Tag Archives: UBC Okanagan

Wearable technology: two types of sensors one from the University of Glasgow (Scotland) and the other from the University of British Columbia (Canada)

Sometimes it’s good to try and pull things together.

University of Glasgow and monitoring chronic conditions

A February 23, 2018 news item on phys.org describes the latest wearable tech from the University of Glasgow,

A new type of flexible, wearable sensor could help people with chronic conditions like diabetes avoid the discomfort of regular pin-prick blood tests by monitoring the chemical composition of their sweat instead.

In a new paper published in the journal Biosensors and Bioelectronics, a team of scientists from the University of Glasgow’s School of Engineering outline how they have built a stretchable, wireless system which is capable of measuring the pH level of users’ sweat.

A February 22, 2018 University of Glasgow press release, which originated the news item, expands on the theme,

Ravinder Dahiya

 Courtesy: University of Glasgow

 

Sweat, like blood, contains chemicals generated in the human body, including glucose and urea. Monitoring the levels of those chemicals in sweat could help clinicians diagnose and monitor chronic conditions such as diabetes, kidney disease and some types of cancers without invasive tests which require blood to be drawn from patients.

However, non-invasive, wearable systems require consistent contact with skin to offer the highest-quality monitoring. Current systems are made from rigid materials, making it more difficult to ensure consistent contact, and other potential solutions such as adhesives can irritate skin. Wireless systems which use Bluetooth to transmit their information are also often bulky and power-hungry, requiring frequent recharging.

The University of Glasgow team’s new system is built around an inexpensively-produced sensor capable of measuring pH levels which can stretch and flex to better fit the contours of users’ bodies. Made from a graphite-polyurethane composite and measuring around a single square centimetre, it can stretch up to 53% in length without compromising performance. It will also continue to work after being subjected to flexes of 30% up to 500 times, which the researchers say will allow it to be used comfortably on human skin with minimal impact on the performance of the sensor.

The sensor can transmit its data wirelessly, and without external power, to an accompanying smartphone app called ‘SenseAble’, also developed by the team. The transmissions use near-field communication, a data transmission system found in many current smartphones which is used most often for smartphone payments like ApplePay, via a stretchable RFID antenna integrated into the system – another breakthrough innovation from the research team.

The smartphone app allows users to track pH levels in real time and was demonstrated in the lab using a chemical solution created by the researchers which mimics the composition of human sweat.

The research was led by Professor Ravinder Dahiya, head of the University of Glasgow’s School of Engineering’s Bendable Electronics and Sensing Technologies (BEST) group.

Professor Dahiya said: “Human sweat contains much of the same physiological information that blood does, and its use in diagnostic systems has the significant advantage of not needing to break the skin in order to administer tests.

“Now that we’ve demonstrated that our stretchable system can be used to monitor pH levels, we’ve already begun additional research to expand the capabilities of the sensor and make it a more complete diagnostic system. We’re planning to add sensors capable of measuring glucose, ammonia and urea, for example, and ultimately we’d like to see a system ready for market in the next few years.”

The team’s paper, titled ‘Stretchable Wireless System for Sweat pH Monitoring’, is published in Biosensors and Bioelectronics. The research was supported by funding from the European Commission and the Engineering and Physical Sciences Research Council (EPSRC).

Here’s a link to and a citation for the paper,

Stretchable wireless system for sweat pH monitoring by Wenting Dang, Libu Manjakkal, William Taube Navaraj, Leandro Lorenzelli, Vincenzo Vinciguerra. Biosensors and Bioelectronics Volume 107, 1 June 2018, Pages 192–202 [Available online February 2018] https://doi.org/10.1016/j.bios.2018.02.025

This paper is behind a paywall.

University of British Columbia (UBC; Okanagan) and monitor bio-signals

This is a completely other type of wearable tech monitor, from a February 22, 2018 UBC news release (also on EurekAlert) by Patty Wellborn (A link has been removed),

Creating the perfect wearable device to monitor muscle movement, heart rate and other tiny bio-signals without breaking the bank has inspired scientists to look for a simpler and more affordable tool.

Now, a team of researchers at UBC’s Okanagan campus have developed a practical way to monitor and interpret human motion, in what may be the missing piece of the puzzle when it comes to wearable technology.

What started as research to create an ultra-stretchable sensor transformed into a sophisticated inter-disciplinary project resulting in a smart wearable device that is capable of sensing and understanding complex human motion, explains School of Engineering Professor Homayoun Najjaran.

The sensor is made by infusing graphene nano-flakes (GNF) into a rubber-like adhesive pad. Najjaran says they then tested the durability of the tiny sensor by stretching it to see if it can maintain accuracy under strains of up to 350 per cent of its original state. The device went through more than 10,000 cycles of stretching and relaxing while maintaining its electrical stability.

“We tested this sensor vigorously,” says Najjaran. “Not only did it maintain its form but more importantly it retained its sensory functionality. We have further demonstrated the efficacy of GNF-Pad as a haptic technology in real-time applications by precisely replicating the human finger gestures using a three-joint robotic finger.”

The goal was to make something that could stretch, be flexible and a reasonable size, and have the required sensitivity, performance, production cost, and robustness. Unlike an inertial measurement unit—an electronic unit that measures force and movement and is used in most step-based wearable technologies—Najjaran says the sensors need to be sensitive enough to respond to different and complex body motions. That includes infinitesimal movements like a heartbeat or a twitch of a finger, to large muscle movements from walking and running.

School of Engineering Professor and study co-author Mina Hoorfar says their results may help manufacturers create the next level of health monitoring and biomedical devices.

“We have introduced an easy and highly repeatable fabrication method to create a highly sensitive sensor with outstanding mechanical and electrical properties at a very low cost,” says Hoorfar.

