Tag Archives: UK

Knight Therapeutics, a Canadian pharmaceutical company, enters agreement with Russia’s (?) Pro Bono Bio, a nanotechnology product company

The June 27, 2015 news item on Nanotechnology Now includes two pieces of business news (I am more interested in the second),

Knight Therapeutics Inc. (TSX:GUD) (“Knight” or the “Company”), a leading Canadian specialty pharmaceutical company, announced today that it has (1) extended a secured loan of US$15 million to Pro Bono Bio PLC (“Pro Bono Bio”), the world’s leading healthcare nanotechnology company, and (2) entered into an exclusive distribution agreement with Pro Bono Bio to commercialize its wide range of nanotechnology products, medical devices and drug delivery technologies in select territories.

A June 26, 2015 Knight Pharmaceuticals news release, which originated the news item, provides a few more details about the loan and the license agreement,

The secured loan of US$15 million, which matures on June 25, 2018, will bear interest at 12% per annum plus other additional consideration. The interest rate will decrease to 10% if Pro Bono Bio meets certain equity-fundraising targets. The loan is secured by a charge over the assets of Pro Bono Bio and its affiliates which includes but is not limited to Flexiseq™, an innovative topical pain product that has sales of more than 3 million units since its U.K. launch last year.

As part of the license agreement, Knight obtained the exclusive Quebec and Israeli distribution rights to Pro Bono Bio’s innovative Flexiseq™ range of pain relief products and its promising SEQuaderma™ derma-cosmetic range of products, both of which are expected to launch in Quebec within the next 12 months. In addition, Knight obtained the exclusive Canadian and Israeli rights to two earlier stage product groups: blood factor products for the treatment of Hemophiliacs, and diagnostic devices designed for the automated detection of peripheral arterial disease. [emphasis mine]

John Mayo, Chairman and CEO of Pro Bono Bio, said, “We worked night and day to find a good distribution and strategic partner to help our North American team launch our existing products and drive growth. We welcome the good Knight on our quest to deliver to Canadian and American consumers’ best-in-class, drug-free nanotechnology products that are safe, effective and of the highest quality: truly the holy grail!”

“When you donate to charity, you always receive back more than you give. I hope this truism also holds true for this Pro Bono world!” said Jonathan Ross Goodman, President and CEO of Knight. “We look forward to the late 2015 launch of Flexiseq™ and SEQuaderma™ in La Belle Province.”

The news release also provides a description of the drugs and the companies, along with a disclaimer,

About Flexiseq™

Flexiseq™ is a topically applied drug-free gel which is clinically proven to safely relieve the pain and improve the joint stiffness associated with osteoarthritis (OA). Flexiseq™ is unique – it lubricates your joints to address joint damage. Pain is relieved and joint function improved because it lubricates away the friction and associated wear and tear on a user’s joints.

About SEQuaderma™

SEQuaderma™ Dermatology Products are a unique range of active dermatology solutions specifically designed to address the symptoms and, in some cases, the causes of the targeted conditions, leading to reduced recurrence. SEQuaderma™ Dermatology Products are suitable for long term use and can be used on their own or in between drug treatments to reduce exposure to adverse events; they will not compromise any other medication and are suitable for those with multiple conditions.

About Pro Bono Bio PLC

Pro Bono Bio PLC is the world’s leading healthcare nanotechnology company offering health and lifestyle products, headquartered in London with presence in Europe, Africa and Asia and due to launch in North America. [emphasis mine]

About Knight Therapeutics Inc.

Knight Therapeutics Inc., headquartered in Montreal, Canada, is a specialty pharmaceutical company focused on acquiring or in-licensing innovative pharmaceutical products for the Canadian and select international markets. Knight’s shares trade on TSX under the symbol GUD. For more information about Knight Therapeutics Inc., please visit the Company’s web site at www.gud-knight.com or www.sedar.com.

