Tag Archives: UK

Newcastle University (UK) has a PhD Studentship in Synthetic Biology and Nanotechnology available

Open to UK, European Union, and international students, the studentship deadline for applying is Aug. 18, 2014. Here’s more from the Newcastle University notice on the jobs.ac.uk website (Note: Links have been removed),

PhD Studentship in Synthetic Biology and Nanotechnology – Towards Algorithmic Living Manufacturing (TALIsMAN)

Value, Duration and Start Date of the Award
The Doctoral Training Award is for £20,000 per annum. This award covers fees and a contribution to an annual stipend (living expenses).

Three year PhD

Start date: 14 September 2014

Sponsor
Science Agriculture and Engineering Faculty Doctoral Training Awards

Project Description
The discipline of Synthetic Biology (SB), considers the cell to be a machine that can be built -from parts- in a manner similar to, e.g., electronic circuits, airplanes, etc. SB has sought to co-opt cells for nano-computation and nano-manufacturing purposes. During this scholarship programme of doctoral studies the student will pursue investigations at the interface of computing science (biodesign & biomodeling), chemical sciences (nanoparticle delivery systems), microbiology (bacterial genetic engineering) and nanoscience (DNA origami).

Name of the Supervisors
Professor Natalio Krasnogor (Lead Supervisor), School of Computing Science

Dr David Fulton, School of Chemistry

Dr Chien-Yi Chang, Centre for Bacterial Cell Biology

Person Specification and Eligibility Criteria
You must have an MSc in synthetic biology, microbiology, organic chemistry or computing science. You also should have demonstrable independent research skills, e.g. having completed a successful MSc dissertation or having a publication in a recognised peer reviewed conference or, ideally, journal. The candidate must have substantial laboratory experience and excellent programming and numeracy skills.

This award is available to UK/EU and International candidates. If English is not your first language, you must have IELTS 6.5.

Closing Date for Applications
Applications will be considered until Monday 18 August 2014. However, awards may be made to successful applicants before this date and early application is recommended.

So according to the line above, it’s better to apply sooner rather than later. Good luck!

Gold on the brain, a possible nanoparticle delivery system for drugs

A July 21, 2014 news item on Nanowerk describes special gold nanoparticles that could make drug delivery to cells easier,

A special class of tiny gold particles can easily slip through cell membranes, making them good candidates to deliver drugs directly to target cells.

A new study from MIT materials scientists reveals that these nanoparticles enter cells by taking advantage of a route normally used in vesicle-vesicle fusion, a crucial process that allows signal transmission between neurons.

A July 21, 2014 MIT (Massachusetts Institute of Technology) news release (also on EurekAlert), which originated the news item, provides more details,

The findings suggest possible strategies for designing nanoparticles — made from gold or other materials — that could get into cells even more easily.

“We’ve identified a type of mechanism that might be more prevalent than is currently known,” says Reid Van Lehn, an MIT graduate student in materials science and engineering and one of the paper’s lead authors. “By identifying this pathway for the first time it also suggests not only how to engineer this particular class of nanoparticles, but that this pathway might be active in other systems as well.”

The paper’s other lead author is Maria Ricci of École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland. The research team, led by Alfredo Alexander-Katz, an associate professor of materials science and engineering, and Francesco Stellacci from EPFL, also included scientists from the Carlos Besta Institute of Neurology in Italy and Durham University in the United Kingdom.

Most nanoparticles enter cells through endocytosis, a process that traps the particles in intracellular compartments, which can damage the cell membrane and cause cell contents to leak out. However, in 2008, Stellacci, who was then at MIT, and Darrell Irvine, a professor of materials science and engineering and of biological engineering, found that a special class of gold nanoparticles coated with a mix of molecules could enter cells without any disruption.

“Why this was happening, or how this was happening, was a complete mystery,” Van Lehn says.

Last year, Alexander-Katz, Van Lehn, Stellacci, and others discovered that the particles were somehow fusing with cell membranes and being absorbed into the cells. In their new study, they created detailed atomistic simulations to model how this happens, and performed experiments that confirmed the model’s predictions.

Gold nanoparticles used for drug delivery are usually coated with a thin layer of molecules that help tune their chemical properties. Some of these molecules, or ligands, are negatively charged and hydrophilic, while the rest are hydrophobic. The researchers found that the particles’ ability to enter cells depends on interactions between hydrophobic ligands and lipids found in the cell membrane.

Cell membranes consist of a double layer of phospholipid molecules, which have hydrophobic lipid tails and hydrophilic heads. The lipid tails face in toward each other, while the hydrophilic heads face out.

In their computer simulations, the researchers first created what they call a “perfect bilayer,” in which all of the lipid tails stay in place within the membrane. Under these conditions, the researchers found that the gold nanoparticles could not fuse with the cell membrane.

However, if the model membrane includes a “defect” — an opening through which lipid tails can slip out — nanoparticles begin to enter the membrane. When these lipid protrusions occur, the lipids and particles cling to each other because they are both hydrophobic, and the particles are engulfed by the membrane without damaging it.

In real cell membranes, these protrusions occur randomly, especially near sites where proteins are embedded in the membrane. They also occur more often in curved sections of membrane, because it’s harder for the hydrophilic heads to fully cover a curved area than a flat one, leaving gaps for the lipid tails to protrude.

“It’s a packing problem,” Alexander-Katz says. “There’s open space where tails can come out, and there will be water contact. It just makes it 100 times more probable to have one of these protrusions come out in highly curved regions of the membrane.”

