Tag Archives: UK

What’s a science historian doing in the field of synthetic biology?

Dominic Berry’s essay on why he, a science historian, is involved in a synthetic biology project takes some interesting twists and turns, from a Sept. 2, 2016 news item on phys.org,

What are synthetic biologists doing to plants, and what are plants doing to synthetic biology? This question frames a series of laboratory observations that I am pursuing across the UK as part of the Engineering Life project, which is dedicated to exploring what it might mean to engineer biology. I contribute to the project through a focus on plant scientists and my training in the history and philosophy of science. For plant scientists the engineering of biology can take many forms not all of which are captured by the category ‘synthetic biology’. Scientists that aim to create modified organisms are more inclined to refer to themselves as the latter, while other plant scientists will emphasise an integration of biological work with methods or techniques from engineering without adopting the identity of synthetic biologist. Accordingly, different legacies in the biosciences (from molecular biology to biomimetics) can be drawn upon depending on the features of the project at hand. These category and naming problems are all part of a larger set of questions that social and natural scientists continue to explore together. For the purposes of this post the distinctions between synthetic biology and the broader engineering of biology do not matter greatly, so I will simply refer to synthetic biology throughout.

Berry’s piece was originally posted Sept. 1, 2016 by Stephen Burgess on the PLOS (Public Library of Science) Synbio (Synthetic Biology blog). In this next bit Berry notes briefly why science historians and scientists might find interaction and collaboration fruitful (Note: Links have been removed),

It might seem strange that a historian is focused so closely on the present. However, I am not alone, and one recent author has picked out projects that suggest it is becoming a trend. This is only of interest for readers of the PLOS Synbio blog because it flags up that there are historians of science available for collaboration (hello!), and plenty of historical scholarship to draw upon to see your work in a new light, or rediscover forgotten research programs, or reconsider current practices, precisely as a recent Nature editorial emphasised for all sciences.

The May 17, 2016 Nature editorial ‘Second Thoughts’, mentioned in Berry’s piece, opens provocatively and continues in that vein (Note: A link has been removed),

The thought experiment has a noble place in research, but some thoughts are deemed more noble than others. Darwin and Einstein could let their minds wander and imagine the consequences of certain actions or natural laws. But scientists and historians who try to estimate what might have happened if, say, Darwin had fallen off the Beagle and drowned, are often accused of playing parlour games.

What if Darwin had toppled overboard before he joined the evolutionary dots? That discussion seems useful, because it raises interesting questions about the state of knowledge, then and now, and how it is communicated and portrayed. In his 2013 book Darwin Deleted — in which the young Charles is, indeed, lost in a storm — the historian Peter Bowler argued that the theory of evolution would have emerged just so, but with the pieces perhaps placed in a different order, and therefore less antagonistic to religious society.

In this week’s World View, another historian offers an alternative pathway for science: what if the ideas of Gregor Mendel on the inheritance of traits had been challenged more robustly and more successfully by a rival interpretation by the scientist W. F. R. Weldon? Gregory Radick argues that a twentieth-century genetics driven more by Weldon’s emphasis on environmental context would have weakened the dominance of the current misleading impression that nature always trumps nurture.

Here is Berry on the importance of questions,

The historian can ask: What traditions and legacies are these practitioners either building on or reacting against? How do these ideas cohere (or remain incoherent) for individuals and laboratories? Is a new way of understanding and investigating biology being created, and if so, where can we find evidence of it? Have biologists become increasingly concerned with controlling biological phenomena rather than understanding them? How does the desire to integrate engineering with biology sit within the long history of the establishment of biological science over the course of the 19th and 20th centuries?

Berry is an academic and his piece reflects an academic writing style with its complicated sentence structures and muted conclusions. If you have the patience, it is a good read on a topic that isn’t discussed all that often.

Creating quantum dots (artificial atoms) in graphene

An Aug. 22, 2016 news item on phys.org describes some recent work on artificial atoms and graphene from the Technical University of Vienna (Austria) and partners in Germany and the UK,

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom – for this reason, such electron prisons are often called “artificial atoms”. Artificial atoms may also feature properties beyond those of conventional ones, with the potential for many applications for example in quantum computing. Such additional properties have now been shown for artificial atoms in the carbon material graphene. The results have been published in the journal Nano Letters, the project was a collaboration of scientists from TU Wien (Vienna, Austria), RWTH Aachen (Germany) and the University of Manchester (GB).

“Artificial atoms open up new, exciting possibilities, because we can directly tune their properties”, says Professor Joachim Burgdörfer (TU Wien, Vienna). In semiconductor materials such as gallium arsenide, trapping electrons in tiny confinements has already been shown to be possible. These structures are often referred to as “quantum dots”. Just like in an atom, where the electrons can only circle the nucleus on certain orbits, electrons in these quantum dots are forced into discrete quantum states.

