Tag Archives: UK

Graphene light bulb to hit UK stores later in 2015

I gather people at the University of Manchester are quite happy about the graphene light bulb which their spin-off (or spin-out) company, Graphene Lighting PLC, is due to deliver to the market sometime later in 2015. From a March 30, 2015 news item by Nancy Owano on phys.org (Note: A link has been removed),

The BBC reported on Saturday [March 28, 2015] that a graphene bulb is set for shops, to go on sale this year. UK developers said their graphene bulb will be the first commercially viable consumer product using the super-strong carbon; bulb was developed by a Canadian-financed company, Graphene Lighting, one of whose directors is Prof Colin Bailey at the University of Manchester. [emphasis mine]

I have not been able to track down the Canadian connection mentioned ( but never in any detail) in some of the stories. A March 30, 2015 University of Manchester press release makes no mention of Canada or any other country in its announcement (Note: Links have been removed),

A graphene lightbulb with lower energy emissions, longer lifetime and lower manufacturing costs has been launched thanks to a University of Manchester research and innovation partnership.

Graphene Lighting PLC is a spin-out based on a strategic partnership with the National Graphene Institute (NGI) at The University of Manchester to create graphene applications.

The UK-registered company will produce the lightbulb, which is expected to perform significantly better and last longer than traditional LED bulbs.

It is expected that the graphene lightbulbs will be on the shelves in a matter of months, at a competitive cost.

The University of Manchester has a stake in Graphene Lighting PLC to ensure that the University benefits from commercial applications coming out of the NGI.

The graphene lightbulb is believed to be the first commercial application of graphene to emerge from the UK, and is the first application from the £61m NGI, which only opened last week.

Graphene was isolated at The University of Manchester in 2004 by Sir Andre Geim and Sir Kostya Novoselov, earning them the Nobel prize for Physics in 2010. The University is the home of graphene, with more than 200 researchers and an unrivalled breadth of graphene and 2D material research projects.

The NGI will see academic and commercial partners working side by side on graphene applications of the future. It is funded by £38m from the Engineering and Physical Sciences Research Council (EPSRC) and £23m from the European Regional Development Fund (ERDF).

There are currently more than 35 companies partnering with the NGI. In 2017, the University will open the Graphene Engineering Innovation Centre (GEIC), which will accelerate the process of bringing products to market.

Professor Colin Bailey, Deputy President and Deputy Vice-Chancellor of The University of Manchester said: “This lightbulb shows that graphene products are becoming a reality, just a little more than a decade after it was first isolated – a very short time in scientific terms.

“This is just the start. Our partners are looking at a range of exciting applications, all of which started right here in Manchester. It is very exciting that the NGI has launched its first product despite barely opening its doors yet.”

James Baker, Graphene Business Director, added: “The graphene lightbulb is proof of how partnering with the NGI can deliver real-life products which could be used by millions of people.

“This shows how The University of Manchester is leading the way not only in world-class graphene research but in commercialisation as well.”

Chancellor George Osborne and Sir Kostya Novoselov with the graphene lightbulb Courtesy: University of Manchester

Chancellor George Osborne and Sir Kostya Novoselov with the graphene lightbulb Courtesy: University of Manchester

This graphene light bulb announcement comes on the heels of the university’s official opening of its National Graphene Institute mentioned here in a March 26, 2015 post.

Getting back to graphene and light bulbs, Judy Lin in a March 30, 2015 post on LEDinside.com offers some details such as proposed pricing and more,

These new bulbs will be priced at GBP 15 (US $22.23) each.

The dimmable bulb incorporates a filament-shaped LED coated in graphene, which was designed by Manchester University, where the strong carbon material was first discovered.

$22 seems like an expensive light bulb but my opinion could change depending on how long it lasts. ‘Longer lasting’ (and other variants of the term) seen in the news stories and press release are not meaningful to me. Perhaps someone could specify how many hours and under what conditions?

University of Manchester’s National Graphene Institute opens—officially

A little over two years after the announcement of a National Graphene Institute at the UK’s University of Manchester in my Jan. 14, 2013 post, Azonano provides a March 24, 2015 news item which describes the opening,

The Chancellor of the Exchequer, George Osborne, was invited to open the recently completed £61m National Graphene Institute (NGI) at the University of Manchester on Friday 20th March [2015].

Mr Osbourne was accompanied by Nobel Laureate Professor Sir Kostya Novoselov as he visited the institute’s sophisticated cleanrooms and laboratories.

For anyone unfamiliar with the story, the University of Manchester was the site where two scientists, Kostya (Konstantin) Novoselof and Andre Geim, first isolated graphene. In 2010, both scientists received a Nobel prize for this work. As well, the European Union devoted 1B Euros to be paid out over 10 years for research on graphene and the UK has enthusiastically embraced graphene research. (For more details: my Oct. 7, 2010 post covers graphene and the newly awarded Nobel prizes; my Jan. 28, 2013 post covers the 1B Euros research announcements.)

A March 20, 2015 University of Manchester press release, which originated the news item, gives more detail,

The NGI is the national centre for graphene research and will enable academics and industry to work side-by-side on the graphene applications of the future.

More than 35 companies from across the world have already chosen to partner with The University of Manchester working on graphene-related projects.

The Government provided £38m for the construction of the Institute via the Engineering and Physical Sciences Research Council (EPSRC), with the remaining £23m provided by the European Regional Development Fund (ERDF).

Mr Osborne said: “Backing science and innovation is a key part of building a Northern Powerhouse. The new National Graphene Institute at The University of Manchester will bring together leading academics, scientists and business leaders to help develop the applications of tomorrow, putting the UK in pole position to lead the world in graphene technology.”