This phenomenon appears to mimic a process that occurs naturally in cells — the fusion of vesicles with the cell membrane. Vesicles are small spheres of membrane-like material that carry cargo such as neurotransmitters or hormones.

The similarity between absorption of vesicles and nanoparticle entry suggests that cells where a lot of vesicle fusion naturally occurs could be good targets for drug delivery by gold nanoparticles. The researchers plan to further analyze how the composition of the membranes and the proteins embedded in them influence the absorption process in different cell types. “We want to really understand all the constraints and determine how we can best design nanoparticles to target particular cell types, or regions of a cell,” Van Lehn says.

Here’s a link to and a citation for the paper,

Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes by Reid C. Van Lehn, Maria Ricci, Paulo H.J. Silva, Patrizia Andreozzi, Javier Reguera, Kislon Voïtchovsky, Francesco Stellacci, & Alfredo Alexander-Katz. Nature Communications 5, Article number: 4482 doi:10.1038/ncomms5482 Published 21 July 2014

This article is behind a paywall but there is a free preview available via ReadCube Access.

I last featured this multi-country team’s work on gold nanoparticles in an Aug. 23, 2013 posting.

Trapping gases left from nuclear fuels

A July 20, 2014 news item on ScienceDaily provides some insight into recycling nuclear fuel,

When nuclear fuel gets recycled, the process releases radioactive krypton and xenon gases. Naturally occurring uranium in rock contaminates basements with the related gas radon. A new porous material called CC3 effectively traps these gases, and research appearing July 20 in Nature Materials shows how: by breathing enough to let the gases in but not out.

The CC3 material could be helpful in removing unwanted or hazardous radioactive elements from nuclear fuel or air in buildings and also in recycling useful elements from the nuclear fuel cycle. CC3 is much more selective in trapping these gases compared to other experimental materials. Also, CC3 will likely use less energy to recover elements than conventional treatments, according to the authors.

A July 21, 2014 US Department of Energy (DOE) Pacific Northwest National Laboratory (PNNL) news release (also on EurekAlert), which originated the news item despite the difference in dates, provides more details (Note: A link has been removed),

The team made up of scientists at the University of Liverpool in the U.K., the Department of Energy’s Pacific Northwest National Laboratory, Newcastle University in the U.K., and Aix-Marseille Universite in France performed simulations and laboratory experiments to determine how — and how well — CC3 might separate these gases from exhaust or waste.

“Xenon, krypton and radon are noble gases, which are chemically inert. That makes it difficult to find materials that can trap them,” said coauthor Praveen Thallapally of PNNL. “So we were happily surprised at how easily CC3 removed them from the gas stream.”

Noble gases are rare in the atmosphere but some such as radon come in radioactive forms and can contribute to cancer. Others such as xenon are useful industrial gases in commercial lighting, medical imaging and anesthesia.

The conventional way to remove xenon from the air or recover it from nuclear fuel involves cooling the air far below where water freezes. Such cryogenic separations are energy intensive and expensive. Researchers have been exploring materials called metal-organic frameworks, also known as MOFs, that could potentially trap xenon and krypton without having to use cryogenics. Although a leading MOF could remove xenon at very low concentrations and at ambient temperatures admirably, researchers wanted to find a material that performed better.

Thallapally’s collaborator Andrew Cooper at the University of Liverpool and others had been researching materials called porous organic cages, whose molecular structures are made up of repeating units that form 3-D cages. Cages built from a molecule called CC3 are the right size to hold about three atoms of xenon, krypton or radon.

To test whether CC3 might be useful here, the team simulated on a computer CC3 interacting with atoms of xenon and other noble gases. The molecular structure of CC3 naturally expands and contracts. The researchers found this breathing created a hole in the cage that grew to 4.5 angstroms wide and shrunk to 3.6 angstroms. One atom of xenon is 4.1 angstroms wide, suggesting it could fit within the window if the cage opens long enough. (Krypton and radon are 3.69 angstroms and 4.17 angstroms wide, respectively, and it takes 10 million angstroms to span a millimeter.)

The computer simulations revealed that CC3 opens its windows big enough for xenon about 7 percent of the time, but that is enough for xenon to hop in. In addition, xenon has a higher likelihood of hopping in than hopping out, essentially trapping the noble gas inside.

The team then tested how well CC3 could pull low concentrations of xenon and krypton out of air, a mix of gases that included oxygen, argon, carbon dioxide and nitrogen. With xenon at 400 parts per million and krypton at 40 parts per million, the researchers sent the mix through a sample of CC3 and measured how long it took for the gases to come out the other side.

Oxygen, nitrogen, argon and carbon dioxide — abundant components of air — traveled through the CC3 and continued to be measured for the experiment’s full 45 minute span. Xenon however stayed within the CC3 for 15 minutes, showing that CC3 could separate xenon from air.

In addition, CC3 trapped twice as much xenon as the leading MOF material. It also caught xenon 20 times more often than it caught krypton, a characteristic known as selectivity. The leading MOF only preferred xenon 7 times as much. These experiments indicated improved performance in two important characteristics of such a material, capacity and selectivity.

“We know that CC3 does this but we’re not sure why. Once we understand why CC3 traps the noble gases so easily, we can improve on it,” said Thallapally.

To explore whether MOFs and porous organic cages offer economic advantages, the researchers estimated the cost compared to cryogenic separations and determined they would likely be less expensive.

