.

Nicholas (Nick) White is a member of the MacLachlan Group. The group’s leader, Mark MacLachlan was mentioned here in a March 25, 2011 post regarding his Café Scientifique talk on beetles, biomimcry, and nanocrystalline cellulose (aka, cellulose nanocrystals). As well, MacLachlan was mentioned in a May 21, 2014 post about the $!.65M grant he received for his NanoMAT: NSERC CREATE Training Program in Nanomaterials Science & Technology.

As for Nick White, there’s this on the MacLachlan Group homepage, (scroll down about 25% of the way),

Nick completed his undergraduate degree at the University of Otago in his home town of Dunedin, New Zealand (working on transition metal complexes with Prof. Sally Brooker). After a short break working and then travelling, he completed his DPhil at the University of Oxford, working with Prof. Paul Beer making rotaxanes and catenanes for anion recognition applications. He is now a Killam Postdoctoral Fellow in the MacLachlan group working on supramolecular materials based on triptycene and silsesquioxanes (although he has difficulty convincing people he’s old enough to be a post-doc). Outside of chemistry, Nick is a keen rock climber, and is enjoying being close to the world-class rock at Squamish. He also enjoys running, playing guitar, listening to music, and drinking good coffee.

I wonder if a Café Scientifique presentation is going to be considered as partial fulfillment for the professional skills-building requirement of the MacLachlan’s NanoMAT: NSERC CREATE Training Program in Nanomaterials Science & Technology.

CREATE ISOSIM (isotopes for science and medicine) and NanoMat (nanomaterials) program at the University of British Columbia (Canada)

It seems the Natural Sciences and Engineering Research Council (NSERC; one of Canada’s ‘big three’ science national funding agencies) has a new funding program, CREATE (Collaborative Research and Training Experience) and two local (Vancouver, Canada) institutions, the University of British Columbia (UBC) and TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics) are beneficiaries to the tune of $3.3M.

Before getting the happy news, here’s a little information about this new NSERC program (from the CREATE page),

The Collaborative Research and Training Experience (CREATE) Program supports the training of teams of highly qualified students and postdoctoral fellows from Canada and abroad through the development of innovative training programs that:

  • encourage collaborative and integrative approaches, and address significant scientific challenges associated with Canada’s research priorities; and
  • facilitate the transition of new researchers from trainees to productive employees in the Canadian workforce.

These innovative programs must include the acquisition and development of important professional skills among students and postdoctoral fellows that complement their qualifications and technical skills.

In addition, these programs should encourage the following as appropriate:

  • student mobility, nationally or internationally, between individual universities and between universities and other sectors;
  • interdisciplinary research within the natural sciences and engineering (NSE), or at the interface between the NSE and health, or the social sciences and humanities. However, the main focus of the training must still lie within the NSE;
  • increased collaboration between industry and academia; and
  • for the industrial stream, an additional objective is to support improved job-readiness within the industrial sector by exposing participants to the specific challenges of this sector and training people with the skills identified by industry.

I wonder what they mean by “professional skills?” They use the phrase again in the Description,

The CREATE Program is designed to improve the mentoring and training environment for the Canadian researchers of tomorrow by improving areas such as professional skills, communication and collaboration, as well as providing experience relevant to both academic and non-academic research environments.

This program is intended for graduate students and has two streams, Industrial and International Collaboration. At this point, they have two international collaboration partners, one each in Germany and in Brazil.

There’s a subsection on the CREATE page titled Merit of the proposed training program (in my world that’s ‘criteria for assessment’),

Applicable to all applications:

  • the extent to which the program is associated with a research area of high priority to Canada and will provide a higher quality of training;
  • how the research area proposed relates to the current scientific or technical developments in the field, with references to the current literature;
  • the extent to which the research training program will facilitate the transition of the trainees to the Canadian workforce and will promote interaction of the trainees with non-academic sectors, such as private companies, industry associations, not-for-profit organizations, government departments, etc., as appropriate;
  • the description of the potential employers and a qualitative assessment of the job prospects for trainees;
  • the extent to which the program will provide opportunities for the trainees to develop professional skills;
  • the extent to which the program uses novel and interesting approaches to graduate student training in an integrated manner to provide an enriched experience for all participants;
  • the research training program’s focus and clarity of objectives, both short- and long-term; and
  • the added value that trainees will receive through their participation.

Clearly, this program is about training tomorrow’s workers and I expect CREATE is welcome in many corners. We (in Canada and elsewhere internationally) have a plethora of PhDs and nowhere for them to go. I have, of course, two provisos. First, I hope this program is not a precursor to a wholesale change in funding to a indulge a form of short-term thinking. Not every single course of study has to lead to a clearly defined job as defined by industry. Sometimes, industry doesn’t know what it needs until there’s a shortage. Second, I hope the administrators for this program support it. You (the government) can formulate all sorts of great policies but it’s the civil service that will implement your policies and if they don’t support them, you (the government) are likely to experience failure.

Here’s the CREATE funding announcement in a May 19, 2014 news item on Azonano,

Researchers studying nanomaterials and isotopes at the University of British Columbia received a $3.3 million boost in funding from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Two UBC teams, led respectively by Chemistry Prof. Mark MacLachlan and Physics Prof. Reiner Kruecken, received $1.65 million each from NSERC’s Collaborative Research and Training Experience (CREATE) grants. The funding extends over a six-year period. The investment will help MacLachlan and Kruecken mentor and train graduate students and postdoctoral fellows.

A May 16, 2014 UBC news release, which originated the news item, provides more information including some background for the two project leaders,

Mark MacLachlan, Professor, UBC Department of Chemistry
NanoMAT: NSERC CREATE Training Program in Nanomaterials Science & Technology

Nanomaterials have dimensions about 1/1000th the width of a human hair. Though invisible to our eyes, these materials are already used for diagnosing and treating diseases, environmental remediation, developing solar cells and batteries, as well as other applications. Nanomaterials form a multi-billion dollar industry that is expanding rapidly. To address the growing need for highly qualified trainees in Canada, UBC researchers have spearheaded the NanoMat program. Through a unique interdisciplinary training program, science and engineering students will undertake innovative research projects, receive hands-on training, and undertake internships at companies in Canada and across the world.