One-atom thick graphene was first isolated and explored in 2004 at The University of Manchester. Its potential uses are vast but one of the first areas in which products are likely to be seen is in electronics.

The 7,825 square metre, five-storey building features cutting-edge facilities and equipment throughout to create a world-class research hub. The NGI’s 1,500 square metres of clean room space is the largest academic space of its kind in the world for dedicated graphene research.

Professor Dame Nancy Rothwell, President and Vice-Chancellor of The University of Manchester said: “The National Graphene Institute will be the world’s leading centre of graphene research and commercialisation.

“It will be the home of graphene scientists and engineers from across The University of Manchester working in collaboration with colleagues from many other universities and from some of the world’s leading companies.

“This state-of-the-art institute is an incredible asset, not only to this University and to Manchester but also to the UK. The National Graphene Institute is fundamental to continuing the world-class graphene research which was started in Manchester.”

The NGI is a significant first step in the vision to create a Graphene City® in Manchester. Set to open in 2017 the £60m Graphene Engineering Innovation Centre (GEIC) will complement the NGI and initiate further industry-led development in graphene applications with academic collaboration.

Last year the Chancellor also announced the creation of the £235m Sir Henry Royce Institute for Advanced Materials at The University of Manchester with satellite centres in Sheffield, Leeds, Cambridge, Oxford and London.

Speaking at the opening ceremony, Professor Colin Bailey, Deputy President and Deputy Vice-Chancellor of The University of Manchester said: “The opening of the National Graphene Institute today, complemented by the Graphene Engineering Innovation Centre opening in 2017 and the future Sir Henry Royce Institute for Advanced Materials, will provide the UK with the facilities required to accelerate new materials to market.

“It will allow the UK to lead the way in the area which underpins all manufacturing sectors, resulting in significant inward investment, the stick-ability of innovation, and significant long-term job creation.”

Congratulations to everyone involved in the effort.

As I mentioned earlier today in a post about Kawasaki city (Japan), Manchester will be the European City of Science when it hosts the EuropeanScience Open Forum (ESOF) in 2016.

Brain-like computing with optical fibres

Researchers from Singapore and the United Kingdom are exploring an optical fibre approach to brain-like computing (aka neuromorphic computing) as opposed to approaches featuring a memristor or other devices such as a nanoionic device that I’ve written about previously. A March 10, 2015 news item on Nanowerk describes this new approach,

Computers that function like the human brain could soon become a reality thanks to new research using optical fibres made of speciality glass.

Researchers from the Optoelectronics Research Centre (ORC) at the University of Southampton, UK, and Centre for Disruptive Photonic Technologies (CDPT) at the Nanyang Technological University (NTU), Singapore, have demonstrated how neural networks and synapses in the brain can be reproduced, with optical pulses as information carriers, using special fibres made from glasses that are sensitive to light, known as chalcogenides.

“The project, funded under Singapore’s Agency for Science, Technology and Research (A*STAR) Advanced Optics in Engineering programme, was conducted within The Photonics Institute (TPI), a recently established dual institute between NTU and the ORC.”

A March 10, 2015 University of Southampton press release (also on EurekAlert), which originated the news item, describes the nature of the problem that the scientists are trying address (Note: A link has been removed),

Co-author Professor Dan Hewak from the ORC, says: “Since the dawn of the computer age, scientists have sought ways to mimic the behaviour of the human brain, replacing neurons and our nervous system with electronic switches and memory. Now instead of electrons, light and optical fibres also show promise in achieving a brain-like computer. The cognitive functionality of central neurons underlies the adaptable nature and information processing capability of our brains.”

In the last decade, neuromorphic computing research has advanced software and electronic hardware that mimic brain functions and signal protocols, aimed at improving the efficiency and adaptability of conventional computers.

However, compared to our biological systems, today’s computers are more than a million times less efficient. Simulating five seconds of brain activity takes 500 seconds and needs 1.4 MW of power, compared to the small number of calories burned by the human brain.

Using conventional fibre drawing techniques, microfibers can be produced from chalcogenide (glasses based on sulphur) that possess a variety of broadband photoinduced effects, which allow the fibres to be switched on and off. This optical switching or light switching light, can be exploited for a variety of next generation computing applications capable of processing vast amounts of data in a much more energy-efficient manner.

Co-author Dr Behrad Gholipour explains: “By going back to biological systems for inspiration and using mass-manufacturable photonic platforms, such as chalcogenide fibres, we can start to improve the speed and efficiency of conventional computing architectures, while introducing adaptability and learning into the next generation of devices.”

By exploiting the material properties of the chalcogenides fibres, the team led by Professor Cesare Soci at NTU have demonstrated a range of optical equivalents of brain functions. These include holding a neural resting state and simulating the changes in electrical activity in a nerve cell as it is stimulated. In the proposed optical version of this brain function, the changing properties of the glass act as the varying electrical activity in a nerve cell, and light provides the stimulus to change these properties. This enables switching of a light signal, which is the equivalent to a nerve cell firing.

The research paves the way for scalable brain-like computing systems that enable ‘photonic neurons’ with ultrafast signal transmission speeds, higher bandwidth and lower power consumption than their biological and electronic counterparts.

Professor Cesare Soci said: “This work implies that ‘cognitive’ photonic devices and networks can be effectively used to develop non-Boolean computing and decision-making paradigms that mimic brain functionalities and signal protocols, to overcome bandwidth and power bottlenecks of traditional data processing.”