“Because these materials function well at ambient or close to ambient temperatures, the processes based on them are less energy intensive to use,” said PNNL’s Denis Strachan.

The material might also find use in pharmaceuticals. Most molecules come in right- and left-handed forms and often only one form works in people. In additional experiments, Cooper and colleagues in the U.K. tested CC3′s ability to distinguish and separate left- and right-handed versions of an alcohol. After separating left- and right-handed forms of CC3, the team showed in biochemical experiments that each form selectively trapped only one form of the alcohol.

The researchers have provided an image illustrating a CC3 cage,

Breathing room: In this computer simulation, light and dark purple highlight the cavities within the 3D pore structure of CC3. Courtesy:  PNNL

Breathing room: In this computer simulation, light and dark purple highlight the cavities within the 3D pore structure of CC3. Courtesy: PNNL

Here’s a link to and a citation for the paper,

Separation of rare gases and chiral molecules by selective binding in porous organic cages by Linjiang Chen, Paul S. Reiss, Samantha Y. Chong, Daniel Holden, Kim E. Jelfs, Tom Hasell, Marc A. Little, Adam Kewley, Michael E. Briggs, Andrew Stephenson, K. Mark Thomas, Jayne A. Armstrong, Jon Bell, Jose Busto, Raymond Noel, Jian Liu, Denis M. Strachan, Praveen K. Thallapally, & Andrew I. Cooper. Nature Material (2014) doi:10.1038/nmat4035 Published online 20 July 2014

This paper is behind a paywall.

New ways to think about water

This post features two items about water both of which suggest we should reconsider our ideas about it. This first item concerns hydrogen bonds and coordinated vibrations. From a July 16 2014 news item on Azonano,

Using a newly developed, ultrafast femtosecond infrared light source, chemists at the University of Chicago have been able to directly visualize the coordinated vibrations between hydrogen-bonded molecules — the first time this sort of chemical interaction, which is found in nature everywhere at the molecular level, has been directly visualized. They describe their experimental techniques and observations in The Journal of Chemical Physics, from AIP [American Institute of Physics] Publishing.

“These two-dimensional infrared spectroscopy techniques provide a new avenue to directly visualize both hydrogen bond partners,” said Andrei Tokmakoff, the lab’s primary investigator. “They have the spectral content and bandwidth to really interrogate huge parts of the vibrational spectrum of molecules. It’s opened up the ability to look at how very different types of vibrations on different molecules interact with one another.”

A July 15, 2014 AIP news release by John Arnst (also on EurekAlert), which originated the news item, provides more detail,

Tokmakoff and his colleagues sought to use two-dimensional infrared spectroscopy to directly characterize structural parameters such as intermolecular distances and hydrogen-bonding configurations, as this information can be encoded in intermolecular cross-peaks that spectroscopy detects between solute-solvent vibrations.

“You pluck on the bonds of one molecule and watch how it influences the other,” Tokmakoff said. “In our experiment, you’re basically plucking on both because they’re so strongly bound.”

Hydrogen bonds are typically perceived as the attractive force between the slightly negative and slightly positive ends of neutrally-charged molecules, such as water. While water stands apart with its unique polar properties, hydrogen bonds can form between a wide range of molecules containing electronegative atoms and range from weakly polar to nearly covalent in strength. Hydrogen bonding plays a key role in the action of large, biologically-relevant molecules and is often an important element in the discovery of new pharmaceuticals.

For their initial visualizations, Tokmakoff’s group used N-methylacetamide, a molecule called a peptide that forms medium-strength hydrogen-bonded dimers in organic solution due to its polar nitrogen-hydrogen and carbon-oxygen tails. By using a targeted three-pulse sequence of mid-infrared light and apparatus described in their article, Tokmakoff’s group was able to render the vibrational patterns of the two peptide units.

“All of the internal vibrations of hydrogen bonded molecules that we look at become intertwined, inextricably; you can’t think of them as just a simple sum of two parts,” Tokmakoff said.

More research is being planned while Tokmakoff suggests that water must be rethought from an atomistic perspective (from the news release),

Future work in Tokmakoff’s group involves visualizing the dynamics and structure of water around biological molecules such as proteins and DNA.

“You can’t just think of the water as sort of an amorphous solvent, you really have to at least on some level think of it atomistically and treat it that way,” Tokmakoff said. “And if you believe that, it has huge consequences all over the place, particularly in biology, where so much computational biology ignores the fact that water has real structure and real quantum mechanical properties of its own.”

The researchers have provided an illustration of hydrogen’s vibrating bonds,

The hydrogen-bonding interaction causes the atoms on each individual N-methylacetamide molecule to vibrate in unison. CREDIT: L. De Marco/UChicago

The hydrogen-bonding interaction causes the atoms on each individual N-methylacetamide molecule to vibrate in unison.
CREDIT: L. De Marco/UChicago

Here’s a link to and a citation for the paper,

Direct observation of intermolecular interactions mediated by hydrogen bonding by Luigi De Marco, Martin Thämer, Mike Reppert, and Andrei Tokmakoff. J. Chem. Phys. 141, 034502 (2014); http://dx.doi.org/10.1063/1.4885145

This paper is open access. (I was able to view the entire HTML version.)

A July 15, 2014 University of Southampton press release on EurekAlert offers another surprise about water,

University of Southampton researchers have found that rainwater can penetrate below the Earth’s fractured upper crust, which could have major implications for our understanding of earthquakes and the generation of valuable mineral deposits.