Forward-Looking Statement [disclaimer]

This document contains forward-looking statements for the Company and its subsidiaries. These forward looking statements, by their nature, necessarily involve risks and uncertainties that could cause actual results to differ materially from those contemplated by the forward-looking statements. The Company considers the assumptions on which these forward-looking statements are based to be reasonable at the time they were prepared, but cautions the reader that these assumptions regarding future events, many of which are beyond the control of the Company and its subsidiaries, may ultimately prove to be incorrect. Factors and risks, which could cause actual results to differ materially from current expectations are discussed in the Company’s Annual Report and in the Company’s Annual Information Form for the year ended December 31, 2014. The Company disclaims any intention or obligation to update or revise any forward-looking statements whether as a result of new information or future events, except as required by law.

While Pro Bono Bio is headquartered in London (UK), the BloombergBusiness website lists the company as Russian,

Pro Bono Bio, an international pharmaceutical company, develops and commercializes new medicines in the Russian Federation. Its products include FLEXISEQ, a pain relieving gel containing absorbing nanostructures (Sequessomes) for the treatment of pain associated with osteoarthritis; EXOSEQ, which delivers Sequessomes to the upper dermal layers of the skin for the treatment of inflammatory conditions, such as eczema and seborrhoeic dermatitis; and ROSSOSEQ, which distributes Sequessome vesicles into lower dermal tissues in the skin to treat psoriasis and atopic eczema conditions. The company also develops blood products, CV diagnostics, anti-infectives, and biological drugs. Pro Bono Bio was …

Detailed Description



Founded in 2011

Key Executives for Pro Bono Bio
Mr. John Mayo
Chief Executive Officer
Mr. Michael Earl
Chief Operating Officer
Compensation as of Fiscal Year 2014.

Pro Bono Bio Key Developments

Pro Bono Bio Appoints Jason Flowerday as CEO of North American Operations

Jun 26 15

Pro Bono Bio launched its North American operations with headquarters based in Toronto, Canada and secured USD 15 million in funding to accelerate the global launches of FLEXISEQ and SEQUADERMA as well as help fund its ambitious research and development programs that continue to place Pro Bono Bio at the forefront of nanotechnology healthcare development. Pro Bono Bio has recently appointed a North American CEO, Jason Flowerday, to build-out the North American operations and set its strategy for entering both the Canadian and US markets over the next three quarters.

Pro Bono Bio Launches its North American Operations
Jun 26 15

These are interesting developments for both Montréal (Québec) and Toronto (Ontario). As for whether or not Pro Bono Bio is Russian or British, I imagine the legal entity which is the company is Russian while the operations (headquarters as previously noted) are based in the UK.

D-Wave passes 1000-qubit barrier

A local (Vancouver, Canada-based, quantum computing company, D-Wave is making quite a splash lately due to a technical breakthrough.  h/t’s Speaking up for Canadian Science for Business in Vancouver article and Nanotechnology Now for Harris & Harris Group press release and Economist article.

A June 22, 2015 article by Tyler Orton for Business in Vancouver describes D-Wave’s latest technical breakthrough,

“This updated processor will allow significantly more complex computational problems to be solved than ever before,” Jeremy Hilton, D-Wave’s vice-president of processor development, wrote in a June 22 [2015] blog entry.

Regular computers use two bits – ones and zeroes – to make calculations, while quantum computers rely on qubits.

Qubits possess a “superposition” that allow it to be one and zero at the same time, meaning it can calculate all possible values in a single operation.

But the algorithm for a full-scale quantum computer requires 8,000 qubits.

A June 23, 2015 Harris & Harris Group press release adds more information about the breakthrough,

Harris & Harris Group, Inc. (Nasdaq: TINY), an investor in transformative companies enabled by disruptive science, notes that its portfolio company, D-Wave Systems, Inc., announced that it has successfully fabricated 1,000 qubit processors that power its quantum computers.  D-Wave’s quantum computer runs a quantum annealing algorithm to find the lowest points, corresponding to optimal or near optimal solutions, in a virtual “energy landscape.”  Every additional qubit doubles the search space of the processor.  At 1,000 qubits, the new processor considers 21000 possibilities simultaneously, a search space which is substantially larger than the 2512 possibilities available to the company’s currently available 512 qubit D-Wave Two. In fact, the new search space contains far more possibilities than there are particles in the observable universe.