Here’s a link to and a citation for the paper,

Amorphous Metal-Sulphide Microfibers Enable Photonic Synapses for Brain-Like Computing by Behrad Gholipour, Paul Bastock, Chris Craig, Khouler Khan, Dan Hewak. and Cesare Soci. Advanced Optical Materials DOI: 10.1002/adom.201400472
Article first published online: 15 JAN 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.

For anyone interested in memristors and nanoionic devices, here are a few posts (from this blog) to get you started:

Memristors, memcapacitors, and meminductors for faster computers (June 30, 2014)

This second one offers more details and links to previous pieces,

Memristor, memristor! What is happening? News from the University of Michigan and HP Laboratories (June 25, 2014)

This post is more of a survey including memristors, nanoionic devices, ‘brain jelly, and more,

Brain-on-a-chip 2014 survey/overview (April 7, 2014)

One comment, this brain-on-a-chip is not to be confused with ‘organs-on-a-chip’ projects which are attempting to simulate human organs (Including the brain) so chemicals and drugs can be tested.

Nanotechnology and infinite risk: Global challenges report on 12 risks that threaten human civilisation

The Global Challenges Foundation recently released a report which lists 12 global risks (from the Global Challenges: 12 Risks ,that threaten human civilisation report webpage,

This report has, to the best of the authors’ knowledge, created the first list of global risks with impacts that for all practical purposes can be called infinite. It is also the first structured overview of key events related to such risks and has tried to provide initial rough quantifications for the probabilities of these impacts.

With such a focus it may surprise some readers to find that the report’s essential aim is to inspire action and dialogue as well as an increased use of the methodologies used for risk assessment.

The real focus is not on the almost unimaginable impacts of the risks the report outlines. Its fundamental purpose is to encourage global collaboration and to use this new category of risk as a driver for innovation.

The 12 global risks that threaten human civilisation are:

Current risks

1. Extreme Climate Change
2. Nuclear War
3. Ecological Catastrophe
4. Global Pandemic
5. Global System Collapse

Exogenic risks

6. Major Asteroid Impact
7. Supervolcano

Emerging risks

8. Synthetic Biology
9. Nanotechnology
10. Artificial Intelligence
11. Uncertain Risks

Global policy risk

12. Future Bad Global Governance

The report is fairly new as it was published in February 2015. Here’s a summary of the nanotechnology risk from the report‘s executive summary,

Atomically precise manufacturing, the creation of effective, high- throughput manufacturing processes that operate at the atomic or molecular level. It could create new products – such as smart or extremely resilient materials – and would allow many different groups or even individuals to manufacture a wide range of things. This could lead to the easy construction of large arsenals of conventional or more novel weapons made possible by atomically precise manufacturing. AI is the intelligence exhibited by machines or software, and the branch of computer science that develops machines and software with human-level intelligence. The field is often defined as “the study and design of intelligent agents”, systems that perceive their environment and act to maximise their chances of success. Such extreme intelligences could not easily be controlled (either by the groups creating them, or by some international regulatory regime), and would probably act to boost their own intelligence and acquire maximal resources for almost all initial AI motivations.

Of particular relevance is whether nanotechnology allows the construction of nuclear bombs. But many of the world’s current problems may be solvable with the manufacturing possibilities that nanotechnology would offer, such as depletion of natural resources, pollution, climate change, clean water and even poverty. Some have conjectured special self-replicating nanomachines which would be engineered to consume the entire environment. [grey goo and/or green goo scenarios; emphasis mine] The misuse of medical nanotechnology is another risk scenario. [p. 18 print version; p. 20 PDF]

I was a bit surprised to see the ‘goo’ scenarios referenced since Eric Drexler one of the participants and the person who first posted the ‘grey goo’ scenario (a green goo scenario was subsequently theorized by Robert Freitas)  has long tried to dissociate himself from it.

The report lists the academics and experts (including Drexler) who helped to produce the report,

Dr Nick Beckstead, Research Fellow, Future of Humanity Institute, Oxford Martin School & Faculty of Philosophy, University of Oxford

Kennette Benedict, Executive Director and Publisher of the Bulletin of the Atomic Scientists

Oliver Bettis, Pricing Actuary, Munich RE and Fellow of the Chartered Insurance Institute and the Institute & Faculty of Actuaries

Dr Eric Drexler, Academic Visitor, Future of Humanity Institute, Oxford Martin School & Faculty of Philosophy, University of Oxford [emphasis mine]

Madeleine Enarsson , Transformative Catalyst, 21st Century Frontiers

Pan Jiahua, Director of the Institute for Urban and Environmental Studies, Chinese Academy of Social Sciences (CASS); Professor of economics at CASS; Vice-President Chinese Society for Ecological Economics; Member of the National Expert Panel on Climate Change and National Foreign Policy Advisory Committee, China

Jennifer Morgan, Founder & Co-Convener, The Finance Lab
James Martin Research Fellow, Future of Humanity Institute, Oxford Martin School & Faculty of Philosophy, University of Oxford

Andrew Simms, Author, Fellow at the New Economics Foundation and Chief Analyst at Global Witness

Nathan Wolfe, Director of Global Viral and the Lorry I. Lokey Visiting Professor in Human Biology at Stanford University

Liang Yin, Investment Consultant at Towers Watson [p. 1 print versioin; p. 3 PDF]

While I don’t recognize any names other that Drexler’s, it’s an interesting list albeit with a preponderance of individuals associated with the University of Oxford .

The Feb. 16, 2015 Global Challenges Foundation press release announcing the risk report includes a brief description of the foundation and, I gather, a sister organization at Oxford University,

About the Global Challenges Foundation
The Global Challenges Foundation works to raise awareness of the greatest threats facing humanity and how these threats are linked to poverty and the rapid growth in global population. The Global Challenges Foundation was founded in 2011 by investor László Szombatfalvy.