The reason that water’s ability to penetrate below the earth’s upper crust is a surprise (from the news release),

It had been thought that surface water could not penetrate the ductile crust – where temperatures of more than 300°C and high pressures cause rocks to flex and flow rather than fracture – but researchers, led by Southampton’s Dr Catriona Menzies, have now found fluids derived from rainwater at these levels.

The news release also covers the implications of this finding,

Fluids in the Earth’s crust can weaken rocks and may help to initiate earthquakes along locked fault lines. They also concentrate valuable metals such as gold. The new findings suggest that rainwater may be responsible for controlling these important processes, even deep in the Earth.

Researchers from the University of Southampton, GNS Science (New Zealand), the University of Otago, and the Scottish Universities Environmental Research Centre studied geothermal fluids and mineral veins from the Southern Alps of New Zealand, where the collision of two tectonic plates forces deeper layers of the earth closer to the surface.

The team looked into the origin of the fluids, how hot they were and to what extent they had reacted with rocks deep within the mountain belt.

“When fluids flow through the crust they leave behind deposits of minerals that contain a small amount of water trapped within them,” says Postdoctoral Researcher Catriona, who is based at the National Oceanography Centre. “We have analysed these waters and minerals to identify where the fluids deep in the crust came from.

“Fluids may come from a variety of sources in the crust. In the Southern Alps fluids may flow upwards from deep in the crust, where they are released from hot rocks by metamorphic reactions, or rainwater may flow down from the surface, forced by the high mountains above. We wanted to test the limits of where rainwater may flow in the crust. Although it has been suggested before, our data shows for the first time that rainwater does penetrate into rocks that are too deep and hot to fracture.”

Surface-derived waters reaching such depths are heated to over 400°C and significantly react with crustal rocks. However, through testing the researchers were able to establish the water’s meteoric origin.

Funding for this research, which has been published in Earth and Planetary Science Letters, was provided by the Natural Environmental Research Council (NERC). Catriona and her team are now looking further at the implications of their findings in relation to earthquake cycles as part of the international Deep Fault Drilling Project [DFDP], which aims to drill a hole through the Alpine Fault at a depth of about 1km later this year.

Here’s a link to and a citation for the paper,

Incursion of meteoric waters into the ductile regime in an active orogen by Catriona D. Menzies, Damon A.H. Teagle, Dave Craw, Simon C. Cox, Adrian J. Boyce, Craig D. Barrie, and Stephen Roberts. Earth and Planetary Science Letters Volume 399, 1 August 2014, Pages 1–13 DOI: 10.1016/j.epsl.2014.04.046

Open Access funded by Natural Environment Research Council

This is the first time I’ve seen the funding agency which made the paper’s open access status possible cited.

Darwin’s barnacles become unglued

The world’s strongest glue comes from barnacles and those creatures have something to teach us. From a July 18, 2014 news item on Nanowerk,

Over a 150 years since it was first described by Darwin, scientists are finally uncovering the secrets behind the super strength of barnacle glue.

Still far better than anything we have been able to develop synthetically, barnacle glue – or cement – sticks to any surface, under any conditions.

But exactly how this superglue of superglues works has remained a mystery – until now.

An international team of scientists led by Newcastle University, UK, and funded by the US Office of Naval Research, have shown for the first time that barnacle larvae release an oily droplet to clear the water from surfaces before sticking down using a phosphoprotein adhesive.

A July 18, 2014 Newcastle University (UK) press release, which originated the news item, provides some context and describes the research,

“It’s over 150 years since Darwin first described the cement glands of barnacle larvae and little work has been done since then,” says Dr Aldred, a research associate in the School of Marine Science and Technology at Newcastle University, one of the world’s leading institutions in this field of research.

“We’ve known for a while there are two components to the bioadhesive but until now, it was thought they behaved a bit like some of the synthetic glues – mixing before hardening.  But that still left the question, how does the glue contact the surface in the first place if it is already covered with water?  This is one of the key hurdles to developing glues for underwater applications.

“Advances in imaging techniques, such as 2-photon microscopy, have allowed us to observe the adhesion process and characterise the two components. We now know that these two substances play very different roles – one clearing water from the surface and the other cementing the barnacle down.

“The ocean is a complex mixture of dissolved ions, the pH varies significantly across geographical areas and, obviously, it’s wet.  Yet despite these hostile conditions, barnacle glue is able to withstand the test of time.

“It’s an incredibly clever natural solution to this problem of how to deal with a water barrier on a surface it will change the way we think about developing bio-inspired adhesives that are safe and already optimised to work in conditions similar to those in the human body, as well as marine paints that stop barnacles from sticking.”

Barnacles have two larval stages – the nauplius and the cyprid.  The nauplius, is common to most crustacea and it swims freely once it hatches out of the egg, feeding in the plankton.

The final larval stage, however, is the cyprid, which is unique to barnacles.  It investigates surfaces, selecting one that provides suitable conditions for growth. Once it has decided to attach permanently, the cyprid releases its glue and cements itself to the surface where it will live out the rest of its days.

“The key here is the technology.  With these new tools we are able to study processes in living tissues, as they happen. We can get compositional and molecular information by other methods, but they don’t explain the mechanism.  There’s no substitute for seeing things with your own eyes. ” explains Dr Aldred.