Even more interesting possibilities are opened up by using graphene, a material consisting of a single layer of carbon atoms, which has attracted a lot of attention in the last few years. “In most materials, electrons may occupy two different quantum states at a given energy. The high symmetry of the graphene lattice allows for four different quantum states. This opens up new pathways for quantum information processing and storage” explains Florian Libisch from TU Wien. However, creating well-controlled artificial atoms in graphene turned out to be extremely challenging.

Florian Libisch, explaining the structure of graphene. Courtesy Technical University of Vienna

Florian Libisch, explaining the structure of graphene. Courtesy Technical University of Vienna

An Aug. 22, 2016 Technical University of Vienna press release (also on EurekAlert), which originated the news item, provides more detail,

There are different ways of creating artificial atoms: The simplest one is putting electrons into tiny flakes, cut out of a thin layer of the material. While this works for graphene, the symmetry of the material is broken by the edges of the flake which can never be perfectly smooth. Consequently, the special four-fold multiplicity of states in graphene is reduced to the conventional two-fold one.

Therefore, different ways had to be found: It is not necessary to use small graphene flakes to capture electrons. Using clever combinations of electrical and magnetic fields is a much better option. With the tip of a scanning tunnelling microscope, an electric field can be applied locally. That way, a tiny region is created within the graphene surface, in which low energy electrons can be trapped. At the same time, the electrons are forced into tiny circular orbits by applying a magnetic field. “If we would only use an electric field, quantum effects allow the electrons to quickly leave the trap” explains Libisch.

The artificial atoms were measured at the RWTH Aachen by Nils Freitag and Peter Nemes-Incze in the group of Professor Markus Morgenstern. Simulations and theoretical models were developed at TU Wien (Vienna) by Larisa Chizhova, Florian Libisch and Joachim Burgdörfer. The exceptionally clean graphene sample came from the team around Andre Geim and Kostya Novoselov from Manchester (GB) – these two researchers were awarded the Nobel Prize in 2010 for creating graphene sheets for the first time.

The new artificial atoms now open up new possibilities for many quantum technological experiments: “Four localized electron states with the same energy allow for switching between different quantum states to store information”, says Joachim Burgdörfer. The electrons can preserve arbitrary superpositions for a long time, ideal properties for quantum computers. In addition, the new method has the big advantage of scalability: it should be possible to fit many such artificial atoms on a small chip in order to use them for quantum information applications.

Here’s a link to and a citation for the paper,

Electrostatically Confined Monolayer Graphene Quantum Dots with Orbital and Valley Splittings by Nils M. Freitag, Larisa A. Chizhova, Peter Nemes-Incze, Colin R. Woods, Roman V. Gorbachev, Yang Cao, Andre K. Geim, Kostya S. Novoselov, Joachim Burgdörfer, Florian Libisch, and Markus Morgenstern. Nano Lett., Article ASAP DOI: 10.1021/acs.nanolett.6b02548 Publication Date (Web): July 28, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

Dexter Johnson in an Aug. 23, 2016 post on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) provides some additional insight into the world of quantum dots,

Quantum dots made from semiconductor materials, like silicon, are beginning to transform the display market. While it is their optoelectronic properties that are being leveraged in displays, the peculiar property of quantum dots that allows their electrons to be forced into discrete quantum states has long held out the promise of enabling quantum computing.

If you have time to read it, Dexter’s post features an email interview with Florian Libisch where they further discuss quantum dots and quantum computing.

Canada’s Ingenuity Lab receives a $1.7M grant to develop oil recovery system for oil spills

A Sept. 15, 2016 news item on Benzinga.com describes the reasons for the $1.7M grant for Alberta’s (Canada) Ingenuity Lab to develop an oil spill recovery system,

Since 2010’s tragic events, which saw BP’s Deepwater Horizon disaster desecrate the Gulf of Mexico, oil safety has been on the forefront of the environmental debate and media outrage. In line with the mounting concerns continuing to pique public attention, at the end of this month [Sept. 2016], Hollywood will release its own biopic of the event. As can be expected, more questions will be raised about what exactly went wrong, in addition to fresh criticism aimed at the entire industry.

One question that is likely to emerge is how do we prevent such a calamity from ever happening again? Fortunately, some of the brightest minds in science have been preparing for such an answer.

One team that has been focusing on this dilemma is Alberta-based, multi-disciplinary research initiative Ingenuity Lab. The institution has just secured $1.7m in project funding for developing a highly advanced system for recovering oil from oil spills. This injection of capital will enable Ingenuity Lab to conduct new research and develop commercial production processes for recovering heavy oil spills in marine environments. The technology is centred on cutting edge nanowire-based stimuli-responsive membranes and devices that are capable for recovering oil.