About Oxford University’s Future of Humanity Institute
The Future of Humanity Institute is a multidisciplinary research institute at the University of Oxford. It enables a select set of leading intellectuals to bring the tools of
mathematics, philosophy, and science to bear on big-picture questions about humanity and its prospects. The Institute belongs to the Faculty of Philosophy and is affiliated with
the Oxford Martin School.

The report is 212 pp (PDF), Happy Reading!

Europe’s search for raw materials and hopes for nanotechnology-enabled solutions

A Feb. 27, 2015 news item on Nanowerk highlights the concerns over the availability of raw materials and European efforts to address those concerns,

Critical raw materials’ are crucial to many European industries but they are vulnerable to scarcity and supply disruption. As such, it is vital that Europe develops strategies for meeting the demand for raw materials. One such strategy is finding methods or substances that can replace the raw materials that we currently use. With this in mind, four EU projects working on substitution in catalysis, electronics and photonics presented their work at the Third Innovation Network Workshop on substitution of Critical Raw Materials hosted by the CRM_INNONET project in Brussels earlier this month [February 2015].

A Feb. 26, 2015 CORDIS press release, which originated the news item, goes on to describe four European Union projects working on nanotechnology-enabled solutions,

NOVACAM

NOVACAM, a coordinated Japan-EU project, aims to develop catalysts using non-critical elements designed to unlock the potential of biomass into a viable energy and chemical feedstock source.

The project is using a ‘catalyst by design’ approach for the development of next generation catalysts (nanoscale inorganic catalysts), as NOVACAM project coordinator Prof. Emiel Hensen from Eindhoven University of Technology in the Netherlands explained. Launched in September 2013, the project is developing catalysts which incorporate non-critical metals to catalyse the conversion of lignocellulose into industrial chemical feedstocks and bio-fuels. The first part of the project has been to develop the principle chemistry while the second part is to demonstrate proof of process. Prof. Hensen predicts that perhaps only two of three concepts will survive to this phase.

The project has already made significant progress in glucose and ethanol conversion, according to Prof. Hensen, and has produced some important scientific publications. The consortium is working with and industrial advisory board comprising Shell in the EU and Nippon Shokubai in Japan.

FREECATS

The FREECATS project, presented by project coordinator Prof. Magnus Rønning from the Norwegian University of Science and Technology, has been working over the past three years to develop new metal-free catalysts. These would be either in the form of bulk nanomaterials or in hierarchically organised structures – both of which would be capable of replacing traditional noble metal-based catalysts in catalytic transformations of strategic importance.

Prof. Magnus Rønning explained that the application of the new materials could eliminate the need for the use for platinum group metals (PGM) and rare earth metals – in both cases Europe is very reliant on other countries for these materials. Over the course of its research, FREECATS targeted three areas in particular – fuel cells, the production of light olefins and water and wastewater purification.

By working to replace the platinum in fuel cells, the project is supporting the EU’s aim of replacing the internal combustion engine by 2050. However, as Prof. Rønning noted, while platinum has been optimized for use over several decades, the materials FREECATS are using are new and thus come with their new challenges which the project is addressing.

HARFIR

Prof. Atsufumi Hirohata of the University of York in the United Kingdom, project coordinator of HARFIR, described how the project aims to discover an antiferromagnetic alloy that does not contain the rare metal Iridium. Iridium is becoming more and more widely used in numerous spin electronic storage devices, including read heads in hard disk drives. The world supply depends on Platinum ore that comes mainly from South Africa. The situation is much worse than for other rare earth elements as the price has been shooting up over recent years, according to Prof. Hirohata.

The HARFIR team, divided between Europe and Japan, aims to replace Iridium alloys with Heusler alloys. The EU team, led by Prof. Hirohata, has been working on the preparation of polycrystalline and epitaxial thin films of Heusler Alloys, with the material design led by theoretical calculations. The Japanese team, led by Prof. Koki Takanashi at Tohoku University, is meanwhile working on the preparation of epitaxial thin films, measurements of fundamental properties and structural/magnetic characterisation by neutron and synchrotron x-ray beams.

One of the biggest challenges has been that Heusler alloys have a relatively complicated atomic structure. In terms of HARFIR’s work, if any atomic disordering at the edge of nanopillar devices, the magnetic properties that are needed are lost. The team is exploring solutions to this challenge.

IRENA

Prof. of Esko Kauppinen Aalto University in Finland closed off the first session of the morning with his presentation of the IRENA project. Launched in September 2013, the project will run until mid 2017 working towards the aim of developing high performance materials, specifically metallic and semiconducting single-walled carbon nanotube (SWCNT) thin films to completely eliminate the use of the critical metals in electron devices. The ultimate aim is to replace Indium in transparent conducting films, and Indium and Gallium as a semiconductor in thin film field effect transistors (TFTs).

The IRENA team is developing an alternative that is flexible, transparent and stretchable so that it can meet the demands of the electronics of the future – including the possibility to print electronics.

IRENA involves three partners from Europe and three from Japan. The team has expertise in nanotube synthesis, thin film manufacturing and flexible device manufacturing, modelling of nanotube growth and thin film charge transport processes, and the project has benefitted from exchanges of team members between institutions. One of the key achievements so far is that the project has succeeded in using a nanotube thin film for the first time as the both the electrode and hole blocking layer in an organic solar cell.