Reiner Kruecken, Professor, UBC Department of Physics and Astronomy
ISOSIM, ISOtopes for Science and Medicine

The ISOSIM program is designed to provide students with enriched training experiences in the production and preparation of nuclear isotopes for innovative applications that range from medical research and environmental science to investigations of the foundations of the universe. This will prepare students for positions in a number of Canadian industrial sectors including medical diagnostics and treatment, pharmaceutical sciences, development of next-generation electronic devices, environmental sciences, and isotope production. This project builds on the existing cooperation between UBC and TRIUMF, Canada’s national laboratory for particle and nuclear phsyics, [sic] on isotopes science.

Not mentioned in the UBC news release is that ISOSIM is a program that is jointly run with TRIUMF, Canada’s National Laboratory for Particle and Nuclear Physics. Here’s how TRIUMF views their CREATE grant, from a May 16, 2014 TRIUMF news release,

The ISOSIM program will train undergraduate students, graduate students, and postdoctoral researchers at UBC and TRIUMF from fields associated with isotope sciences in an individually tailored, interdisciplinary curriculum that will build on and complement the education in their specialty field. Unique in Canada, this program offers a combination of interdisciplinary isotope-related training ranging from pure to applied sciences, industrial internships, and mobility with German research institutions with unique large-scale equipment and scientific infrastructures.

It seems this particular grant was awarded as part of the international collaboration stream. (I wonder if TRIUMF or TRIUMF-friendly individuals had a role in developing that particular aspect of the CREATE program. Following on that thought, is there a large Canadian science organization with ties to Brazil?)

Getting back to TRIUMF’s current CREATE grant, the news release emphasizes an industrial focus,

“ISOSIM represents a timely and nationally important training initiative and is built on a world-class collaborative research environment,” says Dr. Reiner Kruecken, TRIUMF’s Science Division Head and Professor at UBC Department of Physics and Astronomy. Kruecken is leading the ISOSIM initiative and is joined by over twenty collaborators from UBC, TRIUMF, and several research institutes in Germany.

ISOSIM is poised to create the next generation of leaders for isotope-related industries and markets, including commercial, public health, environmental, and governmental sectors, as well as academia. The combination of research institutions like UBC, TRIUMF, and the BC Cancer Agency with Canadian companies like Nordion Inc., and Advanced Cyclotron Solutions Inc., have transformed Vancouver into a hub for isotope-related research and industries, emerging as “Isotope Valley”.

The inspiration for the ISOSIM program came from an interdisciplinary TRIUMF-led team who, in response to the isotope crisis, demonstrated non-reactor methods for producing the critical medical isotope Tc-99m. This required a coordinated approach of physicists, chemists, biologists, and engineers.

Similar interdisciplinary efforts are needed for expanding the use and application of isotopes in key areas. While their medical use is widely known, isotopes enjoy growing importance in many fields. Isotopes are used as tracers to examine the trace flow of nutrients and pollutants in the environment. Isotopes are also used to characterize newly designed materials and the behaviour of nanostructured materials that play a key role in modern electronics devices. The production and investigation of very short-lived radioactive isotopes, also known as rare-isotopes, is a central approach in nuclear physics research to understand the nuclear force and how the chemical elements heavier than iron were formed in stars and stellar explosions.

I really wish they (marketing/communications and/or business people) would stop trying to reference ‘silicon valley’ as per this news release’s ‘isotope valley’. Why not ‘isotope galaxy’? It fits better with the isotope and star theme.

Getting back to the “professional skills” mentioned in the CREATE grant description, I don’t see any mention of etiquette, good manners, listening skills, or the quality of humility, all of which are handy in the workplace and having had my share of experience dealing with fresh out-of-graduate-school employees, I’d say they’re sorely needed.

Regardless, I wish both MacLachlan and Krueken the best as they and their students pioneer what I believe is a new NSERC program.

Musical Acoustics at Vancouver’s (Canada) April 29, 2014 Café Scientifique

Vancouver’s next Café Scientifique is being held in the back room of the The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), on Tuesday, April 29,  2014 at 7:30 pm. Here’s the meeting description (from the April 23, 2014 announcement),

Our next café will happen on Tuesday, April 29, 7:30pm at The Railway Club. Our speaker is Dr. Chris Waltham from UBC Physics and Astronomy. The title and abstract of his talk is:

Musical Acoustics: What do soundboxes do and how do they work? 
 

Nearly all string instruments have soundboxes to radiate the vibrational energy of the strings. These wooden boxes tend to be objects of beauty and of iconic shapes (think of a violin or guitar), but seldom is any thought given to how they work. A large part of the field of musical acoustics is the analysis of sound boxes, and although the question of “quality” remains elusive, much progress has been made. For example, pretty much every feature of a violin’s morphology can be understood in terms of vibroacoustics and ergonomics, rather than visual aesthetics (with the possible exception of the scroll, of course). Although Andrea Amati would not have used the language and methods of mechanical engineering, the form he perfected most definitely follows its function.

I like to talk about acoustics and violins. Also harps, guitars, guqins and guzhengs.

For anyone curious about Andrea Amati, there’s this from his Wikipedia entry (Note: Links have been removed),

Andrea Amati was a luthier, from Cremona, Italy.[1][2] Amati is credited with making the first instruments of the violin family that are in the form we use today.[3] According to the National Music Museum in Vermillion, South Dakota:

It was in the workshop of Andrea Amati (ca. 1505-1577) in Cremona, Italy, in the middle of the 16th century that the form of the instruments of the violin family as we know them today first crystallized.

Several of his instruments survive to the present day, and some of them can still be played.[3][4] Many of the surviving instruments were among a consignment of 38 instruments delivered to Charles IX of France in 1564.

As for guqins and guzhengs, they are both Chinese stringed instruments of 7 strings and 18 or more strings, respectively.

Vancouver (Canada) and a city conversation about science that could have been better

Institutional insularity is a problem one finds everywhere. Interestingly, very few people see it that way due in large part to self-reinforcing loopbacks. Take universities for example and more specifically, Simon Fraser University’s April 17, 2014 City Conversation (in Vancouver, Canada) featuring Dr. Arvind Gupta (as of July 2014, president of the University of British Columbia) in a presentation titled: Creativity! Connection! Innovation!

Contrary to the hope I expressed in my April 14, 2014 post about the then upcoming event, this was largely an exercise in self-reference. Predictably with the flyer they used to advertise the event (the text was reproduced in its entirety in my April 14, 2014 posting), over 90% in the audiences (Vancouver, Burnaby, and Surrey campuses) were associated with one university or another.  Adding to the overwhelmingly ‘insider’ feel of this event, the speaker brought with him two students who had benefited from the organization he currently leads, Mitacs (a Canadian not-for-profit organization that offers funding for internships and fellowships at Canadian universities and formerly a mathematics NCE (Networks of Centres of Excellence of Canada program; a Canadian federal government program).