A June 22, 2015 D-Wave news release, which originated the technical details about the breakthrough found in the Harris & Harris press release, provides more information along with some marketing hype (hyperbole), Note: Links have been removed,

As the only manufacturer of scalable quantum processors, D-Wave breaks new ground with every succeeding generation it develops. The new processors, comprising over 128,000 Josephson tunnel junctions, are believed to be the most complex superconductor integrated circuits ever successfully yielded. They are fabricated in part at D-Wave’s facilities in Palo Alto, CA and at Cypress Semiconductor’s wafer foundry located in Bloomington, Minnesota.

“Temperature, noise, and precision all play a profound role in how well quantum processors solve problems.  Beyond scaling up the technology by doubling the number of qubits, we also achieved key technology advances prioritized around their impact on performance,” said Jeremy Hilton, D-Wave vice president, processor development. “We expect to release benchmarking data that demonstrate new levels of performance later this year.”

The 1000-qubit milestone is the result of intensive research and development by D-Wave and reflects a triumph over a variety of design challenges aimed at enhancing performance and boosting solution quality. Beyond the much larger number of qubits, other significant innovations include:

  •  Lower Operating Temperature: While the previous generation processor ran at a temperature close to absolute zero, the new processor runs 40% colder. The lower operating temperature enhances the importance of quantum effects, which increases the ability to discriminate the best result from a collection of good candidates.​
  • Reduced Noise: Through a combination of improved design, architectural enhancements and materials changes, noise levels have been reduced by 50% in comparison to the previous generation. The lower noise environment enhances problem-solving performance while boosting reliability and stability.
  • Increased Control Circuitry Precision: In the testing to date, the increased precision coupled with the noise reduction has demonstrated improved precision by up to 40%. To accomplish both while also improving manufacturing yield is a significant achievement.
  • Advanced Fabrication:  The new processors comprise over 128,000 Josephson junctions (tunnel junctions with superconducting electrodes) in a 6-metal layer planar process with 0.25μm features, believed to be the most complex superconductor integrated circuits ever built.
  • New Modes of Use: The new technology expands the boundaries of ways to exploit quantum resources.  In addition to performing discrete optimization like its predecessor, firmware and software upgrades will make it easier to use the system for sampling applications.

“Breaking the 1000 qubit barrier marks the culmination of years of research and development by our scientists, engineers and manufacturing team,” said D-Wave CEO Vern Brownell. “It is a critical step toward bringing the promise of quantum computing to bear on some of the most challenging technical, commercial, scientific, and national defense problems that organizations face.”

A June 20, 2015 article in The Economist notes there is now commercial interest as it provides good introductory information about quantum computing. The article includes an analysis of various research efforts in Canada (they mention D-Wave), the US, and the UK. These excerpts don’t do justice to the article but will hopefully whet your appetite or provide an overview for anyone with limited time,

A COMPUTER proceeds one step at a time. At any particular moment, each of its bits—the binary digits it adds and subtracts to arrive at its conclusions—has a single, definite value: zero or one. At that moment the machine is in just one state, a particular mixture of zeros and ones. It can therefore perform only one calculation next. This puts a limit on its power. To increase that power, you have to make it work faster.

But bits do not exist in the abstract. Each depends for its reality on the physical state of part of the computer’s processor or memory. And physical states, at the quantum level, are not as clear-cut as classical physics pretends. That leaves engineers a bit of wriggle room. By exploiting certain quantum effects they can create bits, known as qubits, that do not have a definite value, thus overcoming classical computing’s limits.

… The biggest question is what the qubits themselves should be made from.