You’ll note that Japan is a partner in all of these projects. In all probability, these initiatives have something to do with rare earths which are used in much of today’s electronics technology and Japan is sorely lacking in those materials. China, by comparison, has dominated the rare earths export industry and here’s an excerpt from my Nov. 1, 2013 posting where I outline the situation (which I suspect hasn’t changed much since),

As for the short supply mentioned in the first line of the news item, the world’s largest exporter of rare earth elements at 90% of the market, China, recently announced a cap according to a Sept. 6, 2013 article by David Stanway for Reuters. The Chinese government appears to be curtailing exports as part of an ongoing, multi-year strategy. Here’s how Cientifica‘s (an emerging technologies consultancy, etc.) white paper (Simply No Substitute?) about critical materials published in 2012 (?), described the situation,

Despite their name, REE are not that rare in the Earth’s crust. What has happened in the past decade is that REE exports from China undercut prices elsewhere, leading to the closure of mines such as the Mountain Pass REE mine in California. Once China had acquired a dominant market position, prices began to rise. But this situation will likely ease. The US will probably begin REE production from the Mountain Pass mine later in 2012, and mines in other countries are expected to start operation soon as well.

Nevertheless, owing to their broad range of uses REE will continue to exert pressures on their supply – especially for countries without notable REE deposits. This highlights two aspects of importance for strategic materials: actual rarity and strategic supply issues such as these seen for REE. Although strategic and diplomatic supply issues may have easier solutions, their consideration for manufacturing industries will almost be the same – a shortage of crucial supply lines.

Furthermore, as the example of REE shows, the identification of long-term supply problems can often be difficult, and not every government has the same strategic foresight that the Chinese demonstrated. And as new technologies emerge, new elements may see an unexpected, sudden demand in supply. (pp. 16-17)

Meanwhile, in response to China’s decision to cap its 2013 REE exports, the Russian government announced a $1B investment to 2018 in rare earth production,, according to a Sept. 10, 2013 article by Polina Devitt for Reuters.

I’m not sure you’ll be able to access Tim Harper’s white paper as he is now an independent, serial entrepreneur. I most recently mentioned him in relation to his articles (on Azonano) about the nanotechnology scene in a Feb. 12, 2015 posting where you’ll also find contact details for him.

Sensing smoke with nanoscale sensors

A Feb. 17, 2015 news item on Nanowerk notes that current smoke sensors are ultra-violet light detectors in the context of research about developing better ones,

Researchers at the University of Surrey’s [UK] Advanced Technology Institute manipulated zinc oxide, producing nanowires from this readily available material to create a ultra-violet light detector which is 10,000 times more sensitive to UV light than a traditional zinc oxide detector.

A Feb. 17, 2015 University of Surrey press release (also on EurekAlert), which originated the news item, provides more detail about the work and the theory (Note: Links have been removed),

Currently, photoelectric smoke sensors detect larger smoke particles found in dense smoke, but are not as sensitive to small particles of smoke from rapidly burning fires.

Researchers believe that this new material could increase sensitivity and allow the sensor to detect distinct particles emitted at the early stages of fires, paving the way for specialist sensors that can be deployed in a number of applications.

“UV light detectors made from zinc oxide have been used widely for some time but we have taken the material a step further to massively increase its performance,” said Professor Ravi Silva, co-author of the study and head of the Advanced Technology Institute. “Essentially, we transformed zinc oxide from a flat film to a structure with bristle-like nanowires, increasing surface area and therefore increasing sensitivity and reaction speed.”

The team predict that the applications for this material could be far-reaching. From fire and gas detection to air pollution monitoring, they believe the sensor could also be incorporated into personal electronic devices – such as phones and tablets – to increase speed, with a response time 1,000 times faster than traditional zinc oxide detectors.

“This is a great example of a bespoke, designer nanomaterial that is adaptable to personal needs, yet still affordable. Due to the way in which this material is manufactured, it is ideally suited for use in future flexible electronics – a hugely exciting area,” added Professor Silva.

Here’s a link to and a citation for the paper,

On-chip Fabrication of High Performance Nanostructured ZnO UV Detectors by Mohammad R. Alenezi, Simon J. Henley, & S. R. P. Silva. Scientific Reports 5, Article number: 8516 doi:10.1038/srep08516 Published 17 February 2015

This paper is open access.

Gold nanotubes could be used in cancer therapies

Where nanotubes are concerned I don’t often see mention of any type other than ‘carbon’ nanotubes so, this Feb. 12, 2015 nanomedicine news item on ScienceDaily featuring ‘gold’ nanotubes caught my attention,

Scientists have shown that gold nanotubes have many applications in fighting cancer: internal nanoprobes for high-resolution imaging; drug delivery vehicles; and agents for destroying cancer cells.

The study, published today in the journal Advanced Functional Materials, details the first successful demonstration of the biomedical use of gold nanotubes in a mouse model of human cancer.

A Feb. 13, 2015 University of Leeds press release, which originated the news item despite what the publication date suggests, describes the research in more detail (Note: Links have been removed),

Study lead author Dr Sunjie Ye, who is based in both the School of Physics and Astronomy and the Leeds Institute for Biomedical and Clinical Sciences at the University of Leeds, said:  “High recurrence rates of tumours after surgical removal remain a formidable challenge in cancer therapy. Chemo- or radiotherapy is often given following surgery to prevent this, but these treatments cause serious side effects.

Gold nanotubes – that is, gold nanoparticles with tubular structures that resemble tiny drinking straws – have the potential to enhance the efficacy of these conventional treatments by integrating diagnosis and therapy in one single system.”

The researchers say that a new technique to control the length of nanotubes underpins the research. By controlling the length, the researchers were able to produce gold nanotubes with the right dimensions to absorb a type of light called ‘near infrared’.