Despite the fact that this was billed as a ‘city conversation’ the talk focused largely on universities and their role in efforts to make Canada more productive and the wonderfulness of Mitacs. Unfortunately, what I wanted to hear and talk about was how Gupta, the students, and audience members saw the role of universities in cities, with a special reference to science.

It was less ‘city’ conversation and more ‘let’s focus on ourselves and our issues’ conversation. Mitacs, Canada’s productivity, and discussion about universities and innovation is of little inherent interest to anyone outside a select group of policy wonks (i.e., government and academe).

The conversation was self-referential until the very end. In the last minutes Gupta mentioned cities and science in the context of how cities in other parts of the world are actively supporting science. (For more about this interest elsewhere, you might find this Oct. 21, 2010 posting which features an article by Richard Van Noorden titled, Cities: Building the best cities for science; Which urban regions produce the best research — and can their success be replicated? as illuminating as I did.)

i wish Gupta had started with the last topic he introduced because Vancouverites have a lot of interest in science. In the last two years, TRIUMF, Canada’s national laboratory for particle and nuclear physics, has held a number of events at Science World and elsewhere which have been fully booked with waiting lists. The Peter Wall Institute for Advanced Studies has also held numerous science-themed events which routinely have waiting lists despite being held in one of Vancouver’s largest theatre venues.

If universities really want to invite outsiders into their environs and have city conversations, they need to follow through on the promise (e.g. talking about cities and science in a series titled “City Conversations”), as well as, do a better job of publicizing their events, encouraging people to enter their sacred portals, and addressing their ‘outsider’ audiences.

By the way, I have a few hints for the student speakers,

  • don’t scold your audience (you may find Canadians’ use of space shocking but please keep your indignation and sense of superiority to yourself)
  • before you start lecturing (at length) about the importance of interdisciplinary work, you might want to assess your audience’s understanding, otherwise you may find yourself preaching to the choir and/or losing your audience’s attention
  • before you start complaining that there’s no longer a mandatory retirement age and suggesting that this is the reason you can’t get a university job you may want to consider a few things: (1) your audience’s average age, in this case, I’d estimate that it was at least 50 and consequently not likely to be as sympathetic as you might like (2) the people who work past mandatory retirement may need the money or are you suggesting your needs are inherently more important? (3) whether or not a few people stay on past their ‘retirement’ age has less to do with your university job prospects than demographics and that’s a numbers game (not sure why I’d have to point that out to someone who’s associated with a mathematics organization such as Mitacs)

I expect no one has spoken or will speak to the organizers, Gupta, or the students other than to give them compliments. In fact, it’s unlikely there will be any real critique of having this presentation as part of a series titled “City Conversations” and that brings this posting back to institutional insularity. This problem is everywhere not just in universities and I’m increasingly interested in approaches to mitigating the tendency. If there’s anyone out there who knows of any examples where insularity has been tackled, please do leave a comment and, if possible, links.

Creativity—Connection—Innovation—Dr. Arvind Gupta leads a City (Vancouver, Canada) Conversation this Thursday, April 17, 2014

There’s a lot of excitement about Simon Fraser University’s (SFU) upcoming City Conversation’s April 17, 2014 session featuring Dr. Arvind Gupta, computer scientist and newly appointed president of the University of British Columbia (UBC). Being held at 12:30 pm at SFU’s Harbour Centre campus, the event will be broadcast (this is a first for the City Conversations program) to both the Burnaby and Surrey campuses as well.  Here’s a description of the event and of the speaker, along with more details about the locations (from the April 13, 2014 announcement; Note: Links have been removed),,

This week’s City Conversation [titled: Creativity! Connection! Innovation!] will feature Dr. Arvind Gupta, who will discuss the world of research collaborations and innovation, and the role universities and student entrepreneurs play while bringing their ideas to market.

The event will take place at SFU’s Vancouver campus (Harbour Centre, 515 West Hastings St., Room 7000), from 12:30-1:30pm on April 17, and for the first time City Conversations will be simulcast and open to audiences at SFU’s Burnaby (IRMACS Theatre, ASB 10900) and Surrey (Room 5380) campuses.

Participants at SFU’s satellite locations will be able to comment and ask questions of the presenters through video conferencing, with SFU associate vice president, External Relations Joanne Curry (Burnaby) and SFU Surrey executive director Steve Dooley (Surrey) serving as moderators.

Dr. Gupta, former SFU professor and current CEO and scientific director of Mitacs [Canadian not-for-profit organization that offers funding for internships and fellowships at Canadian universities and formerly a mathematics NCE (Networks of Centres of Excellence of Canada) program {a Canadian federal government program}]. Launched at SFU in 1999, Mitacs supports national innovation by coordinating collaborative industry-university research projects with human capital development at its core.

I understand from City Conversations organizer, Michael Alexander, audio will be recorded and a file will be available. I’m not sure what the timing is but the City Conversations Past Event and Recordings webpage is where you can check for the audio file.

I noticed the talk seems to be oriented to the interests of students and staff but am hopeful that some reference will be made to the impact that creativity, connection, and innovation have on a city and how we in Vancouver could participate.

One biographical note of my own here, for two years I tried to contact Michael Alexander with an idea of a City Conversation. We had that conversation March 31, 2014. It was largely focused on my desire to have some science-oriented City Conversations and this is the outcome (and fingers crossed not the last one). I am thrilled to bits.  For anyone wondering what Gupta’s talk has to do with science, innovation is, usually and internationally, code for applied science and technology.

The human body as a musical instrument: performance at the University of British Columbia on April 10, 2014

It’s called The Bang! Festival of interactive music with performances of one kind or another scheduled throughout the day on April 10, 2014 (12 pm: MUSC 320; 1:30 PM: Grad Work; 2 pm: Research) and a finale featuring the Laptop Orchestra at 8 pm at the University of British Columbia’s (UBC) School of Music (Barnett Recital Hall on the Vancouver campus, Canada).

Here’s more about Bob Pritchard, professor of music, and the students who have put this programme together (from an April 7, 2014 UBC news release; Note: Links have been removed),

Pritchard [Bob Prichard], a professor of music at the University of British Columbia, is using technologies that capture physical movement to transform the human body into a musical instrument.

Pritchard and the music and engineering students who make up the UBC Laptop Orchestra wanted to inject more human performance in digital music after attending one too many uninspiring laptop music sets. “Live electronic music can be a bit of an oxymoron,” says Pritchard, referring to artists gazing at their laptops and a heavy reliance on backing tracks.