A qubit needs a physical system with two opposite quantum states, such as the direction of spin of an electron orbiting an atomic nucleus. Several things which can do the job exist, and each has its fans. Some suggest nitrogen atoms trapped in the crystal lattices of diamonds. Calcium ions held in the grip of magnetic fields are another favourite. So are the photons of which light is composed (in this case the qubit would be stored in the plane of polarisation). And quasiparticles, which are vibrations in matter that behave like real subatomic particles, also have a following.

The leading candidate at the moment, though, is to use a superconductor in which the qubit is either the direction of a circulating current, or the presence or absence of an electric charge. Both Google and IBM are banking on this approach. It has the advantage that superconducting qubits can be arranged on semiconductor chips of the sort used in existing computers. That, the two firms think, should make them easier to commercialise.

Google is also collaborating with D-Wave of Vancouver, Canada, which sells what it calls quantum annealers. The field’s practitioners took much convincing that these devices really do exploit the quantum advantage, and in any case they are limited to a narrower set of problems—such as searching for images similar to a reference image. But such searches are just the type of application of interest to Google. In 2013, in collaboration with NASA and USRA, a research consortium, the firm bought a D-Wave machine in order to put it through its paces. Hartmut Neven, director of engineering at Google Research, is guarded about what his team has found, but he believes D-Wave’s approach is best suited to calculations involving fewer qubits, while Dr Martinis and his colleagues build devices with more.

It’s not clear to me if the writers at The Economist were aware of  D-Wave’s latest breakthrough at the time of writing but I think not. In any event, they (The Economist writers) have included a provocative tidbit about quantum encryption,

Documents released by Edward Snowden, a whistleblower, revealed that the Penetrating Hard Targets programme of America’s National Security Agency was actively researching “if, and how, a cryptologically useful quantum computer can be built”. In May IARPA [Intellligence Advanced Research Projects Agency], the American government’s intelligence-research arm, issued a call for partners in its Logical Qubits programme, to make robust, error-free qubits. In April, meanwhile, Tanja Lange and Daniel Bernstein of Eindhoven University of Technology, in the Netherlands, announced PQCRYPTO, a programme to advance and standardise “post-quantum cryptography”. They are concerned that encrypted communications captured now could be subjected to quantum cracking in the future. That means strong pre-emptive encryption is needed immediately.

I encourage you to read the Economist article.

Two final comments. (1) The latest piece, prior to this one, about D-Wave was in a Feb. 6, 2015 posting about then new investment into the company. (2) A Canadian effort in the field of quantum cryptography was mentioned in a May 11, 2015 posting (scroll down about 50% of the way) featuring a profile of Raymond Laflamme, at the University of Waterloo’s Institute of Quantum Computing in the context of an announcement about science media initiative Research2Reality.

Animation: art and science

Being in the process of developing an art/science piece involving poetry and visual metaphors as realized through video, I was quite fascinated to read about someone else’s process and issues in Stephen Curry’s and Drew Berry’s June 9, 2015 joint post on the Guardian science blogs (Note: Links have been removed),

Yesterday [June 8, 2015] I [Stephen Curry] was trying to figure out why it seems to be so difficult to connect to the biological molecules that we are made of – proteins, DNA and such like. My piece might have ended on a frustrated note but I have no wish to be negative, especially since the problem has only arisen because animators like Drew Berry are now able to use the results of structural biology to make quite exquisite movies of the molecules of life at work inside the cells of our bodies. As I was working though my difficulties, I wrote to ask Berry how he approached the task of representing molecular complexity in ways that would make sense to people. This is his considered and insightful reply:

“The goal of my [Drew Berry] work is to show non-experts – the general public aged 4 to 99, students of biology, journalists and politicians, and so on – what is being discovered in biology, in a format that is accessible, meaningful, and engaging. I hope that my work provides some sense of what biologists and medical researchers are discovering and thinking about, to provide the public with a framework of understanding to discuss these important new discoveries and the impact it will have on us as a society as we head into the future.