The study’s corresponding author Professor Steve Evans, from the School of Physics and Astronomy at the University of Leeds, said: “Human tissue is transparent for certain frequencies of light – in the red/infrared region. This is why parts of your hand appear red when a torch is shone through it.

“When the gold nanotubes travel through the body, if light of the right frequency is shone on them they absorb the light. This light energy is converted to heat, rather like the warmth generated by the Sun on skin. Using a pulsed laser beam, we were able to rapidly raise the temperature in the vicinity of the nanotubes so that it was high enough to destroy cancer cells.”

In cell-based studies, by adjusting the brightness of the laser pulse, the researchers say they were able to control whether the gold nanotubes were in cancer-destruction mode, or ready to image tumours.

In order to see the gold nanotubes in the body, the researchers used a new type of  imaging technique called ‘multispectral optoacoustic tomography’ (MSOT) to detect the gold nanotubes in mice, in which gold nanotubes had been injected intravenously. It is the first biomedical application of gold nanotubes within a living organism. It was also shown that gold nanotubes were excreted from the body and therefore are unlikely to cause problems in terms of toxicity, an important consideration when developing nanoparticles for clinical use.

Study co-author Dr James McLaughlan, from the School of Electronic & Electrical Engineering at the University of Leeds, said: “This is the first demonstration of the production, and use for imaging and cancer therapy, of gold nanotubes that strongly absorb light within the ‘optical window’ of biological tissue.

“The nanotubes can be tumour-targeted and have a central ‘hollow’ core that can be loaded with a therapeutic payload. This combination of targeting and localised release of a therapeutic agent could, in this age of personalised medicine, be used to identify and treat cancer with minimal toxicity to patients.”

The use of gold nanotubes in imaging and other biomedical applications is currently progressing through trial stages towards early clinical studies.

Here’s a link to and a citation for the paper,

Engineering Gold Nanotubes with Controlled Length and Near-Infrared Absorption for Theranostic Applications by Sunjie Ye, Gemma Marston, James R. McLaughlan, Daniel O. Sigle, Nicola Ingram, Steven Freear, Jeremy J. Baumberg, Richard J. Bushby, Alexander F. Markham, Kevin Critchley, Patricia Louise Coletta, and Stephen D. Evans. Advanced Functional Materials DOI: 10.1002/adfm.201404358 Article first published online: 12 FEB 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Nano-Clear® makes lifeboats glossy for Carnival Cruise Lines

A Feb. 9, 2015 news item on Azonano profiles Carnival Cruise Lines and a deal the company has struck with Nanovere Technologies,

Carnival Cruise Lines implementing Nano-Clear® Coatings to restore their entire fleet of lifeboats.

Ship owners and operators spend a great deal of money and time maintaining their vessels and lifeboats to the highest quality standards, but are often let down by poor appearance. Conventional marine paints and gel coatings are highly susceptible to UV damage, causing the surface to oxidize and loose color over time. Lifeboats are designed to have a bright and glossy appearance for improved safety and visibility, but become dull and less visible over time due to UV damage.

 

A Feb. 7, 2015 Nanovere Technologies press release, which originated the news item, provides more details,

In late 2014, Nanotech Marine Services, based in the UK conducted a field application trial aboard the Queen Elizabeth Ship using Nano-Clear® Coatings manufactured by Nanovere Technologies in Brighton, MI USA. The purpose of the trial was to provide a long-term solution to the gel-coat oxidation issue on the ships lifeboats and tenders, as the orange gel-coat on these vessels are continually exposed to high levels of UV and fade rapidly. This paint oxidation issue has proven to be difficult to overcome including continuous polishing of the surface or a costly new paint job.

Nano-Clear® Coating was applied to the gel-coat surface and left to weather for several months aboard the Queen Elizabeth while operating in the Mediterranean. The field trial represented real world conditions and proved that a polished surface using the traditional cut-and-polish approach, fails surprisingly fast when exposed to harmful UV rays. The test patches coated with Nano-Clear® Coating showed “no” deterioration in gloss or color; as compared with the surrounding area showing a dull surface that will continue to oxidize over time.

Due to the outstanding success of the Nano-Clear® trials on the Queen Elizabeth, Nanotech Marine secured the restoration of 18 lifeboats aboard Queen Victoria. Carnival Cruise Lines is also implementing Nano-Clear® Coatings to restore their entire fleet of lifeboats starting with 26 aboard the Cruise Ship Azura in 2015. Nano-Clear® Coatings provide ship operators, maintenance yards and super yacht owners with a tested and practical solution to restore and maintain high value assets to the highest gloss level for many years.

Nano Clear is the only marine coating in the global market place to enhance, restore and extend the service life of newly painted or highly oxidized painted surfaces by 10 years. Nano-Clear® penetrates deep into the smallest pores of paint, enhancing the underlying color, dramatically improving gloss, scratch resistance, corrosion resistance and extending UV resistance, while reducing surface cleaning by 50%. Nano-Clear® eliminates the need to re-paint, color match or polish gel-coatings, thereby reducing material, labor and maintenance costs.

Nano-Clear® Coatings have been validated by leading global organizations including the US Army, Carnival Cruise Lines, Princimar Chemical Carriers, Toshiba Industrial Products and leading tank car manufactures. To learn more about Nano-Clear® Coatings, please email [email protected], visit www.nanocoatings.com or call (810) 227-0077.

Here’s an image illustrating the pre-NanoClear- and post-NanoClear-coated lifeboats,

Courtesy: Nanovere Technologies

Courtesy: Nanovere Technologies

I last wrote about Nanovere Technologies in a Jan. 2, 2013 post about automotive plastics.