“Emerging tools and techniques can help electronic musicians find more creative and engaging ways to present their work. What results is a richer experience, which can create a deeper, more emotional connection with your audience.”

The Laptop Orchestra, which will perform a free public concert on April 10, is an extension of a music technology course at UBC’s School of Music. Comprised of 17 students from Arts, Science and Engineering, its members act as musicians, dancers, composers, programmers and hardware specialists. They create adventurous electroacoustic music using programmed and acoustic instruments, including harp, piano, clarinet and violin.

Despite its name, surprisingly few laptops are actually touched onstage. “That’s one of our rules,” says Pritchard, who is helping to launch UBC’s new minor degree in Applied Music Technology in September with Laptop Orchestra co-director Keith Hamel. “Avoid touching the laptop!”

Instead, students use body movements to trigger programmed synthetic instruments or modify the sound of their live instruments in real-time. They strap motion sensors to their bodies and instruments, play wearable iPhone instruments, swing Nintendo Wiis or PlayStation Moves, while Kinect video cameras from Sony Xboxes track their movements.

“Adding movement to our creative process has been awesome,” says Kiran Bhumber, a fourth-year music student and clarinet player. The program helped attract her back to Vancouver after attending a performing arts high school in Toronto. “I really wanted to do something completely different. When I heard of the Laptop Orchestra, I knew it was perfect for me. I begged Bob to let me in.”

The Laptop Orchestra has partnered itself with UBC’s Dept. of Computer and Electrical Engineering (from the news release),

The engineers come with expertise in programming and wireless systems and the musicians bring their performance and composition chops, and program code as well.

Besides creating their powerful music, the students have invented a series of interfaces and musical gadgets. The first is the app sensorUDP, which transforms musicians’ smartphones into motion sensors. Available in the Android app store and compatible with iPhones, it allows performers to layer up to eight programmable sounds and modify them by moving their phone.

Music student Pieteke MacMahon modified the app to create an iPhone Piano, which she plays on her wrist, thanks to a mount created by engineering classmates. As she moves her hands up, the piano notes go up in pitch. When she drops her hands, the sound gets lower, and a delay effect increases if her palm faces up. “Audiences love how intuitive it is,” says the composition major. “It creates music in a way that really makes sense to people, and it looks pretty cool onstage.”

Here’s a video of the iPhone Piano (aka PietekeIPhoneSensor) in action,

The members of the Laptop Orchestra have travelled to collaborate internationally (Note: Links have been removed),

Earlier this year, the ensemble’s unique music took them to Europe. The class spent 10 days this February in Belgium where they collaborated and performed in concert with researchers at the University of Mons, a leading institution for research on gesture-tracking technology.

The Laptop Orchestra’s trip was sponsored by UBC’s Go Global and Arts Research Abroad, which together send hundreds of students on international learning experiences each year.

In Belgium, the ensemble’s dancer Diana Brownie wore a body suit covered head-to-toe in motion sensors as part of a University of Mons research project on body movement. The researchers – one a former student of Pritchard’s – will use the suit’s data to help record and preserve cultural folk dances.

For anyone who needs directions, here’s a link to UBC’s Vancouver Campus Maps, Directions, & Tours webpage.

Good lignin, bad lignin: Florida researchers use plant waste to create lignin nanotubes while researchers in British Columbia develop trees with less lignin

An April 4, 2014 news item on Azonano describes some nanotube research at the University of Florida that reaches past carbon to a new kind of nanotube,

Researchers with the University of Florida’s [UF] Institute of Food and Agricultural Sciences took what some would consider garbage and made a remarkable scientific tool, one that could someday help to correct genetic disorders or treat cancer without chemotherapy’s nasty side effects.

Wilfred Vermerris, an associate professor in UF’s department of microbiology and cell science, and Elena Ten, a postdoctoral research associate, created from plant waste a novel nanotube, one that is much more flexible than rigid carbon nanotubes currently used. The researchers say the lignin nanotubes – about 500 times smaller than a human eyelash – can deliver DNA directly into the nucleus of human cells in tissue culture, where this DNA could then correct genetic conditions. Experiments with DNA injection are currently being done with carbon nanotubes, as well.

“That was a surprising result,” Vermerris said. “If you can do this in actual human beings you could fix defective genes that cause disease symptoms and replace them with functional DNA delivered with these nanotubes.”

An April 3, 2014 University of Florida’s Institute of Food and Agricultural Sciences news release, which originated the news item, describes the lignin nanotubes (LNTs) and future applications in more detail,

The nanotube is made up of lignin from plant material obtained from a UF biofuel pilot facility in Perry, Fla. Lignin is an integral part of the secondary cell walls of plants and enables water movement from the roots to the leaves, but it is not used to make biofuels and would otherwise be burned to generate heat or electricity at the biofuel plant. The lignin nanotubes can be made from a variety of plant residues, including sorghum, poplar, loblolly pine and sugar cane. [emphasis mine]

The researchers first tested to see if the nanotubes were toxic to human cells and were surprised to find that they were less so than carbon nanotubes. Thus, they could deliver a higher dose of medicine to the human cell tissue.  Then they researched if the nanotubes could deliver plasmid DNA to the same cells and that was successful, too. A plasmid is a small DNA molecule that is physically separate from, and can replicate independently of, chromosomal DNA within a cell.

“It’s not a very smooth road because we had to try different experiments to confirm the results,” Ten said. “But it was very fruitful.”

In cases of genetic disorders, the nanotube would be loaded with a functioning copy of a gene, and injected into the body, where it would target the affected tissue, which then makes the missing protein and corrects the genetic disorder.

Although Vermerris cautioned that treatment in humans is many years away, among the conditions that these gene-carrying nanotubes could correct include cystic fibrosis and muscular dystrophy. But, he added, that patients would have to take the corrective DNA via nanotubes on a continuing basis.

Another application under consideration is to use the lignin nanotubes for the delivery of chemotherapy drugs in cancer patients. The nanotubes would ensure the drugs only get to the tumor without affecting healthy tissues.

Vermerris said they created different types of nanotubes, depending on the experiment. They could also adapt nanotubes to a patient’s specific needs, a process called customization.

“You can think about it as a chest of drawers and, depending on the application, you open one drawer or use materials from a different drawer to get things just right for your specific application,” he said.  “It’s not very difficult to do the customization.”