A Sept. 15, 2016 Ingenuity Lab news release on MarketWired, which originated the news item, provides more insight into the oil spill situation,

Oil is a common pollutant in our oceans; more than three million metric tonnes contaminate the sea each year. When crude oil is accidentally released into a body of water by an oil tanker, refinery, storage facility, underwater pipeline or offshore oil-drilling rig, it is an environmental emergency of the most urgent kind.

Depending on the location, oil spills can be highly hazardous, as well as environmentally destructive. Consequently, a timely clean up is absolutely crucial in order to protect the integrity of the water, the shoreline and the numerous creatures that depend on these habitats.

Due to increased scrutiny of the oil industry with regard to its unseemly environmental track record, attention must be focused on the development of new materials and technologies for removing organic contaminants from waterways. Simply put, existing methods are not sufficiently robust.

Fortuitously, however, nanotechnology has opened the door for the development of sophisticated new tools that use specifically designed materials with properties that are ideally suited to enable complex separations, including the separation of crude oil from water.

Ingenuity Lab’s project focuses on the efficient recovery of oil through the development of this novel technology using a variety of stimuli-responsive nanomaterials. When the time comes for scale up production for this technology, Ingenuity Lab will work closely with industry trendsetters, Tortech Nanofibers.

This project forms a strong element of the Oil Spill Response Science (OSRS), which is part of Canada’s world-class tanker safety system for Responsible Resource Development. Through this programme, the Canadian Government ensures that the country’s resource wealth can be safely developed and transported to market, thus creating new jobs and economic growth for all Canadians.

From a communications standpoint, the news release is well written and well strategized to underline the seriousness of the situation and to take advantage of renewed interest in the devastating (people’s lives were lost and environmental damage is still being assessed) 2010 BP oil spill in the Gulf of Mexico due to the upcoming movie titled, Deepwater Horizon. A little more information about the team (how many people, who’s leading the research, are there international and/or interprovincial collaborators?), plans for the research (have they already started? what work, if any, are they building on? what challenges are they facing?) and some technical details would have been welcome.

Regardless, it’s good to hear about this initiative and I wish them great success with it.

You can find our more about Ingenuity Lab here and Tortech Nanofibers here. Interestingly, Tortech is a joint venture between Israel’s Plasan Sasa and the UK’s Q-Flo. (Q-Flo is a spinoff from Cambridge University.) One more thing, Tortech Nanofibers produces materials made of carbon nanotubes (CNTs). Presumably Ingenuity’s “nanowire-based stimuli-responsive membranes” include carbon nanotubes.

Attosecond science impacts femtochemistry

An Aug. 17, 2016 news item on Nanowerk reveals the latest about attoscience and femtochemistry (Note: A link has been removed),

Attosecond Science is a new exciting frontier in contemporary physics, aimed at time-resolving the motion of electrons in atoms, molecules and solids on their natural timescale. Electronic dynamics derives from the creation and evolution of coherence between different electronic states and proceeds on sub-femtosecond timescales. In contrast, chemical dynamics involves position changes of atomic centers and functional groups and typically proceeds on a slower, femtosecond timescale inherent to nuclear motion.

Nonetheless, there are exciting ways in which chemistry can hugely benefit from the technological developments pushed forward in the vibrant field of Attosecond Science. This was exploited in the work recently published by Lorenz Drescher and coworkers (“XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation”).

An Aug. 17, 2016 (?) Forschungsverbund Berlin press release, which originated the news item, provides more detail about the work,

Attosecond pulses are generated in the process of High Harmonic Generation (HHG), in which infrared photons are upconverted to the extreme ultraviolet (XUV) frequency domain in a highly non-linear interaction of intense coherent light and matter. The short duration of attosecond pulses implies a frequency spectrum with photon energies spanning from a few electron volts (eV) to hundreds of eV. Such broad and continuous frequency spectra are ideally suited for core shell absorption measurements in molecules.

Core shell to valence shell transitions are a unique probe of molecular structure and dynamics. Core-to-valence transitions are element specific, due to the highly localized nature of core orbitals on specific atoms. On the other hand the intramolecular local environment of specific atomic sites is encoded, since an electron is lifted from a core orbital to a hole in the valence shell, affected by chemical bonding (…). Importantly, these transitions typically correspond to very short lifetimes of only a few femtoseconds. The use of ultrashort XUV pulses hence gives a new twist to the ultrafast studies of chemistry: It allows to probe chemical dynamics, initiated by a UV pump laser pulse, from the perspective of different reporter atoms within a molecule in an XUV transient absorption experiment. This is now beginning to be explored by a number of groups around the world.