“In the past, the strong lasers used for optically sectioning biological samples have typically killed the samples, but now technology allows us to study life processes exactly as they would happen in nature.”

The press release also notes some possible applications for these research findings (Note: Links have been removed),

Publishing their findings this week in the prestigious academic journal Nature Communications, author Dr Nick Aldred says the findings could pave the way for the development of novel synthetic bioadhesives for use in medical implants and micro-electronics.  The research will also be important in the production of new anti-fouling coatings for ships.

Here’s a link to and a citation for the paper,

Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae by Neeraj V. Gohad, Nick Aldred, Christopher M. Hartshorn, Young Jong Lee, Marcus T. Cicerone, Beatriz Orihuela, Anthony S. Clare, Dan Rittschof, & Andrew S. Mount. Nature Communications 5, Article number: 4414 doi:10.1038/ncomms5414 Published 11 July 2014

This paper is behind a paywall although a free preview is available via ReadCube Access.

First ever Nanoscience and Nanotechnology Symposium in English-speaking Caribbean

A July 12, 2014 news item on Nanowerk heralds this new International symposium on nanoscience and nanotechnology,

The ‘International Symposium on Nanoscience and Nanotechnology’ will be hosted at The University of the West Indies (UWI), St. Augustine [in Trinidad and Tobago], from July 15-17, 2014. The symposium, focused on the frontier areas of science, medicine and technology, is the first of its kind in the English-speaking Caribbean and is organised jointly by CARISCIENCE, The UWI and the University of Trinidad and Tobago. The symposium consists of a Public Lecture on Day 1 and Scientific Sessions over Days 2 and 3.

This international symposium is important and ground-breaking since these are widely viewed as revolutionary fields. Nanoscience and nanotechnology are considered to have huge potential to bring benefits to many areas of research and application and are attracting rapidly increasing investments from governments and businesses in many parts of the world.

Despite developments in nanoscience and nanotechnology, the Caribbean as a region has not been involved to the extent that more advanced countries have. As such, this symposium aims to provide a stronger focus on the impact and implications of developments in nanoscience/nanotechnology for stakeholders within the Caribbean region, including researchers, academics, university students, government and policy makers, industry partners and the wider public. The symposium will explore various topics under the following themes:

Nanotechnology for Sustainable Energy and Industrial Applications
Nanotechnology for Electronic Device and Sensor Applications
Nanotechnology in Biology, Medicine and Pharmaceuticals
Nanoscale Synthesis, Nanofabrication and Characterization

A July 11, 2014 UWI news release, which originated the news item, provides details about the speakers and more,

An impressive line-up of leading, globally recognised experts from world-class international and regional institutes awaits, including the Public Lecture titled “Science and the Elements of Daily Life,” to be delivered by world-renowned scientist, Professor Anthony K. Cheetham FRS, University of Cambridge, Vice President and Treasurer of The Royal Society. Additionally, the Keynote Address at the Opening Ceremony will be delivered by The Right Honourable Keith Mitchell, Prime Minister of Grenada, with responsibility for Science and Technology in CARICOM.

Speakers at the scientific sessions include Professor Fidel Castro Díaz-Balart (Scientific Advisor to the President of the Republic of Cuba and Vice President of The Academy of Science, Cuba); Professor Frank Gu (University of Waterloo, Canada); Professor Christopher Backhouse (former Director of the Waterloo Institute of Nanotechnology, University of Waterloo, Canada); Professor G. U. Kulkarni (JNCASR, India) and Professor Masami Okamoto (Toyota Technology Institute, Japan).

Students, teachers, academics and the wider public, are all invited and encouraged to attend and use this unique opportunity to engage these leading scientists.

The free Public Lecture is scheduled for Tuesday July 15, 2014, from 5pm-7.30pm, at the Daaga Auditorium, The UWI, St. Augustine Campus. [emphasis mine] The Scientific Sessions take place on Wednesday and Thursday July 16 and 17, 2014, from 8.30am-5pm, at Lecture Theatre A1, UWI Teaching and Learning Complex, Circular Road, St. Augustine. There will also be a small Poster Session to highlight some research done in the areas of Nanoscience and nanotechnology in the Caribbean.

All attendees (to the scientific sessions) must complete and send registration forms to the email address [email protected] by Sunday, July 13, 2014. Registration forms may be downloaded at the Campus Events Calendar entry by visiting www.sta.uwi.edu/news/ecalendar.

A registration fee must be paid in cash at the registration desk on Wednesday July 16, 2014, Day 2, at the start of the scientific sessions.

  • Academic and non-academic:  TT$ 600
  • Graduate student: TT$ 150
  • Undergraduate student: no cost

For further information on the symposium, please visit the Campus Events Calendar at www.sta.uwi.edu/news/ecalendar

I wish them all the best. They seem (judging by the institutions represented) to have attracted a stellar roster of speakers.

Science, Scotland, and independence

A referendum on Scotland’s independence will take place later this year on Sept, 18, 2014 and. in the meantime, there’s a great deal of discussion about what a ‘yes’ vote might mean. Canadians will be somewhat familiar with this process having experienced two ‘sovereignty’ referendum votes (1980 and 1995, respectively) in the province of Québec and two 1948 referendums (the first result was inconclusive) in Newfoundland where they chose between dominion status and joining the Canadian confederation (Referendums in Canada Wikipedia entry).