The next step in the research process is for Vermerris and Ten to begin experiments on mice. They are in the application process for those experiments, which would take several years to complete.  If those are successful, permits would need to be obtained for their medical school colleagues to conduct research on human patients, with Vermerris and Ten providing the nanotubes for that research.

“We are a long way from that point,” Vermerris said. “That’s the optimistic long-term trajectory.”

I hope they have good luck with this work. I have emphasized the plant waste the University of Florida scientists studied due to the inclusion of poplar, which is featured in the University of British Columbia research work also being mentioned in this post.

Getting back to Florida for a moment, here’s a link to and a citation for the paper,

Lignin Nanotubes As Vehicles for Gene Delivery into Human Cells by Elena Ten, Chen Ling, Yuan Wang, Arun Srivastava, Luisa Amelia Dempere, and Wilfred Vermerris. Biomacromolecules, 2014, 15 (1), pp 327–338 DOI: 10.1021/bm401555p Publication Date (Web): December 5, 2013
Copyright © 2013 American Chemical Society

This is an open access paper.

Meanwhile, researchers at the University of British Columbia (UBC) are trying to limit the amount of lignin in trees (specifically poplars, which are not mentioned in this excerpt but in the next). From an April 3, 2014 UBC news release,

Researchers have genetically engineered trees that will be easier to break down to produce paper and biofuel, a breakthrough that will mean using fewer chemicals, less energy and creating fewer environmental pollutants.

“One of the largest impediments for the pulp and paper industry as well as the emerging biofuel industry is a polymer found in wood known as lignin,” says Shawn Mansfield, a professor of Wood Science at the University of British Columbia.

Lignin makes up a substantial portion of the cell wall of most plants and is a processing impediment for pulp, paper and biofuel. Currently the lignin must be removed, a process that requires significant chemicals and energy and causes undesirable waste.

Researchers used genetic engineering to modify the lignin to make it easier to break down without adversely affecting the tree’s strength.

“We’re designing trees to be processed with less energy and fewer chemicals, and ultimately recovering more wood carbohydrate than is currently possible,” says Mansfield.

Researchers had previously tried to tackle this problem by reducing the quantity of lignin in trees by suppressing genes, which often resulted in trees that are stunted in growth or were susceptible to wind, snow, pests and pathogens.

“It is truly a unique achievement to design trees for deconstruction while maintaining their growth potential and strength.”

The study, a collaboration between researchers at the University of British Columbia, the University of Wisconsin-Madison, Michigan State University, is a collaboration funded by Great Lakes Bioenergy Research Center, was published today in Science.

Here’s more about lignin and how a decrease would free up more material for biofuels in a more environmentally sustainable fashion, from the news release,

The structure of lignin naturally contains ether bonds that are difficult to degrade. Researchers used genetic engineering to introduce ester bonds into the lignin backbone that are easier to break down chemically.

The new technique means that the lignin may be recovered more effectively and used in other applications, such as adhesives, insolation, carbon fibres and paint additives.

Genetic modification

The genetic modification strategy employed in this study could also be used on other plants like grasses to be used as a new kind of fuel to replace petroleum.

Genetic modification can be a contentious issue, but there are ways to ensure that the genes do not spread to the forest. These techniques include growing crops away from native stands so cross-pollination isn’t possible; introducing genes to make both the male and female trees or plants sterile; and harvesting trees before they reach reproductive maturity.

In the future, genetically modified trees could be planted like an agricultural crop, not in our native forests. Poplar is a potential energy crop for the biofuel industry because the tree grows quickly and on marginal farmland. [emphasis mine] Lignin makes up 20 to 25 per cent of the tree.

“We’re a petroleum reliant society,” says Mansfield. “We rely on the same resource for everything from smartphones to gasoline. We need to diversify and take the pressure off of fossil fuels. Trees and plants have enormous potential to contribute carbon to our society.”

As noted earlier, the researchers in Florida mention poplars in their paper (Note: Links have been removed),

Gymnosperms such as loblolly pine (Pinus taeda L.) contain lignin that is composed almost exclusively of G-residues, whereas lignin from angiosperm dicots, including poplar (Populus spp.) contains a mixture of G- and S-residues. [emphasis mine] Due to the radical-mediated addition of monolignols to the growing lignin polymer, lignin contains a variety of interunit bonds, including aryl–aryl, aryl–alkyl, and alkyl–alkyl bonds.(3) This feature, combined with the association between lignin and cell-wall polysaccharides, which involves both physical and chemical interactions, make the isolation of lignin from plant cell walls challenging. Various isolation methods exist, each relying on breaking certain types of chemical bonds within the lignin, and derivatizations to solubilize the resulting fragments.(5) Several of these methods are used on a large scale in pulp and paper mills and biorefineries, where lignin needs to be removed from woody biomass and crop residues(6) in order to use the cellulose for the production of paper, biofuels, and biobased polymers. The lignin is present in the waste stream and has limited intrinsic economic value.(7)

Since hydroxyl and carboxyl groups in lignin facilitate functionalization, its compatibility with natural and synthetic polymers for different commercial applications have been extensively studied.(8-12) One of the promising directions toward the cost reduction associated with biofuel production is the use of lignin for low-cost carbon fibers.(13) Other recent studies reported development and characterization of lignin nanocomposites for multiple value-added applications. For example, cellulose nanocrystals/lignin nanocomposites were developed for improved optical, antireflective properties(14, 15) and thermal stability of the nanocomposites.(16) [emphasis mine] Model ultrathin bicomponent films prepared from cellulose and lignin derivatives were used to monitor enzyme binding and cellulolytic reactions for sensing platform applications.(17) Enzymes/“synthetic lignin” (dehydrogenation polymer (DHP)) interactions were also investigated to understand how lignin impairs enzymatic hydrolysis during the biomass conversion processes.(18)

The synthesis of lignin nanotubes and nanowires was based on cross-linking a lignin base layer to an alumina membrane, followed by peroxidase-mediated addition of DHP and subsequent dissolution of the membrane in phosphoric acid.(1) Depending upon monomers used for the deposition of DHP, solid nanowires, or hollow nanotubes could be manufactured and easily functionalized due to the presence of many reactive groups. Due to their autofluorescence, lignin nanotubes permit label-free detection under UV radiation.(1) These features make lignin nanotubes suitable candidates for numerous biomedical applications, such as the delivery of therapeutic agents and DNA to specific cells.