In the experiment carried out by Drescher and coworkers at the MBI, photodissociation of iodomethane (CH3I) and iodobenzene (C6H5I) was studied with time-resolved XUV transient absorption spectroscopy at the iodine pre-N4,5 edge, using femtosecond UV pump pulses and XUV probe pulses from HHG (…). For both molecules the molecular core-to-valence absorption lines were found to fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product however emerge promptly in CH3I but are time-delayed in C6H5I. In CH3I, we interpret this observation as the creation of an instantaneous new target state for XUV absorption by the UV pump pulse, which is then subject to relaxation of the excited valence shell as the molecule dissociates. This relaxation shows in a continuous shift in energy of the emerging atomic absorption lines in CH3I, which we measured in the experiment. In contrast, the delayed appearance of the absorption lines in C6H5I is indicative of a UV created vacancy, which within the molecule is initially spatially distant from the iodine reporter atom and has to first travel intramolecular before being observed. This behaviour is attributed to the dominant π → σ* UV excitation in iodobenzene, which involves the π orbital of the phenyl moiety.

While in the current work only a simplistic independent particle model was used to rationalize the observed experimental findings, MBI with its newly created theory department provides unique opportunities for joint experimental and theory studies on XUV transient absorption of photochemical processes. This will involve a new theoretical approach developed recently by researchers from MBI together with colleagues in Canada, the UK and Switzerland, which was recently submitted as a publication.

Here’s a link to and a citation for the paper,

Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation by L. Drescher, M. C. E. Galbraith, G. Reitsma, J. Dura, N. Zhavoronkov, S. Patchkovskii, M. J. J. Vrakking, and J. Mikosch. J. Chem. Phys. 145, 011101 (2016); http://dx.doi.org/10.1063/1.4955212

This paper appears to be open access.

A new lens (made from nanobeads) for seeing subwavelength images at visible frequencies

The image which illustrates the research is quite intriguing but I don’t think it makes much sense until you read about the research. From an Aug. 12, 2016 news item on ScienceDaily,

Nanobeads are all around us- and are, some might argue, used too frequently in everything from sun-screen to white paint, but a new ground-breaking application is revealing hidden worlds.

A paper in Science Advances provides proof of a new concept, using new solid 3D superlenses to break through the scale of things previously visible through a microscope.

Illustrating the strength of the new superlens, the scientists describe seeing for the first time, the actual information on the surface of a Blue Ray DVD. That shiny surface is not as smooth as we think. Current microscopes cannot see the grooves containing the data- but now even the data itself is revealed.

Now the image,

(a) Conceptual drawing of nanoparticle-based metamaterial solid immersion lens (mSIL) (b) Lab made mSIL (c) SEM image of 60 nm sized imaging sample (d) corresponding superlens imaging of the 60 nm samples by the developed mSIL. Courtesy: Bangor University

(a) Conceptual drawing of nanoparticle-based metamaterial solid immersion lens (mSIL) (b) Lab made mSIL (c) SEM image of 60 nm sized imaging sample (d) corresponding superlens imaging of the 60 nm samples by the developed mSIL. Credit: ©BangorUniversity Fudan University

An Aug. 13, 2016 Bangor University press release (also on EurekAlert with an Aug. 12, 2016 publication date), which originated the news item, describes the work in more detail,

Led by Dr Zengbo Wang at Bangor University UK and Prof Limin Wu at Fudan University, China, the team created minute droplet-like lens structures on the surface to be examined. These act as an additional lens to magnify the surface features previously invisible to a normal lens.

Made of millions of nanobeads, the spheres break up the light beam. Each bead refracts the light, acting as individual torch-like minute beam. It is the very small size of each beam of light which illuminate the surface, extending the resolving ability of the microscope to record-breaking levels. The new superlens adds 5x magnification on top of existing microscopes.

Extending the limit of classical microscope’s resolution has been the ‘El Dorado’ or ‘Holy Grail’ of microscopy for over a century. Physical laws of light make it impossible to view objects smaller than 200 nm – the smallest size of bacteria, using a normal microscope alone. However, superlenses have been the new goal since the turn of the millennium, with various labs and teams researching different models and materials.

“We’ve used high-index titanium dioxide (TiO2) nanoparticles as the building element of the lens. These nanoparticles are able to bend light to a higher degree than water. To explain, when putting a spoon into a cup of this material, if it were possible, you’d see a larger bend where you spoon enters the material than you would looking at the same spoon in a glass of water,” Dr Wang says.

Nanoparticles splitting single incident beam into multiple=Nanoparticles splitting single incident beam into multiple beams which provides optical super-resolution in imaging.“Each sphere bends the light to a high magnitude and splits the light beam, creating millions of individual beams of light. It is these tiny light beams which enable us to view previously unseen detail.”