These passages, in particular, caught my attention as they are descriptive of the art and the science inherent in Berry’s work,

… I should avoid overstating how accurately I have depicted the reality of the molecular world. It is vastly messier, random and crowded, and it’s physical nature is unimaginably alien to our normal perception of the world around us. That said, my work is not intended to be a lab-bench-calculated model for research use, it is an impressionistic, artist-generated crude sketch of phenomena and structures science is measuring and discovering at the molecular scale.

… I would then assert that the animations are firmly founded on real data and are as accurate as I can possibly make them, while making them watchable and interpretable to a human audience. By far the largest portion of my time is spent conducting broad ranging literature reviews of the topic I am working on, gathering the fragments of data scattered throughout the journals, and holistically reconstructing what currently we know and do not know. Wherever data and models are available, I incorporate them directly into the construction of the animation, including molecular structures, dynamics simulations, speed measurements, and so on. My work is most akin to a ‘review’ paper in the literature, presented in visual form.

Here is one of the problems Berry and other animators struggle with,

… I am friends with the dozen or so people who are at the top of the game at creating biomedical animations (most have a PhD scientific background) and we all struggle with the problem of having a molecule arrive at a particular location from the thick molecular soup of the cytoplasm and not look directed. I can make the molecule wander around in a Brownian type manner, but for story telling and visual explanations, I need it to get to a certain point and do it’s thing at a certain time to move the story along. This can make it look determined and directed.

Berry also discusses the unexpected,

An unexpected outcome I stumbled across more than a decade ago is that the public loves it when ‘real time’ speeds are displayed and the structures and reactions are derived from research data. This takes a lot of time to build, but then the animations have a remarkable longevity of use and strongly resonate with the audience.

For the last excerpt from this essay, I include Berry’s description of one of his most challenging projects and the video he produced,

The most heavily researched and technically challenging animation I have ever built is the kinetochore which can be seen in the video below . The kinetochore is a gigantic structure that assembles on chromosomes just after they have been duplicated and helps them to be pulled apart during cell division (mitosis). It has about 200 proteins of which I depicted about 50. I gathered data from more than 180 scientific papers with everything built as accurately as possible with hundreds of little scientific details built into the structure and dynamics.”

There are more illustrations and one more video embedded along with more from Berry in the essay, which includes these biographical details (Note: Links have been removed),

Drew Berry is the Biomedical Animations Manager at the Walter and Eliza Hall Institute of Medical Research in Melbourne, Australia. @Stephen_Curry is a professor of structural biology at Imperial College [London, UK].

Metallic nanoparticles: measuring their discrete quantum states

I tend to forget how new nanotechnology is and unconsciously take for granted stunning feats such as measuring a metallic nanoparticle’s electronic properties. A June 15, 2015 news item on Nanowerk provides a reminder with its description of the difficulties and a new technique to make it easier (Note:  A link has been removed),

How do you measure the electronic properties of individual nanoparticles or molecules that are only a few nanometers in size? Conventional methods using electron transport spectroscopy rely on contacting a material with two contacts, a source and a drain electrode. By applying a small potential difference over the electrodes and monitoring the resulting current, valuable information about the electronic properties are extracted. For example if a material is metallic or semiconducting.
But this becomes quite a challenge if the material is only a few nm in size. Even the most sophisticated fabrication tools such as electron-beam lithography have a resolution of about 10 nm at best, which is not precise enough. Scientists have developed workarounds such as creating small gaps in narrow metallic wires in which a nanoparticle can be trapped if it matches the gap size. However, even though there have been some notable successes using this approach, this method has a low yield and is not very reproducible.

Now an international collaboration including researchers in Japan, the university [sic] of Cambridge and the LCN [London Centre for Nanotechnology] in the UK have approached this in a different way as described in a paper in Nature’s Scientific Reports (“Radio-frequency capacitance spectroscopy of metallic nanoparticles”). Their method only requires a single electrode to be in direct contact with a nanoparticle or molecule, thus significantly simplifying fabrication.