The synthesis of LNTs in a sacrificial template membrane is not limited to a single source of lignin or a single lignin isolation procedure. Dimensions of the LNTs and their cytotoxicity to HeLa cells appear to be determined primarily by the lignin isolation procedure, whereas the transfection efficiency is also influenced by the source of the lignin (plant species and genotype). This means that LNTs can be tailored to the application for which they are intended. [emphasis mine] The ability to design LNTs for specific purposes will benefit from a more thorough understanding of the relationship between the structure and the MW of the lignin used to prepare the LNTs, the nanomechanical properties, and the surface characteristics.

We have shown that DNA is physically associated with the LNTs and that the LNTs enter the cytosol, and in some case the nucleus. The LNTs made from NaOH-extracted lignin are of special interest, as they were the shortest in length, substantially reduced HeLa cell viability at levels above approximately 50 mg/mL, and, in the case of pine and poplar, were the most effective in the transfection [penetrating the cell with a bacterial plasmid to leave genetic material in this case] experiments. [emphasis mine]

As I see the issues presented with these two research efforts, there are environmental and energy issues with extracting the lignin while there seem to be some very promising medical applications possible with lignin ‘waste’. These two research efforts aren’t necessarily antithetical but they do raise some very interesting issues as to how we approach our use of resources and future policies.

ETA May 16, 2014: The beat goes on with the Georgia (US) Institute of Technology issues a roadmap for making money from lignin. From a Georgia Tech May 15, 2014 news release on EurekAlert,

When making cellulosic ethanol from plants, one problem is what to do with a woody agricultural waste product called lignin. The old adage in the pulp industry has been that one can make anything from lignin except money.

A new review article in the journal Science points the way toward a future where lignin is transformed from a waste product into valuable materials such as low-cost carbon fiber for cars or bio-based plastics. Using lignin in this way would create new markets for the forest products industry and make ethanol-to-fuel conversion more cost-effective.

“We’ve developed a roadmap for integrating genetic engineering with analytical chemistry tools to tailor the structure of lignin and its isolation so it can be used for materials, chemicals and fuels,” said Arthur Ragauskas, a professor in the School of Chemistry and Biochemistry at the Georgia Institute of Technology. Ragauskas is also part of the Institute for Paper Science and Technology at Georgia Tech.

The roadmap was published May 15 [2014] in the journal Science. …

Here’s a link to and citation for the ‘roadmap’,

Lignin Valorization: Improving Lignin Processing in the Biorefinery by  Arthur J. Ragauskas, Gregg T. Beckham, Mary J. Biddy, Richard Chandra, Fang Chen, Mark F. Davis, Brian H. Davison, Richard A. Dixon, Paul Gilna, Martin Keller, Paul Langan, Amit K. Naskar, Jack N. Saddler, Timothy J. Tschaplinski, Gerald A. Tuskan, and Charles E. Wyman. Science 16 May 2014: Vol. 344 no. 6185 DOI: 10.1126/science.1246843

This paper is behind a paywall.

Greg Rickford, we hardly knew ya; hello to Ed Holder, Canada’s new Minister of State (Science and Technology)

A shakeup in the Stephen Harper (Conservative party) government’s cabinet was destined when Jim Flaherty, Minister of Finance, announced his resignation in a surprise move earlier this March (2014). Greg Rickford was promoted from Minister of State (Science and Technology), considered a junior ministry, to Minister of Natural Resources, a more important portfolio.

A March 20, 2014 posting by David Bruggeman on his Pasco Phronesis blog first alerted me to the change (Note: A link has been removed,

… Taking his responsibilities for science and technology will be MP Ed Holder from Ontario.  Holder represents parts of London, Ontario, and has stood in Parliament since 2008.  His background is in insurance, where he established a successful brokerage company, and contributed time and resources to several charitable causes.  In other words, the appointment reflects the second-tier status the science minister holds within the Canadian government.

(To be fair, science ministers who are elected politicians in many other nations hold a similar status.)

I did find some commentary about Holder and his move, from the March 19, 2014 article by John Miner for the London Free Press,

Eight years after Stephen Harper’s Conservatives won power, the London region — turf they’ve since sewn up — finally has its first Tory cabinet minister.

The question is, why has it taken so long?

London West MP Ed Holder’s appointment Wednesday [March 19, 2014] as minister of state for science and technology makes him the government’s first London minister and its first in the 10-riding region.

Holder’s move from the back benches, part of a cabinet mini-shuffle triggered by Jim Flaherty’s surprise resignation as finance minister, also makes him ­London’s first Conservative ­minister in Ottawa in 21 years.

Holder wasn’t doing interviews Wednesday [March 19, 2014], but in a statement said “I have always believed that investments in science and research create good jobs and drive economic growth.”

On social media, some questioned why Holder was given the science and technology beat when he has a philosophy degree and an insurance background. But others, including former London Liberal MP Glen Pearson, praised the move on Twitter.

I was hoping for a little more insight into Holder’s approach to the portfolio and his personal thoughts on science and technology as opposed to the regional pique and the government rhetoric being reiterated in the article. (The curious can find out more about Ed Holder here.) As noted in my July 17, 2013 posting when Rickford was appointed to the Science and Technology portfolio in July 2013, I don’t believe that the minister has to have a science degree and/or research experience. However, I do like to think they’ve given or will give the matter some thought.

As befitting the Natural Resources’ portfolio’s importance I have found some commentary about Rickford’s move, from the March 19, 2014 article by Alex Boutillier for thestar.com,

Newly minted Natural Resources Minister Greg Rickford gives the Harper government a new face on the energy portfolio as a number of key projects hang in the balance.

Prime Minister Stephen Harper promoted the Kenora [Ontario] MP from a junior minister to one of the most important and sensitive portfolios in the Conservative government in a mini cabinet shuffle Wednesday [March 19, 2014].

Rickford replaces Joe Oliver, who was moved to finance after the surprise departure of Jim [Jim] Flaherty on Tuesday. The move gives the Conservatives a chance to change the tone of debate surrounding a number of large-scale pipeline and mining projects; a debate that turned toxic at times under Oliver’s watch.

The bilingual 46-year old has a nursing degree, a MBA from Laval, and civil and common law degrees from McGill. He worked as a nurse on reserves in northern Ontario, giving him an instinctive feel for communicating with aboriginal communities as well as a degree of credibility in relations with those communities.

That experience can only help Rickford as he navigates difficult negotiations with First Nations groups on the Keystone XL pipeline, the proposed Northern Gateway project, and the prospective Ring of Fire mining development in northern Ontario.