Wang believes that the results will be easily replicable and that other labs will soon be adopting the technology and using it for themselves.

The advantages of the technology is that the material, titanium dioxide, is cheap and readily available, and rather than buying a new microscope, the lenses are applied to the material to be viewed, rather than to the microscope.

“We have already viewed details to a far greater level than was previously possible. The next challenge is to adapt the technology for use in biology and medicine. This would not require the current use of a combination of dyes and stains and laser light- which change the samples being viewed. The new lens will be used to see germs and viruses not previously visible.”

Here’s a link to and a citation for the paper,

Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies by Wen Fan, Bing Yan, Zengbo Wang, and Limin Wu. Science Advances  12 Aug 2016: Vol. 2, no. 8, e1600901 DOI: 10.1126/sciadv.1600901

This paper is open access.

Promethean Particles claims to be world’s largest nanomaterial production plant

It’s a bit puzzling initially as both the SHYMAN (Sustainable Hydrothermal Manufacturing of Nanomaterials) project and Promethean Particles are claiming to be the world’s biggest nanomaterials production facility. In a battle of press release titles (one from CORDIS and one from the University of Nottingham) it becomes clear after reading both that the SHYMAN project is the name for a European Commission 7th Framework Programme funded project and Promethean Particles, located at the University of Nottingham (UK), is a spinoff from that project. So, both claims are true, although confusing at first glance.

An Aug. 1, 2016 news item on Nanowerk breaks the news about the ‘SHYMAN project’s’ production facility (Note: A link has been removed),

The European SHYMAN project aims to establish continuous hydrothermal synthesis as the most flexible and sustainable process to create nanomaterials at industrial scale. After demonstrating this potential in the lab, the project has now announced the opening of its first facility in Nottingham.

An (Aug. 1, 2016?) CORDIS press release, which originated the news item,

‘This new facility opens up a significant amount of new opportunities for us,’ says Professor Ed Lester, Technical Coordinator of Promethean Particles. This spin-out of the University of Nottingham is in charge of operating the new plant, which is expected to produce over 1 000 tonnes of nanomaterials every year. The production cost is lower than that of other facilities and the chosen production method – continuous hydrothermal synthesis – is expected to impact even markets for which sale prices had so far been an obstacle.

‘We have already had a lot of interest from companies in a diverse range of sectors. From healthcare, where nano-particles can be used in coatings on medical devices, to enhanced fabrics, where nano-materials can add strength and flexibility to textiles, and in printed electronics, as we are able to print materials such as copper,’ Prof. Lester continues. Solvay, Fiat, PPG and Repsol are among the major companies already set to benefit from the plant’s products.

To reach these impressive levels of production, the plant notably relies on high pressure triplex plunger pumps manufactured by Cat Pumps. These pumps have helped the 18-strong consortium to overcome engineering issues related to the mixing of the heated fluid and the aqueous metal salt flow, by creating the continuous pressure and fluid flow necessary to achieve continuous production.

Another enabling technology is the Nozzle Reactor, a customised design that uses buoyancy-induced eddies to produce an ‘ideal’ mixing scenario in a pipe-in-pip concentric configuration in which the internal pipe has an open-ended nozzle. This technology allows Promethean Particles to dramatically improve reproducibility and reliability whilst controlling particles properties such as size, composition and shape.

Betting on hydrothermal synthesis

Started in 2012, SHYMAN built upon the observation that hydrothermal synthesis had numerous advantages compared to alternatives: it doesn’t resort to noxious chemicals, uses relatively simple chemistry relying on cheap precursors, allows straightforward downstream processing, can avoid agglomeration and allows for narrow and well-controlled size and shape distribution.

The optimisation of hydrothermal synthesis has been a key objective of the University of Nottingham for the past 14 years, and SHYMAN is the pinnacle: the project began with the development of bench scale reactors, followed by a 30-times-larger pilot scale reactor. The reactor at the heart of the new production plant is 80 times larger than the latter and features four Cat Pumps Model 3801 high pressure triplex plunger pumps.

‘These are very exciting times for Promethean Particles,’ said Dr Susan Huxtable, Director of Intellectual Property and Commercialisation at the University of Nottingham. ‘The new facility opens up a myriad of opportunities for them to sell their services into new markets right across the world. It is a great example of how many of the technologies developed by academics here at the University of Nottingham have the potential to benefit both industry and society.’

The July 12, 2016 University of Nottingham press release, while covering much of the same ground, offers some additional detail,

The plant [Promethean Particles] was developed as part of a pan-European nano-materials research programme, known as SHYMAN (Sustainable Hydrothermal Manufacturing of Nanomaterials). The project, which had a total value of €9.7 million Euros, included partner universities and businesses from 12 European countries.