One of the features of Québec’s sovereignty or independence proposals is a desire to retain the financial advantages of being party to a larger,established country while claiming new advantages available to an independent constituency or as they say ‘having one’s cake and eating it too’.

While there are many, many historical, cultural and other differences between the situations in Québec and Scotland, it is not entirely surprising to note that there is at least one area where the Scottish/UK debates seem to be emulating the Québec/Canada debates and that is the desire to retain the advantages of being part of the UK with regard to science research funding.

According to a Dec. 2013 (?) posting of the UK’s Economic and Social Research Council (ESRC) ‘Future of the UK and Scotland’ blog two reports discussing the subject of science research funding in the context of Scotland’s proposed independence were launched in November 2013,

In November [2013], two papers were published regarding the future of Scotland. The first, ‘Scotland analysis: Science and research’, written by the UK government, and unveiled by David Willetts, UK Science Minister earlier in November, focuses solely on the issues related to science and research in Scotland,  whereas the second one, a Scottish Government White Paper, addresses a whole range of issues associated with independence in Scotland with a brief discussion of the futures of science and higher education in Scotland (Chapter 5- Education, Skills and Employment).

Both papers testify to the strength of the Scottish science base and the contribution of Scottish universities to the UK research base as a whole. …

However, when it comes to the independence debate, the two papers present contrasting positions. The UK government paper highlights the disproportionate level of funding and research support that Scottish universities receive compared to the rest of the UK, warning that the funding will not continue at the same level in an independent Scotland. According to the paper, while Scotland only contributes 8% to the GDP, it receives 13% of the research funding from various funding bodies. Should Scotland go independent, the paper argues, the UK research funding flow will stop and it will be up to the Scottish Funding Council to decide whether to keep public research funding at present levels. [emphasis mine]…

Adopting a different perspective, the Scottish Government White Paper argues that it will be in the interest of both sides to remain in a ‘common research area’, which shares research councils, access to facilities, and peer reviewing. According to this paper, Scotland universities have made a huge input to UK research and the research councils have been partly funded by Scottish taxpayers. Therefore, Scotland will seek to remain in the ‘common research area‘ and will negotiate a formula to continue funding research councils based on population, but with Scottish research institutes receiving lower or higher funding support based on their research performance. [emphases mine]

… The Scottish Government White Paper presents an ideal research system which maintains the positive aspects of the current system but eliminates other features (for example, attracting international research talent through modifying immigration policy). [emphasis mine] …

At a workshop, organised by the ESRC Innogen Centre in November [2013] and attended by Scottish-based industrialists, academics, policy agencies and senior research managers, there was considerable debate about uncertainties such as these. There were real worries about how the current high levels of research funding could be continued and how Scotland would be able to compete on research

A July 5, 2014 news item on BBC (British Broadcasting Corporation) News online mentions the latest doings in this area of Scotland’s independence debate,

Medical and scientific research across the UK would suffer if Scotland votes for independence, according to the heads of three academic institutions.

The claim was made by the presidents of the Royal Society, the British Academy and the Academy of Medical Sciences.

Sir Paul Nurse, Lord Stern and Sir John Tooke said scientific collaboration would be damaged by a “Yes” vote.

In a joint letter to The Times newspaper, the three academics also claimed that maintaining existing levels of research in Scotland would cost Scottish taxpayers more should the country leave the UK.

They wrote: “Scotland has long done particularly well through its access to UK research funding.

“If it turns out that an independent Scotland has to form its own science and research budget, maintaining these levels of research spending would cost the Scottish taxpayer significantly more.”

They went on to state that the strong links and collaborations which exist across the UK “would be put at risk”, with any new system aiming to restore these links “likely to be expensive and bureaucratic”.

The presidents wrote: “We believe that if separation were to occur, research not only in Scotland but also the rest of the UK would suffer.

However Academics for Yes, a pro-independence group which comprises 60 academics from Scottish universities, said a “Yes” vote would protect the country’s universities and allow research priorities to be determined.

Its spokesman, Professor Bryan MacGregor from the University of Aberdeen, said: “On the one hand, we have the UK and England contexts of cuts in research and science funding, high student fees with unsustainable loan funding, an immigration policy that is preventing and deterring international student recruitment and the possibility of an exit from the EU and its research funding.

“And, on the other, we have a Scottish government committed to funding research, to free access to universities for residents and to attracting international students.

Earlier this year a group of 14 clinical academics and scientists put their names to an open letter raising “grave concerns that the country does not sleepwalk into a situation that jeopardises its present success in the highly-competitive arena of biomedical research”.

But the Scottish government, which currently provides about a third of research funds, has argued there is no reason why the current UK-wide structure for funding could not continue post-independence.

Kieron Flanagan in a Feb. 12, 2013 posting on the Guardian political science blog explored the possibilities (Note: Links have been removed),

Let’s face it: few people on either side of the Scottish independence debate are likely to be swayed by arguments about the impacts independence might have on scientific research. Yet science is a policy area where major changes would follow from a “Yes” vote for an independent Scotland. Nonetheless, the commentator Colin Macilwain passionately argued that Scottish science is ready to go it alone in a recent Nature opinion column.

… an independent Scotland could choose to continue to subscribe to the UK research councils in the same way that associated non-EU countries pay to take part in the European research programmes. It would have a strong moral claim to continued access, and it would be difficult to see how a UK government could refuse such an arrangement. Continued access to the existing research councils would allow Scotland to ensure that a diverse range of funding sources remains available to its scientists, and might also help encourage UK research charities to continue to fund research in the country.