A June 15, 2015 (?) LCN press release, which originated the news item, describes the achievement,

The researchers demonstrated the potential of the radio-frequency reflectometry technique by measurements on Au nanoparticles of only 2.7 nm in diameter. For such small particles, the electronic spectrum is discrete which was indeed observed in the measurements and in very good agreement with theoretical models. The researchers now plan to extend these measurements to other nanoparticles and molecules with applications in a range of areas such as biomedicine, spintronics and quantum information processing.

Here’s a link to and a citation for the paper,

Radio-frequency capacitance spectroscopy of metallic nanoparticles by James C. Frake, Shinya Kano, Chiara Ciccarelli, Jonathan Griffiths, Masanori Sakamoto,  Toshiharu Teranishi, Yutaka Majima, Charles G. Smith & Mark R. Buitelaar. Scientific RepoRts 5:10858 DOi: 10.1038/srep10858 Published June 4, 2015

This is an open access paper.

Tanzanian research into nanotechnology-enabled water filters

Inexpensive 99.9999…% filtration of metals, bacteria, and viruses from water is an accomplishment worthy of a prize as the UK’s Royal Academy of Engineering noted by awarding its first ever International Innovation Prize of £25,000 ($38,348 [USD?]) to Askwar Hilonga, a Tanzanian academic and entrepreneur. A June 11, 2015 article by Sibusiso Tshabalala for Quartz.com describes the water situation in Tanzania and Hilonga’s accomplishment (Note: Links have been removed),

Despite Tanzania’s proximity to three major lakes almost half of it’s population cannot access potable water.

Groundwater is often the alternative, but the supply is not always clean. Mining waste (pdf, pg 410) and toxic drainage systems easily leak into fresh groundwater, leaving the water contaminated.

Enter Askwar Hilonga: a 38-year old chemical engineer PhD and entrepreneur. With 33 academic journal articles on nanotechnology to his name, Hilonga aims to solve Tanzania’s water contamination problems by using nanotechnology to customize water filters.

There are other filters available (according to Tshabalala’s article) but Hilonga’s has a unique characteristic in addition to being highly efficient and inexpensive,

Purifying water using nanotechnology is hardly a new thing. In 2010, researchers at the Yi Cui Lab at Stanford University developed a synthetic “nanoscanvenger” made out of two silver layers that enable nanoparticles to disinfect water from contaminating bacteria.

What makes Hilonga’s water filter different from the Stanford-developed “nanoscavenger”, or the popular LifeStraw developed by the Swiss-based health innovation company Vestergaard 10 years ago?

“It is customized. The filter can be tailored for specific individual, household and communal use,” says Hilonga.

A June 2, 2015 news item about the award on BBC (British Broadcasting Corporation) online describes how the filter works,

The sand-based water filter that cleans contaminated drinking water using nanotechnology has already been trademarked.

“I put water through sand to trap debris and bacteria,” Mr Hilonga told the BBC’s Newsday programme about the filter.

“But sand cannot remove contaminants like fluoride and other heavy metals so I put them through nano materials to remove chemical contaminants.”

Hilonga describes the filter in a little more detail in his May 30, 2014 video submitted for for the UK Royal Academy of Engineering’s prize (Africa Prize for Engineering Innovation)

Finalists for the prize (there were four) received a six month mentorship which included help to develop the technology further and with business plans. Hilonga has already enabled 23 entrepreneurs to develop nanofilter businesses, according to the Tshabalala article,

Through the Gongali Model Company, a university spin-off company which he co-founded, Hilonga has already enabled 23 entrepreneurs in Karatu to set up their businesses with the filters, and local schools to provide their learners with clean drinking water.

With this prize money, Hilonga will be able to lower the price of his filter ($130 [USD?) according to the BBC news item.

Congratulations to Dr. Hilonga and his team! For anyone curious about the Gongali Model Company, you can go here.

Preventing deep bone infections with antibiotic-laced polymer layers in implants

I know someone who suffered a deep bone infection after some dental work. Devastatingly, she lost bone material as a consequence and it took years, more than one surgery, and multiple sessions in a hyperbaric chamber to recover, more or less.