The outcome of the project was the creation of the largest multi-material nano-particle plant in the world, based in Nottingham. The plant is now operated by Promethean, and it is able to operate at supercritical conditions, producing up to 200 kg of nano-particles per hour.

You can find out more about the SHYMAN project here and Promethean Particles here.

New form of light could lead to circuits that run on photons instead of electrons

If circuits are running on photons instead of electrons, does that mean there will be no more electricity and electronics?  Apparently, the answer is not exactly. First, an Aug. 5, 2016 news item on ScienceDaily makes the announcement about photons and circuits,

New research suggests that it is possible to create a new form of light by binding light to a single electron, combining the properties of both.

According to the scientists behind the study, from Imperial College London, the coupled light and electron would have properties that could lead to circuits that work with packages of light — photons — instead of electrons.

It would also allow researchers to study quantum physical phenomena, which govern particles smaller than atoms, on a visible scale.

An Aug. 5, 2016 Imperial College of London (ICL) press release, which originated the news item, describes the research further (Note: A link has been removed),

In normal materials, light interacts with a whole host of electrons present on the surface and within the material. But by using theoretical physics to model the behaviour of light and a recently-discovered class of materials known as topological insulators, Imperial researchers have found that it could interact with just one electron on the surface.

This would create a coupling that merges some of the properties of the light and the electron. Normally, light travels in a straight line, but when bound to the electron it would instead follow its path, tracing the surface of the material.

Improved electronics

In the study, published today in Nature Communications, Dr Vincenzo Giannini and colleagues modelled this interaction around a nanoparticle – a small sphere below 0.00000001 metres in diameter – made of a topological insulator.

Their models showed that as well as the light taking the property of the electron and circulating the particle, the electron would also take on some of the properties of the light. [emphasis mine]

Normally, as electrons are travelling along materials, such as electrical circuits, they will stop when faced with a defect. However, Dr Giannini’s team discovered that even if there were imperfections in the surface of the nanoparticle, the electron would still be able to travel onwards with the aid of the light.

If this could be adapted into photonic circuits, they would be more robust and less vulnerable to disruption and physical imperfections.

Quantum experiments

Dr Giannini said: “The results of this research will have a huge impact on the way we conceive light. Topological insulators were only discovered in the last decade, but are already providing us with new phenomena to study and new ways to explore important concepts in physics.”

Dr Giannini added that it should be possible to observe the phenomena he has modelled in experiments using current technology, and the team is working with experimental physicists to make this a reality.

He believes that the process that leads to the creation of this new form of light could be scaled up so that the phenomena could observed much more easily.

Currently, quantum phenomena can only be seen when looking at very small objects or objects that have been super-cooled, but this could allow scientists to study these kinds of behaviour at room temperature.

An electron that takes on the properties of light? I find that fascinating.

Artistic image of light trapped on the surface of a nanoparticle topological insulator. Credit: Vincenzo Giannini

Artistic image of light trapped on the surface of a nanoparticle topological insulator. Credit: Vincenzo Giannini

For those who’d like more information, here’s a link to and a citation for the paper,

Single-electron induced surface plasmons on a topological nanoparticle by G. Siroki, D.K.K. Lee, P. D. Haynes,V. Giannini. Nature Communications 7, Article number: 12375  doi:10.1038/ncomms12375 Published 05 August 2016

This paper is open access.

Generating clean fuel with individual gold atoms

A July 22, 2016 news item on Nanowerk highlights an international collaboration focused on producing clean fuel,

A combined experimental and theoretical study comprising researchers from the Chemistry Department and LCN [London Centre for Nanotechnology], along with groups in Argentina, China, Spain and Germany, has shed new light on the behaviour of individual gold atoms supported on defective thin cerium dioxide films – an important system for catalysis and the generation of clean hydrogen for fuel.

A July ??, 2016 LCN press release, which originated the news item, expands on the theme of catalysts, the research into individual gold atoms, and how all this could result in clean fuel,

Catalysis plays a vital role in our world; an estimated 80% of all chemical and materials are made via processes which involve catalysts, which are commonly a mixture of metals and oxides. The standard motif for these heterogeneous catalysts (where the catalysts are solid and the reactants are in the gas phase) is of a high surface area oxide support that is decorated with metal nanoparticles a few nanometres in diameter. Cerium dioxide (ceria, CeO2) is a widely used support material for many important industrial processes; metal nanoparticles supported on ceria have displayed high activities for applications including car catalytic converters, alcohol synthesis, and for hydrogen production. There are two key attributes of ceria which make it an excellent active support material: its oxygen storage and release ability, and its ability to stabilise small metal particles under reaction conditions. A recent system that has been the focus of much interest has been that of gold nanoparticles and single atoms with ceria, which has demonstrated high activity towards the water-gas-shift reaction, (CO + H2O —> CO2 + H2) a key stage in the generation of clean hydrogen for use in fuel cells.