To demonstrate its practicality, researchers built three wearable devices including a knee band, a wristband and a glove. The wristband monitored heartbeats by sensing the pulse of the artery. In an entirely different range of motion, the finger and knee bands monitored finger gestures and larger scale muscle movements during walking, running, sitting down and standing up. The results, says Hoorfar, indicate an inexpensive device that has a high-level of sensitivity, selectivity and durability.

Hoorfar and Najjaran are both members of the Okanagan node of UBC’s STITCH (SmarT Innovations for Technology Connected Health) Institute that creates and investigates advanced wearable devices.

The research, partially funded by the Natural Sciences and Engineering Research Council, was recently published in the Journal of Sensors and Actuators A: Physical.

Here’s a link to and a citation for the paper,

Low-cost ultra-stretchable strain sensors for monitoring human motion and bio-signals by Seyed Reza Larimi, Hojatollah Rezaei Nejad, Michael Oyatsi, Allen O’Brien, Mina Hoorfar, Homayoun Najjaran. Sensors and Actuators A: Physical Volume 271, 1 March 2018, Pages 182-191 [Published online February 2018] https://doi.org/10.1016/j.sna.2018.01.028

This paper is behind a paywall.

Final comments

The term ‘wearable tech’ covers a lot of ground. In addition to sensors, there are materials that harvest energy, detect poisons, etc.  making for a diverse field.

Why are jokes funny? There may be a quantum explanation

Some years ago a friend who’d attended a conference on humour told me I really shouldn’t talk about humour until I had a degree on the topic. I decided the best way to deal with that piece of advice was to avoid all mention of any theories about humour to that friend. I’m happy to say the strategy has worked well although this latest research may allow me to broach the topic once again. From a March 17, 2017 Frontiers (publishing) news release on EurekAlert (Note: A link has been removed),

Why was 6 afraid of 7? Because 789. Whether this pun makes you giggle or groan in pain, your reaction is a consequence of the ambiguity of the joke. Thus far, models have not been able to fully account for the complexity of humor or exactly why we find puns and jokes funny, but a research article recently published in Frontiers in Physics suggests a novel approach: quantum theory.

By the way, it took me forever to get the joke. I always blame these things on the fact that I learned French before English (although my English is now my strongest language). So, for anyone who may immediately grasp the pun: Why was 6 afraid of 7? Because 78 (ate) 9.

This news release was posted by Anna Sigurdsson on March 22, 2017 on the Frontiers blog,

Aiming to answer the question of what kind of formal theory is needed to model the cognitive representation of a joke, researchers suggest that a quantum theory approach might be a contender. In their paper, they outline a quantum inspired model of humor, hoping that this new approach may succeed at a more nuanced modeling of the cognition of humor than previous attempts and lead to the development of a full-fledged, formal quantum theory model of humor. This initial model was tested in a study where participants rated the funniness of verbal puns, as well as the funniness of variants of these jokes (e.g. the punchline on its own, the set-up on its own). The results indicate that apart from the delivery of information, something else is happening on a cognitive level that makes the joke as a whole funny whereas its deconstructed components are not, and which makes a quantum approach appropriate to study this phenomenon.

For decades, researchers from a range of different fields have tried to explain the phenomenon of humor and what happens on a cognitive level in the moment when we “get the joke”. Even within the field of psychology, the topic of humor has been studied using many different approaches, and although the last two decades have seen an upswing of the application of quantum models to the study of psychological phenomena, this is the first time that a quantum theory approach has been suggested as a way to better understand the complexity of humor.

Previous computational models of humor have suggested that the funny element of a joke may be explained by a word’s ability to hold two different meanings (bisociation), and the existence of multiple, but incompatible, ways of interpreting a statement or situation (incongruity). During the build-up of the joke, we interpret the situation one way, and once the punch line comes, there is a shift in our understanding of the situation, which gives it a new meaning and creates the comical effect.

However, the authors argue that it is not the shift of meaning, but rather our ability to perceive both meanings simultaneously, that makes a pun funny. This is where a quantum approach might be able to account for the complexity of humor in a way that earlier models cannot. “Quantum formalisms are highly useful for describing cognitive states that entail this form of ambiguity,” says Dr. Liane Gabora from the University of British Columbia, corresponding author of the paper. “Funniness is not a pre-existing ‘element of reality’ that can be measured; it emerges from an interaction between the underlying nature of the joke, the cognitive state of the listener, and other social and environmental factors. This makes the quantum formalism an excellent candidate for modeling humor,” says Dr. Liane Gabora.

Although much work and testing remains before the completion of a formal quantum theory model of humor to explain the cognitive aspects of reacting to a pun, these first findings provide an exciting first step and opens for the possibility of a more nuanced modeling of humor. “The cognitive process of “getting” a joke is a difficult process to model, and we consider the work in this paper to be an early first step toward an eventually more comprehensive theory of humor that includes predictive models. We believe that the approach promises an exciting step toward a formal theory of humor, and that future research will build upon this modest beginning,” concludes Dr. Liane Gabora.

Here’s a link to and a citation for the paper,

Toward a Quantum Theory of Humor by Liane Gabora and Kirsty Kitto. Front. Phys., 26 January 2017 | https://doi.org/10.3389/fphy.2016.00053

This paper has been published in an open access journal. In viewing the acknowledgements at the end of the paper I found what I found to be a surprising funding agency,

This work was supported by a grant (62R06523) from the Natural Sciences and Engineering Research Council of Canada. We are grateful to Samantha Thomson who assisted with the development of the questionnaire and the collection of the data for the study reported here.

While I’m at this, I might as well mention that Kirsty Katto is from the Queensland University of Technology (QUT) in Australia and, for those unfamiliar with the geography, the University of British Columbia is the the Canada’s province of British Columbia.