Studying the “feather-legged lace weaver’s” (Uloborus plumipes) web weaving abilities

It’s more commonly known in Britain as a ‘garden centre spider’ but I like ‘feather-legged lace weaver’ better. Before getting to the story, here’s an image of the spider in question,

The "garden center spider" (Uloborus plumipes) combs and pulls its silk and builds up an electrostatic charge to create sticky filaments just a few nanometers thick. It could inspire a new way to make super long and strong nanofibers. Credit: Hartmut Kronenberger & Katrin Kronenberger (Oxford University)

The “garden center spider” (Uloborus plumipes) combs and pulls its silk and builds up an electrostatic charge to create sticky filaments just a few nanometers thick. It could inspire a new way to make super long and strong nanofibers.
Credit: Hartmut Kronenberger & Katrin Kronenberger (Oxford University)

A Jan. 27, 2015 Oxford University press release (also on EurekAlert and in a Jan. 29, 2015 news item on Azonano) describes the research,

A spider commonly found in garden centres in Britain is giving fresh insights into how to spin incredibly long and strong fibres just a few nanometres thick.

The majority of spiders spin silk threads several micrometres thick but unusually the ‘garden centre spider’ or ‘feather-legged lace weaver’ [1] Uloborus plumipes can spin nano-scale filaments. Now an Oxford University team think they are closer to understanding how this is done. Their findings could lead to technologies that would enable the commercial spinning of nano-scale filaments.

The research was carried out by Katrin Kronenberger and Fritz Vollrath of Oxford University’s Department of Zoology and is reported in the journal Biology Letters.

Instead of using sticky blobs of glue on their threads to capture prey Uloborus uses a more ancient technique – dry capture threads made of thousands of nano-scale filaments that it is thought to electrically charge to create these fluffed-up catching ropes.

To discover the secrets of its nano-fibres the Oxford researchers collected adult female Uloborus lace weavers from garden centres in Hampshire, UK. They then took photographs and videos of the spiders’ spinning action and used three different microscopy techniques to examine the spiders’ silk-generating organs. Of particular interest was the cribellum, an ancient spinning organ not found in many spiders and consisting of one or two plates densely covered in tiny silk outlet nozzles (spigots).

Uloborus has unique cribellar glands, amongst the smallest silk glands of any spider, and it’s these that yield the ultra-fine ‘catching wool’ of its prey capture thread,’ said Dr Katrin Kronenberger of Oxford University’s Department of Zoology, the report’s first author. ‘The raw material, silk dope, is funnelled through exceptionally narrow and long ducts into tiny spinning nozzles or spigots. Importantly, the silk seems to form only just before it emerges at the uniquely-shaped spigots of this spider.’

False colour SEM image of a small part of the cribellum spinning plate with its unique silk outlets Image: Katrin Kronenberger (Oxford University) & David Johnston (University of Southampton)

False colour SEM image of a small part of the cribellum spinning plate with its unique silk outlets
Image: Katrin Kronenberger (Oxford University) & David Johnston (University of Southampton)

The cribellum of Uloborus is covered with thousands of tiny silk-producing units combining ducts that average 500 nanometres in length and spigots that narrow to a diameter of around 50 nanometres.

‘The swathe of gossamer, made of thousands of filaments, emerging from these spigots is actively combed out by the spider onto the capture thread’s core fibres using specialist hairs on its hind legs,’ said Professor Fritz Vollrath, the other author of the work. ‘This combing and hackling – violently pulling the thread – charges the fibres and the electrostatic interaction of this combination spinning process leads to regularly spaced, wool-like ‘puffs’ covering the capture threads. The extreme thinness of each filament, in addition to the charges applied during spinning, provides Van der Waals adhesion. And this makes these puffs immensely sticky.’

The cribellate capture thread of Uloborus plumipes, with its characteristic 'puffs', imaged with a Scanning Electron Microscope (SEM) Image: Fritz Vollrath (Oxford University)

The cribellate capture thread of Uloborus plumipes, with its characteristic ‘puffs’, imaged with a Scanning Electron Microscope (SEM)
Image: Fritz Vollrath (Oxford University)

Conventionally, synthetic polymers fibres are produced by hot-melt extrusion: these typically have diameters of 10 micrometres or above. But because thread diameter is integral to filament strength, technology that could enable the commercial production of nano-scale filaments would make it possible to manufacture stronger and longer fibres.

‘Studying this spider is giving us valuable insights into how it creates nano-scale filaments,’ said Professor Vollrath. ‘If we could reproduce its neat trick of electro-spinning nano-fibres we could pave the way for a highly versatile and efficient new kind of polymer processing technology.’

Here’s a link to and citation for the paper,

Spiders spinning electrically charged nano-fibres by Katrin Kronenberger and Fritz Vollrath. January 2015 Volume: 11 Issue: 1 DOI: 10.1098/rsbl.2014.0813 Published 28 January 2015

This is an open access paper. Note: Sometimes journals close access after a certain number of days so the paper may not be freely available after a certain time period.

Art project (autonomous bot purchases illegal goods) seized by Swiss law enforcement

Having just attended a talk on Robotics and Rehabilitation which included a segment on Robo Ethics, news of an art project where an autonomous bot (robot) is set loose on the darknet to purchase goods (not all of them illegal) was fascinating in itself (it was part of an art exhibition which also displayed the proceeds of the darknet activity). But things got more interesting when the exhibit attracted legal scrutiny in the UK and occasioned legal action in Switzerland.