While my friend’s infection was due to a dental procedure, the work at the University of Sheffield’s (UK) School of Clinical Dentistry, if successful, will help eliminate incidents of deep bone infection from one potential source, implants. From a May 28, 2015 news item on Azonano,

Leading scientists at the University of Sheffield have discovered nanotechnology could hold the key to preventing deep bone infections, after developing a treatment which prevents bacteria and other harmful microorganisms growing.

The pioneering research, led by the University of Sheffield’s School of Clinical Dentistry, showed applying small quantities of antibiotic to the surface of medical devices, from small dental implants to hip replacements, could protect patients from serious infection.

A May 27, 2015 University of Sheffield press release, which originated the news item, provides more information but few details about how this work is nanotechnology-enabled,

Scientists used revolutionary nanotechnology to work on small polymer layers inside implants which measure between 1 and 100 nanometers (nm) – a human hair is approximately 100,000 nm wide.

Lead researcher Paul Hatton, Professor of Biomaterials Sciences at the University of Sheffield, said: “Microorganisms can attach themselves to implants or replacements during surgery and once they grab onto a non-living surface they are notoriously difficult to treat which causes a lot of problems and discomfort for the patient.

“By making the actual surface of the hip replacement or dental implant inhospitable to these harmful microorganisms, the risk of deep bone infection is substantially reduced.

“Our research shows that applying small quantities of antibiotic to a surface between the polymer layers which make up each device could prevent not only the initial infection but secondary infection – it is like getting between the layers of an onion skin.”

Bone infection affects thousands of patients every year and results in a substantial cost to the NHS.

Treating the surface of medical devices would have a greater impact on patients considered at high risk of infection such as trauma victims from road traffic collisions or combat operations, and those who have had previous bone infections.

Professor Hatton added: “Deep bone infections associated with medical devices are increasing in number, especially among the elderly.

“As well as improving the quality of life, this new application for nanotechnology could save health providers such as the NHS millions of pounds every year.”

Here’s a link to and a citation for the paper,

Functionalised nanoscale coatings using layer-by-layer assembly for imparting antibacterial properties to polylactide-co-glycolide surfaces by Piergiorgio Gentile, ,Maria E. Frongia, Mar Cardellach, Cheryl A. Miller, Graham P. Stafford, Graham J. Leggettc, & Paul V. Hatton. Acta Biomaterialia Volume 21, 15 July 2015, Pages 35–43 doi: 10.1016/j.actbio.2015.04.009

This paper is behind a paywall.

Synthesizing spider silk

Most of the research on spider silk and spider webs that’s featured here is usually from the Massachusetts Institute of Technology (MIT) and, more specifically, from professor Markus J. Buehler. This May 28, 2015 news item on ScienceDaily, which heralds the development of synthetic spider silk, is no exception,

After years of research decoding the complex structure and production of spider silk, researchers have now succeeded in producing samples of this exceptionally strong and resilient material in the laboratory. The new development could lead to a variety of biomedical materials — from sutures to scaffolding for organ replacements — made from synthesized silk with properties specifically tuned for their intended uses.

The findings are published this week in the journal Nature Communications by MIT professor of civil and environmental engineering (CEE) Markus Buehler, postdocs Shangchao Lin and Seunghwa Ryu, and others at MIT, Tufts University, Boston University, and in Germany, Italy, and the U.K.

The research, which involved a combination of simulations and experiments, paves the way for “creating new fibers with improved characteristics” beyond those of natural silk, says Buehler, who is also the department head in CEE. The work, he says, should make it possible to design fibers with specific characteristics of strength, elasticity, and toughness.

The new synthetic fibers’ proteins — the basic building blocks of the material — were created by genetically modifying bacteria to make the proteins normally produced by spiders. These proteins were then extruded through microfluidic channels designed to mimic the effect of an organ, called a spinneret, that spiders use to produce natural silk fibers.