As Rickford prepares for the negotiations, Holder makes announcements such as this one, from a March 28, 2014 University of British Columbia (UBC) news release (I’ve trimmed the list down to the two ‘sciencish’ appointments),

UBC gets $8.5M boost for eight Canada Research Chairs

Research ranging from Latin poetry to neuroethics at the University of British Columbia has received an $8.5 million boost in federal funding for eight professors appointed or renewed as Canada Research Chairs.

The UBC contingent is among the 102 new and renewed chairs announced Friday [March 28, 2014] by Ed Holder, Minister of State for Science and Technology, at the University of Alberta. [emphasis mine]

The Minister of National Revenue Kerry-Lynne Findlay announced UBC’s two new recipients and six renewals at an event on the Vancouver campus to recognize B.C. appointees. The event featured the work of Martin Ordonez, an assistant professor in the Department of Electrical and Computer Engineering, who was named a new Chair in Power Converters and Renewable Systems. His work aims to maximize the use of renewable energy from wind, solar, and the ocean by developing the next generation of power conversion and storage solutions to produce low emissions power.

“The CRC program strengthens UBC’s leading role in world-class research, attracting the best and the brightest minds to work here,” said John Hepburn, UBC vice-president, research and international. “The work of these professors creates lasting change within Canada and beyond.”

Renewed CRCs at UBC are:

Judy Illes, Chair in Neuroethics
Illes studies the ethics of neuroscience, a field that allows us to understand, monitor and potentially manipulate human thought using technology.

For a full list of UBC’s Canada Research Chairs mentioned in the announcement, go here.

Longtime readers know I sometimes make connections between ideas that are at best tenuous and the ‘we hardly knew ya’ phrase which leaped into my mind while considering a head for this post led me, eventually, to punk rock band, Dropkick Murphys,

The song, also known as ‘Johnny, I Hardly Knew Ye’ has a long history as per its Wikipedia entry (Note: Links have been removed),

“Johnny I Hardly Knew Ye” (also known as “Johnny We Hardly Knew Ye” or “Johnny I Hardly Knew Ya”) is a popular traditional song, sung to the same tune as “When Johnny Comes Marching Home”. First published in London in 1867 and written by Joseph B. Geoghegan, a prolific English songwriter and successful music hall figure,[1] it remained popular in Britain and Ireland and the United States into the early years of the 20th century. The song was recorded by The Clancy Brothers & Tommy Makem on their self-titled album in 1961,[2][3] leading to a renewal of its popularity.

Originally seen as humorous, the song today is considered a powerful anti-war song. …

Lyrics

While goin’ the road to sweet Athy, hurroo, hurroo
While goin’ the road to sweet Athy, hurroo, hurroo
While goin’ the road to sweet Athy
A stick in me hand and a tear in me eye
A doleful damsel I heard cry,
Johnny I hardly knew ye.

Chorus:

With your drums and guns and guns and drums, hurroo, hurroo
With your drums and guns and guns and drums, hurroo, hurroo
With your drums and guns and guns and drums
The enemy nearly slew ye
Oh my darling dear, Ye look so queer
Johnny I hardly knew ye.

Where are the eyes that looked so mild, hurroo, hurroo
Where are the eyes that looked so mild, hurroo, hurroo
Where are the eyes that looked so mild
When my poor heart you first beguiled
Why did ye scadaddle from me and the child
Oh Johnny, I hardly knew ye.

(Chorus)

Where are your legs that used to run, hurroo, hurroo
Where are your legs that used to run, hurroo, hurroo
Where are your legs that used to run
When you went to carry a gun
Indeed your dancing days are done
Oh Johnny, I hardly knew ye.

(Chorus)

I’m happy for to see ye home, hurroo, hurroo
I’m happy for to see ye home, hurroo, hurroo
I’m happy for to see ye home
All from the island of Ceylon
So low in the flesh, so high in the bone
Oh Johnny I hardly knew ye.

(Chorus)

Ye haven’t an arm, ye haven’t a leg, hurroo, hurroo
Ye haven’t an arm, ye haven’t a leg, hurroo, hurroo
Ye haven’t an arm, ye haven’t a leg
Ye’re an armless, boneless, chickenless egg
Ye’ll have to be put with a bowl out to beg
Oh Johnny I hardly knew ye.

(Chorus)

They’re rolling out the guns again, hurroo, hurroo
They’re rolling out the guns again, hurroo, hurroo
They’re rolling out the guns again
But they never will take my sons again
No they’ll never take my sons again
Johnny I’m swearing to ye.

As for the Dropkick Murphys, here’s an excerpt from their Wikipedia entry (Note: Links have been removed),

Dropkick Murphys are an American Celtic punk band formed in Quincy, Massachusetts, in 1996.[1] The band was initially signed to independent punk record label Hellcat Records, releasing five albums for the label, and making a name for themselves locally through constant touring and yearly St. Patrick’s Day week shows, held in and around Boston. The 2004 single “Tessie” became the band’s first hit and one of their biggest charting singles to date. The band’s final Hellcat release, 2005′s The Warrior’s Code, included the song “I’m Shipping Up to Boston”; the song was featured in the 2006 Academy Award-winning movie The Departed, and went on to become the band’s only Platinum-selling single to date, and remains one of their best-known songs.

In 2007, the band signed with Warner Bros. Records and began releasing music through their own vanity label, Born & Bred. 2007′s The Meanest of Times made its debut at No. 20 on the Billboard charts and featured the successful single, “The State of Massachusetts”, while 2011′s Going Out in Style was an even bigger success, making its debut at No. 6, giving the band their highest-charting album to date.[2][3] The band’s eighth studio album, Signed and Sealed in Blood was released in 2013 making its debut at No. 9 on the Billboard charts.[4]

Cancer as a fashion statement at the University of British Columbia (Canada) and a Marimekko dress made of birch in Finland

The ‘Fashioning Cancer Project’ at the University of British Columbia (UBC) bears some resemblance to the types of outreach projects supported by the UK’s Wellcome Trust (for an example see my June 21, 2011 posting) where fashion designers are inspired by some aspect of science. Here’s more about the ‘Fashioning Cancer Project’ and its upcoming fashion show (on March 25, 2014). From the March 12, 2014 UBC news release (Note: Links have been removed),

A UBC costume design professor has created a collection of ball gowns inspired by microscopic photos of cancer cells and cellular systems to get people talking about the disease, beauty and body image.

The project aims to create alternative imagery for discussions of cancer, to complement existing examples such as the pink ribbon, which is an important symbol of cancer awareness, but may not accurately represent women’s experience with the disease.