Here’s more from a Jan. 23, 2015 article by Mike Masnick for Techdirt (Note: A link has been removed),

… some London-based Swiss artists, !Mediengruppe Bitnik [(Carmen Weisskopf and Domagoj Smoljo)], presented an exhibition in Zurich of The Darknet: From Memes to Onionland. Specifically, they had programmed a bot with some Bitcoin to randomly buy $100 worth of things each week via a darknet market, like Silk Road (in this case, it was actually Agora). The artists’ focus was more about the nature of dark markets, and whether or not it makes sense to make them illegal:

The pair see parallels between copyright law and drug laws: “You can enforce laws, but what does that mean for society? Trading is something people have always done without regulation, but today it is regulated,” says ays [sic] Weiskopff.

“There have always been darkmarkets in cities, online or offline. These questions need to be explored. But what systems do we have to explore them in? Post Snowden, space for free-thinking online has become limited, and offline is not a lot better.”

Interestingly the bot got excellent service as Mike Power wrote in his Dec. 5, 2014 review of the show. Power also highlights some of the legal, ethical, and moral implications,

The gallery is next door to a police station, but the artists say they are not afraid of legal repercussions of their bot buying illegal goods.

“We are the legal owner of the drugs [the bot purchased 10 ecstasy pills along with a baseball cap, a pair of sneaker/runners/trainers among other items] – we are responsible for everything the bot does, as we executed the code, says Smoljo. “But our lawyer and the Swiss constitution says art in the public interest is allowed to be free.”

The project also aims to explore the ways that trust is built between anonymous participants in a commercial transaction for possibly illegal goods. Perhaps most surprisingly, not one of the 12 deals the robot has made has ended in a scam.

“The markets copied procedures from Amazon and eBay – their rating and feedback system is so interesting,” adds Smojlo. “With such simple tools you can gain trust. The service level was impressive – we had 12 items and everything arrived.”

“There has been no scam, no rip-off, nothing,” says Weiskopff. “One guy could not deliver a handbag the bot ordered, but he then returned the bitcoins to us.”

The exhibition scheduled from Oct. 18, 2014 – Jan. 11, 2015 enjoyed an uninterrupted run but there were concerns in the UK (from the Power article),

A spokesman for the National Crime Agency, which incorporates the National Cyber Crime Unit, was less philosophical, acknowledging that the question of criminal culpability in the case of a randomised software agent making a purchase of an illegal drug was “very unusual”.

“If the purchase is made in Switzerland, then it’s of course potentially subject to Swiss law, on which we couldn’t comment,” said the NCA. “In the UK, it’s obviously illegal to purchase a prohibited drug (such as ecstasy), but any criminal liability would need to assessed on a case-by-case basis.”

Masnick describes the followup,

Apparently, that [case-by[case] assessment has concluded in this case, because right after the exhibit closed in Switzerland, law enforcement showed up to seize stuff …

!Mediengruppe Bitnik  issued a Jan. 15, 2015 press release (Note: Links have been removed),

«Can a robot, or a piece of software, be jailed if it commits a crime? Where does legal culpability lie if code is criminal by design or default? What if a robot buys drugs, weapons, or hacking equipment and has them sent to you, and police intercept the package?» These are some of the questions Mike Power asked when he reviewed the work «Random Darknet Shopper» in The Guardian. The work was part of the exhibition «The Darknet – From Memes to Onionland. An Exploration» in the Kunst Halle St. Gallen, which closed on Sunday, January 11, 2015. For the duration of the exhibition, !Mediengruppe Bitnik sent a software bot on a shopping spree in the Deepweb. Random Darknet Shopper had a budget of $100 in Bitcoins weekly, which it spent on a randomly chosen item from the deepweb shop Agora. The work and the exhibition received wide attention from the public and the press. The exhibition was well-attended and was discussed in a wide range of local and international press from Saiten to Vice, Arte, Libération, CNN, Forbes. «There’s just one problem», The Washington Post wrote in January about the work, «recently, it bought 10 ecstasy pills».

What does it mean for a society, when there are robots which act autonomously? Who is liable, when a robot breaks the law on its own initiative? These were some of the main questions the work Random Darknet Shopper posed. Global questions, which will now be negotiated locally.

On the morning of January 12, the day after the three-month exhibition was closed, the public prosecutor’s office of St. Gallen seized and sealed our work. It seems, the purpose of the confiscation is to impede an endangerment of third parties through the drugs exhibited by destroying them. This is what we know at present. We believe that the confiscation is an unjustified intervention into freedom of art. We’d also like to thank Kunst Halle St. Gallen for their ongoing support and the wonderful collaboration. Furthermore, we are convinced, that it is an objective of art to shed light on the fringes of society and to pose fundamental contemporary questions.

This project brings to mind Isaac Asimov’s three laws of robotics and a question (from the Wikipedia entry; Note: Links have been removed),

The Three Laws of Robotics (often shortened to The Three Laws or Three Laws, also known as Asimov’s Laws) are a set of rules devised by the science fiction author Isaac Asimov. The rules were introduced in his 1942 short story “Runaround”, although they had been foreshadowed in a few earlier stories. The Three Laws are:

A robot may not injure a human being or, through inaction, allow a human being to come to harm.
A robot must obey the orders given it by human beings, except where such orders would conflict with the First Law.
A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

Here’s my question, how do you programme a robot to know what would injure a human being? For example, if a human ingests an ecstasy pill the bot purchased, would that be covered in the first law?

Getting back to the robot ethics talk I recently attended, it was given by Ajung Moon (Ph.D. student at the University of British Columbia [Vancouver, Canada] studying Human-Robot Interaction and Roboethics. Mechatronics engineer with a sprinkle of Philosophy background). She has a blog,  Roboethic info DataBase where you can read more on robots and ethics.

I strongly recommend reading both Masnick’s post (he positions this action in a larger context) and Power’s article (more details and images from the exhibit).