So, while Macilwain is certainly right that Scottish science can go it alone, those working in Scottish science may conclude that the additional costs of running a small country research system, the additional risks of maintaining autonomy for funding decisions in a much smaller political world, and the consequent reduction in diversity of funding streams together outweigh the attractions of building a whole new research system from scratch.

While I think Flanagan is quite right when he says the impact that a ‘Yes’ vote will have on science funding and research in Scotland is unlikely to sway anyone’s vote, it’s fascinating to observe the discussion. I don’t believe that any such specific concerns about science and research funding have ever arisen in the context of the Québec referendums. If someone knows otherwise, please drop a line in the comments.

In any event, I can’t help but wonder what impact a ‘Yes’ vote will have on other independence movements both in Canada (Québec certainly and Alberta possibly, where mumbles about independence are sometimes heard) and elsewhere.

The evolution of molecules as observed with femtosecond stimulated Raman spectroscopy

A July 3, 2014 news item on Azonano features some recent research from the Université de Montréal (amongst other institutions),

Scientists don’t fully understand how ‘plastic’ solar panels work, which complicates the improvement of their cost efficiency, thereby blocking the wider use of the technology. However, researchers at the University of Montreal, the Science and Technology Facilities Council, Imperial College London and the University of Cyprus have determined how light beams excite the chemicals in solar panels, enabling them to produce charge.

A July 2, 2014 University of Montreal news release, which originated the news item, provides a fascinating description of the ultrafast laser process used to make the observations,

 “We used femtosecond stimulated Raman spectroscopy,” explained Tony Parker of the Science and Technology Facilities Council’s Central Laser Facility. “Femtosecond stimulated Raman spectroscopy is an advanced ultrafast laser technique that provides details on how chemical bonds change during extremely fast chemical reactions. The laser provides information on the vibration of the molecules as they interact with the pulses of laser light.” Extremely complicated calculations on these vibrations enabled the scientists to ascertain how the molecules were evolving. Firstly, they found that after the electron moves away from the positive centre, the rapid molecular rearrangement must be prompt and resemble the final products within around 300 femtoseconds (0.0000000000003 s). A femtosecond is a quadrillionth of a second – a femtosecond is to a second as a second is to 3.7 million years. This promptness and speed enhances and helps maintain charge separation.  Secondly, the researchers noted that any ongoing relaxation and molecular reorganisation processes following this initial charge separation, as visualised using the FSRS method, should be extremely small.

As for why the researchers’ curiosity was stimulated (from the news release),

The researchers have been investigating the fundamental beginnings of the reactions that take place that underpin solar energy conversion devices, studying the new brand of photovoltaic diodes that are based on blends of polymeric semiconductors and fullerene derivatives. Polymers are large molecules made up of many smaller molecules of the same kind – consisting of so-called ‘organic’ building blocks because they are composed of atoms that also compose molecules for life (carbon, nitrogen, sulphur). A fullerene is a molecule in the shape of a football, made of carbon. “In these and other devices, the absorption of light fuels the formation of an electron and a positive charged species. To ultimately provide electricity, these two attractive species must separate and the electron must move away. If the electron is not able to move away fast enough then the positive and negative charges simple recombine and effectively nothing changes. The overall efficiency of solar devices compares how much recombines and how much separates,” explained Sophia Hayes of the University of Cyprus, last author of the study.

… “Our findings open avenues for future research into understanding the differences between material systems that actually produce efficient solar cells and systems that should as efficient but in fact do not perform as well. A greater understanding of what works and what doesn’t will obviously enable better solar panels to be designed in the future,” said the University of Montreal’s Carlos Silva, who was senior author of the study.

Here’s a link to and a citation for the paper,

Direct observation of ultrafast long-range charge separation at polymer–fullerene heterojunctions by Françoise Provencher, Nicolas Bérubé, Anthony W. Parker, Gregory M. Greetham, Michael Towrie, Christoph Hellmann, Michel Côté, Natalie Stingelin, Carlos Silva & Sophia C. Hayes. Nature Communications 5, Article number: 4288 doi:10.1038/ncomms5288 Published 01 July 2014

This article is behind a paywall but there is a free preview available vie ReadCube Access.

A new science advice network launched in the European Union

On June 23, 2014, the Euroscience Open Forum (in Copenhagen) saw the launch of a new pan-European science advice network. From a June 23, 2014 account by James Wilsdon (more about him in a moment) for the Guardian,

This afternoon, at the Euroscience Open Forum in Copenhagen, a new pan-EU network of government science advisers will hold its first meeting. Senior scientific representatives from twelve member states, including the UK’s Sir Mark Walport, will discuss how to strengthen the use of evidence in EU policymaking and improve coordination between national systems, particularly during emergencies, such as when clouds of volcanic ash from Iceland grounded flights across Europe in 2011.

Today’s [June 24, 2014] meeting is indeed the product of dedication: a painstaking 18-month effort by Glover [Anne Glover, chief scientific adviser to the outgoing President of the European commission, José Manuel Barroso] to persuade member states of the benefits of such a network. One of the challenges she has faced is the sheer diversity of models for scientific advice across Europe: while the UK, Ireland and (until recently) Czech Republic have a government chief scientist, several countries – including Portugal, Denmark, Finland and Greece – prefer to use an advisory committee. In another handful of member states, including Italy, Spain and Sweden, science advice is provided by civil servants. Others, such as Austria, Hungary and the Netherlands, look to the president of the national academy of science to perform the role. The rest, including France and Germany, use a hybrid of these models, or none at all.