The nature of the active sites of these catalysts and the role that defects play are still relatively poorly understood; in order to study them in a systematic fashion, the researchers prepared model systems which can be characterised on the atomic scale with a scanning tunnelling microscope.

Figure: STM images of CeO2-x(111) ultrathin films before and after the deposition of Au single atoms at 300 K. The bright lattice is from the oxygen atoms at the surface – vacancies appear as dark spots

These model systems comprised well-ordered, epitaxial ceria films less than 2 nm thick, prepared on a metal single crystal, upon which single atoms and small clusters of gold were evaporated onto under ultra-high-vacuum (essential to prevent contamination of the surfaces). Oxygen vacancy defects – missing oxygen atoms in the top layer of the ceria – are relatively common at the surface and appear as dark spots in the STM images. By mapping the surface before and after the deposition of gold, it is possible to analyse the binding of the metal atoms, in particular there does not appear to be any preference for binding in the vacancy sites at 300 K.

Publishing their results in Physical Review Letters, the researchers combined these experimental results with theoretical studies of the binding energies and diffusion rates across the surface. They showed that kinetic effects governed the behaviour of the gold atoms, prohibiting the expected occupation of the thermodynamically more stable oxygen vacancy sites. They also identified electron transfer between the gold atoms and the ceria, leading to a better understanding of the diffusion phenomena that occur at this scale, and demonstrated that the effect of individual surface defects may be more minor than is normally imagined.

Here’s a link to and a citation for the paper,

Diffusion Barriers Block Defect Occupation on Reduced CeO2(111) by P.G. Lustemberg, Y. Pan, B.-J. Shaw, D. Grinter, Chi Pang, G. Thornton, Rubén Pérez, M. V. Ganduglia-Pirovano, and N. Nilius. Phys. Rev. Lett. Vol. 116, Iss. 23 — 10 June 2016 2016DOI:http://dx.doi.org/10.1103/PhysRevLett.116.236101 Published 9 June 2016

This paper is behind a paywall.

A grant for regenerating bones with injectable stem cell microspheres

I have a longstanding interest in bones partly due to my introduction to a skeleton in a dance course and to US artist Georgia O’Keeffe’s paintings. In any event, it’s been too long since I’ve featured any research on bones here.

This news comes from the UK’s University of Nottingham. A July 25, 2016 news item on Nanowerk announced a grant for stem cell research,

The University of Nottingham has secured £1.2m to develop injectable stem cell-carrying materials to treat and prevent fractures caused by osteoporosis and other bone-thinning diseases.

A July 25, 2016 University of Nottingham press release, which originated the news item, offers more information about the proposed therapy and the research project (Note: Links have been removed),

The experimental materials consist of porous microspheres produced from calcium phosphates – a key component in bones – to be filled with stem cells extracted from the patient.

The targeted therapy could offer a quick, easy and minimally-invasive treatment that is injected into areas considered to be at high-risk of fracture to promote bone regeneration.

The funding grant, from the National Institute for Health Research (NIHR i4i Challenge Award), also supports the development of a prototype delivery device to inject these stem cell loaded microspheres to the sites of interest.

In addition, project partners will investigate how well the materials stay in place once they have been injected inside the body.

Research leads, Dr Ifty Ahmed and Professor Brigitte Scammell explained that the aim was to develop a preventive treatment option to address the growing issue of fractures occurring due to bone-thinning diseases, which is exacerbated due to the worldwide ageing population.

Osteoporosis-related conditions affect some three million Britons, and cost the NHS over £1.73bn each year, according to the National Osteoporotic Society.

Dr Ahmed, from the Faculty of Engineering at The University of Nottingham, said, “We would advocate a national screening program, using a DEXA scan, which measures bone mineral density, to identify people at high risk of fracture due to osteoporosis.

“If we could strengthen these peoples bone before they suffered from fractures, using a simple injection procedure, it would save people the pain and trauma of broken bones and associated consequences such as surgery and loss of independence.”

The NIHR grant will also fund a Patient and Public Involvement study on the suitability of the technology, gauging the opinions and personal experience of people affected by osteoporosis as sufferers or carers, for example.

The project has already undertaken proof-of-concept work to test the feasibility of manufacturing the microsphere materials and lab work to ensure that stem cells attach and reside within these novel microsphere carriers.

The research is still at an early stage and the project team are working towards next phase pre-clinical trials.