“Many women who have battled cancer express a disconnect with the fashion imagery that commonly represents the disease,” says Jacqueline Firkins, an assistant professor in UBC’s Dept. of Theatre and Film, who designed the collection of 10 dresses and dubbed the work ‘Fashioning Cancer: The Correlation between Destruction and Beauty.’

Inspired by cellular images captured by researchers in the lab of UBC scientist Christian Naus, a Peter Wall Distinguished Scholar in Residence, the project seeks to create artistic imagery based on the disease itself.

“My hope is that somehow through fashion, I more closely tap into what a woman might be feeling about her body as she undergoes the disease, but simultaneously reflect a strength, beauty, and resilience,” says Firkins, who will use the collection to raise money for cancer research, patients and survivors.

“This will be an opportunity for people to share their thoughts about the gowns,” says Firkins. “Are they too pretty to reflect something as destructive as cancer? Do they encourage you to tell your own story? Do they evoke any emotions related to your own experience?”

Before giving you where and when, here are two images (a cell and a dress based on the cell),

http://news.ubc.ca/2014/03/12/prof-challenges-cancer-fashion/

Cell7_brain_cells_in_a_dish; Astrocytes from the brain growing in a culture dish. Green colour indicates the cytoskeleton of these cells, red colour shows specific membrance [sic] channels (gap junctions), blue colour indicates the cell nuclei (DNA). The ability to grow cells in a dish has contributed to our understand of the changes these cells undergo when they become channels. Photo credit: John Bechberger, MSc., Christian Naus, PhD.

Cell7_Mercedes_de_la_Zerda: Dress modeled by BFA Acting student Mercedes de la Zerda.Black organza cap sleeve w/ sheer top and multicolour organza diagonal trim. Photo credit: Tim Matheson

Cell7_Mercedes_de_la_Zerda: Dress modeled by BFA Acting student Mercedes de la Zerda.Black organza cap sleeve w/ sheer top and multicolour organza diagonal trim. Photo credit: Tim Matheson

Details about the show (from the UBC event description webpage where you can also find a slide show more pictures),

  • Event: Fashioning Cancer: The Correlation between Destruction and Beauty
  • Date: Tue. March 25, 2014 | Time: 12-1pm
  • Location: UBC’s Frederic Wood Theatre, 6354 Crescent Rd.
  • MAP: http://bit.ly/1fZ4bC8

On a more or less related note, Aalto University (Finland) has announced a dress made of birch cellulose fibre, from a March 13, 2014 news item on ScienceDaily,

The first garment made out of birch cellulose fibre using the Ioncell method is displayed at a fashion show in Finland on 13 March [2014]. The Ioncell method, which was developed by researchers at Aalto University, is an environmentally friendly alternative to cotton in textile production. The dress produced for Marimekko is a significant step forward in the development of fibre for industrial production.

Researchers were looking for new alternatives to cotton, because demand for textile fibres is expected to nearly double by 2030. The raw material for the Ioncell fibre is a birch-based pulp from Finnish pulp mills. Growing birch wood does not require artificial irrigation in its native habitat, for instance.

The Aalto University March 12, 2014 news release, which originated the news item, describes the new Ioncell fibre and its relationship with Finnish clothing company Marimekko,

The production method for Ioncell has been developed by Professor Herbert Sixta’s research group. The method is based on a liquid salt (ionic liquid) developed under the guidance of Professor Ilkka Kilpeläinen which is a very efficient cellulose solvent. The fibres derived from it are carded and spun to yarns at the Textile University of Börås in Sweden.

‒ We made a breakthrough in the development of the method about a year ago. Progress has been rapid since then. [see my Oct. 3, 2013 posting for another Finnish team's work with wood cellulose to create fabric]  Production of the fibre and the thread is still a cumbersome process, but we have managed to triple the amount of fibre that is produced in six months. The quality has also improved: the fibers are stronger and of more even quality, Professor Sixta says with satisfaction.

The surface of the ready textile has a dim glow and it is pleasing to the touch. According to Sixta, because of its strength, the strength properties of the Ioncell fibre are equal or even better than other pulp-based fibres on the market. The fibres are even stronger than cotton and viscose.

The Finnish textile and clothing design company Marimekko became inspired by the new fibre at an event organised by the Finnish Bioeconomy Cluster FIBIC, which coordinates bioeconomy research, and immediately got in touch with Professor Herbert Sixta at Aalto University.

‒ We monitor product development for materials closely in order to be able to offer our customers new and more ecological alternatives. It was a wonderful opportunity to be able to join this Aalto University development project at such an early stage. Fibre made from birch pulp seems to be a promising material by virtue of its durability and other characteristics, and we hope that we will soon be able to utilise this new material in our collections, says Noora Niinikoski, Head of Fashion at Marimekko.

Here’s the birch cellulose dress,

Marimekko Birch Dress Courtesy: Aalto University

Let’s all have a fashionable day!

Fierce mice and brain disorders topic at at Vancouver’s (Canada) Café Scientifique March 2014 get together

Vancouver’s next Café Scientifique is being held in the back room of the The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), on Tuesday, March 25,  2014 at 7:30 pm. Here’s the meeting description (from the March. 18, 2014 announcement),

Our speaker for the evening will be Dr. Elizabeth Simpson.  The title of her talk is:

“Fierce Mice” and “Good Viruses” are Impacting Brain Disorders

Mental illness accounts for over 15 percent of the burden of disease in the developed world, which is higher than all cancers combined. Nevertheless, from a research perspective, these “brain and behaviour” disorders are relatively underserved. Combinations of both genetic and environmental factors cause brain and behaviour disorders, and the Simpson laboratory is focused on exploring the genetic cause.

Dr. Simpson’s group was the first to find that the human gene (NR2E1) can correct violent behaviour in the fierce mouse; a model of pathological aggression. NR2E1 is involved in controlling stem cell proliferation in the brain, and the Simpson group has found an association between this gene and bipolar disorder (manic-depressive psychosis), a brain illness that is usually diagnosed in late teens to early twenties, but likely initiates in childhood.

Working to open a new therapeutic door for mental illness and other brain disorders, Dr. Simpson is leading a large genomics project to build MiniPromoters; tools designed to deliver therapeutic genes to defined regions of the brain. This technology will enable virus-based-gene therapies for many different brain disorders regardless of the underlying cause. Thus, the Simpson laboratory is bringing new technologies to childhood and adult brain and behaviour disorders, all of which are underserved by traditional therapeutic approaches.

You canl see this description of Simpson’s talk is taken from her page on the Centre for Molecular Medicine and Therapeutics webspace on the University of British Columbia website.