The new network intends to respect this diversity, and not advance one approach as preferable to the others. (Indeed, it could be particularly counter-productive to promote the UK model in the current EU climate.)

Interestingly, Wilsdon goes on to note that a Chief Science Adviser for the European Union is a relatively new position having been in existence for two years (as of 2014) and there is no certainty that the new president (not yet confirmed) of the European Union will continue with the practice.

Wilsdon also mentions an international science advice conference to take place in New Zealand in August 2014. You can find out more about it in my April 8, 2014 posting where I noted that Wilsdon is one of the speakers or you can go directly to the conference website,  2014 Science Advice to Governments; a global conference for leading practitioners.

Getting back to James Wilsdon, this is the description they have for him at the Guardian,

James Wilsdon is professor of science and democracy at SPRU (Science and Technology Policy Research), University of Sussex. From 2008 to 2011 he was director of science policy at the Royal Society.

He’s also known in Canada as a member of the Council of Canadian Academies Expert Panel on The State of Canada’s Science Culture as per my Feb. 22, 2013 posting. The report is due this year and I expect it will be delivered in the Fall, just in time for the Canadian Science Policy Conference, Oct. 15 -17, 2014.

Finally, you might want to check out Wilsdon’s Twitter feed (https://twitter.com/jameswilsdon) for the latest on European science policy endeavours.

Bringing the Nanoworld Together Workshop in Beijing, China, Sept. 24 – 25, 2014

The speakers currently confirmed for the ‘Bringing the Nanoworld Together Workshop organized by Oxford Instruments are from the UK, China, Canada, the US, and the Netherlands as per a July 2, 2014 news item on Nanowerk (Note: A link has been removed),

‘Bringing the Nanoworld Together’ is an event organised by Oxford Instruments to share the expertise of scientists in the field of Nanotechnology. It will be hosted at the IOS-CAS [Institute of Semiconductors-Chinese Academy of Sciences] Beijing.

Starting with half day plenary sessions on 2D materials with guest plenary speaker Dr Aravind Vijayaraghavan from the National Graphene Institute in Manchester, UK, and on Quantum Information Processing with guest plenary speaker Prof David Cory from the Institute for Quantum Computing, University of Waterloo, Canada, Oxford Instruments’ seminar at the IOP in Beijing from 24-25th September [2014] promises to discuss cutting edge nanotechnology solutions for multiple applications.

A July 1, 2014 Oxford Instruments press release, which originated the news item, describes the sessions and provides more details about the speakers,

Two parallel sessions will focus on thin film processing, & materials characterisation, surface science and cryogenic environments and a wide range of topics will be covered within each technical area. These sessions will include guest international and Chinese speakers from renowned research institutions, speakers from the host institute, and technical experts from Oxford Instruments. This will also present an excellent opportunity for networking between all participants.

Confirmed speakers include the following, but more will be announced soon:

Dr. Aravind Vijayaraghavan, National Graphene Institute, Manchester, UK
Prof David Cory, Institute for Quantum Computing, University of Waterloo, Canada
Prof Guoxing Miao, Institute for Quantum Computing, University of Waterloo, Canada
Prof. HE Ke, Tsinghua University, Institute of Physics, CAS, China
Dr. WANG Xiaodong, Institute of Semiconductors, CAS, China
Prof Erwin Kessels, Tue Eindhoven, Netherlands
Prof. ZENG Yi, Institute of Semiconductor, CAS, China
Prof Robert Klie, University of Illinois Chicago, USA
Prof. Xinran WANG, Nanjing University, China
Prof. Zhihai CHENG, National Centre for Nanoscience and Technology, China
Prof. Yeliang WANG, Institute of Physics, CAS, China

The thin film processing sessions will review latest etch and deposition technological advances, including: ALD, Magnetron Sputtering, ICP PECVD, Nanoscale Etch, MEMS, MBE and more.

Materials characterisation, Surface Science and Cryogenic Environment sessions will cover multiple topics and technologies including: Ultra high vacuum SPM, Cryo free low temperature solutions, XPS/ESCA, an introduction to atomic force microscopy (AFM) and applications such as nanomechanics, In-situ heating and tensile characterisation using EBSD, Measuring Layer thicknesses and compositions using EDS, Nanomanipulation and fabrication within the SEM / FIB.

The host of last year’s Nanotechnology Tools seminar in India, Prof. Rudra Pratap, Chairperson at the Centre for Nano Science and Engineering, Indian Institute of Science, IISC Bangalore commented, “This seminar has been extremely well organised with competent speakers covering a variety of processes and tools for nanofabrication. It is great to have practitioners of the art give talks and provide tips and solutions based on their experience, something that cannot be found in text books.”

“This workshop is a great opportunity for a wide range of scientists in research and manufacturing to discover practical aspects of many new and established processes, technologies and applications, directly from renowned scientists and a leading manufacturer with over 50 years in the industry”, comments Mark Sefton, Sector Head of Oxford Instruments NanoSolutions, “Delegates appreciate the informal workshop atmosphere of these events, encouraging delegates to participate through open discussion and sharing their questions and experiences.”

This seminar is free of charge but prior booking is essential.

You can register on the Oxford Instruments website’s Bringing the Nanoworld Together Workshop webpage,