This work reminded me of an unfinished piece of science fiction where I developed a society that had the ability to grow bone to replace lost limbs, replace lost bone matter, and restructure faces. I should get back to it one of these days. In the meantime, here’s an image of a microsphere,

A close-up of a injectable stem-cell carrying microsphere made of calcium phosphate which are injected to prevent and treat fractures caused by bone-thinning diseases. (Image: Ifty Ahmed; University of Nottingham)

A close-up of a injectable stem-cell carrying microsphere made of calcium phosphate which are injected to prevent and treat fractures caused by bone-thinning diseases. (Image: Ifty Ahmed; University of Nottingham)

One final note, fragile bones are no joke but there does seem to be a movement to diagnose more and more people with osteoporosis. Alan Cassels, in his July/August 2016 article for Common Ground magazine, points out that the guidelines for diagnosis have changed and more healthy people are being targeted,

… Americans, the experts tell us, are suffering an epidemic of osteoporosis. A new US osteoporosis guideline says that 72% of women over 65 are considered ‘diseased’ – a number which rises to 93% for those over 75 years old – and hence in need of drug therapy.

What is going on here?

Clearly, the only real ‘epidemic’ is the growing phenomenon where risks for disease are being turned into diseases, in and of themselves. In this racket, ‘high’ blood pressure, elevated cholesterol, low bone density, fluctuating blood sugars, high eyeball pressure and low testosterone, among other things, become worrying signs of chronic, lifelong conditions that demand attention and medication. As I’ve said in the past, “If you want to know why pharma is increasingly targeting healthy people with ‘preventive medicine,’ it’s because that’s where the money is.”

One thing all these risks-as-disease models have in common is they are shaped and supported by clinical practice guidelines. In these guidelines, doctors are told to measure their patients’ parameters. If your measurements are outside some preset levels deemed ‘high risk’ by the expert guidelines, you know what that means: more frequent trips to the pharmacy. The main downside of guidelines is they slap labels on people who aren’t sick and instill in physicians the constant idea their healthy patients are really disease-ridden.

But this is a good news story and if you haven’t sensed it, there’s a rising backlash against medical guidelines, mostly led by doctors, researchers and even some patients outraged at what they see going on. …

I don’t wish to generalize from the situation in the US to the situation in the UK. The medical systems and models are quite different but since at least some of my readership is from the US, I thought this digression might prove helpful. Regardless of where you live, it never hurts to ask questions.

A change of pace: storytelling event in London, UK on Sept. 9, 2016

It’s a long weekend (Jly. 30 – Aug. 1, 2016) here in Canada and I’m using that as an excuse (time for something a little different) for posting this piece about storyteller, Seema Anand and her upcoming event “Of Love, Lust, and Liabilities …” at Usurp Art in London, England.

Here’s more from a July 31, 2016 notice received via email,

Professional Indian storyteller Seema Anand, will enchant you with a series of stories celebrating love and lust. There will be stories showing the darker parts, bizarre, erotic, beautiful stories, and stories to captivate and seduce. Join us for an enthralling evening dedicated for grown-up, celebrating oral storytelling from ancient mythology, folk tales, legend and fable. Usurp will be converted into an intimate, atmospheric, dreamers salon for the night.

Seema Anand is a London based mythologist and story teller, holds a doctorate in narrative practices and has performed at The V&A, the British Museum, Rich Mix, Asia House, amongst other leading institutions. She is an acknowledged expert on ancient, erotic literature and her seminal work on the Kamasutra as a text on women’s issues is ground breaking.

Seema is an acknowledged authority on the Mahabharata, the Ramayana, and lectures on Tantric philosophies, the Kama Sutra, and the Bhagavad Gita. Her reinterpretation and reproduction of Indian folk lore and tales is associated with the UNESCO project for Endangered Oral Traditions.  She believes that the stories that we tell, define our roles and establish our identities within the community and if we are to create change – real, sustainable change – it is these stories that we have to change.

Before giving any details about logistics, here’s a sample of her storytelling/lecture (the sound quality is a little rocky),

It runs about two mins. 18 secs. and is titled: “Kama Sutra tells us about Love Bites.”

As promised here are the logistical details for the upcoming performance at Usurp Arts,

Of Love, Lust and Liabilities…
Seema Anand
Friday 9 September 2016
Doors open 7.30pm

Usurp Art Gallery & Studios
140 Vaughan Road, London HA1 4EB
www.usurp.org.uk | 07956 817038

Limited early bird tickets – includes one free drink – book now. Bring cushions and slippers. Snacks and drinks will be available. Doors open 7.30pm. Suitable for 16 +

£10 for early bird tickets.

You can find more Seema Anand stories and lectures on YouTube.