A May 28, 2015 MIT news release (also on EurekAlert), which originated the news item, describes the work in more detail,

While spider silk has long been recognized as among the strongest known materials, spiders cannot practically be bred to produce harvestable fibers — so this new approach to producing a synthetic, yet spider-like, silk could make such strong and flexible fibers available for biomedical applications. By their nature, spider silks are fully biocompatible and can be used in the body without risk of adverse reactions; they are ultimately simply absorbed by the body.

The researchers’ “spinning” process, in which the constituent proteins dissolved in water are extruded through a tiny opening at a controlled rate, causes the molecules to line up in a way that produces strong fibers. The molecules themselves are a mixture of hydrophobic and hydrophilic compounds, blended so as to naturally align to form fibers much stronger than their constituent parts. “When you spin it, you create very strong bonds in one direction,” Buehler says.

The team found that getting the blend of proteins right was crucial. “We found out that when there was a high proportion of hydrophobic proteins, it would not spin any fibers, it would just make an ugly mass,” says Ryu, who worked on the project as a postdoc at MIT and is now an assistant professor at the Korea Advanced Institute of Science and Technology. “We had to find the right mix” in order to produce strong fibers, he says.

The researchers made use of computational modelling to speed up the process of synthesizing proteins for synthetic spider silk, from the news release,

This project represents the first use of simulations to understand silk production at the molecular level. “Simulation is critical,” Buehler explains: Actually synthesizing a protein can take several months; if that protein doesn’t turn out to have exactly the right properties, the process would have to start all over.

Using simulations makes it possible to “scan through a large range of proteins until we see changes in the fiber stiffness,” and then home in on those compounds, says Lin, who worked on the project as a postdoc at MIT and is now an assistant professor at Florida State University.

Controlling the properties directly could ultimately make it possible to create fibers that are even stronger than natural ones, because engineers can choose characteristics for a particular use. For example, while spiders may need elasticity so their webs can capture insects without breaking, those designing fibers for use as surgical sutures would need more strength and less stretchiness. “Silk doesn’t give us that choice,” Buehler says.

The processing of the material can be done at room temperature using water-based solutions, so scaling up manufacturing should be relatively easy, team members say. So far, the fibers they have made in the lab are not as strong as natural spider silk, but now that the basic process has been established, it should be possible to fine-tune the materials and improve its strength, they say.

“Our goal is to improve the strength, elasticity, and toughness of artificially spun fibers by borrowing bright ideas from nature,” Lin says. This study could inspire the development of new synthetic fibers — or any materials requiring enhanced properties, such as in electrical and thermal transport, in a certain direction.

Here’s a link to and a citation for the paper,

Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres by Shangchao Lin, Seunghwa Ryu, Olena Tokareva, Greta Gronau, Matthew M. Jacobsen, Wenwen Huang, Daniel J. Rizzo, David Li, Cristian Staii, Nicola M. Pugno, Joyce Y. Wong, David L. Kaplan, & Markus J. Buehler. Nature Communications 6, Article number: 6892 doi:10.1038/ncomms7892 Published 28 May 2015

This paper is behind a paywall.

My two most recent (before this one) postings about Buehler’s work are an August 5, 2014 piece about structural failures and a June 4, 2014 piece about spiderwebs and music.

Finally, I recognized one of the authors, Nicola Pugno from Italy. He’s been mentioned here more than once in regard to his biomimicry work which has often been focused on geckos and their adhesive qualities as per this April 3, 2014 post announcing his book ‘An Experimental Study on Adhesive or Anti-Adhesive, Bio-Inspired Experimental Nanomaterials‘ (co-authored with Emiliano Lepore).

US National Institute of Standards and Technology (NIST) and its whispering gallery for graphene electrons

I like this old introduction about research that invoked whispering galleries well enough to reuse it here. From a Feb. 8, 2012 post about whispering galleries for light,

Whispering galleries are always popular with all ages. I know that because I can never get enough time in them as I jostle with seniors, children, young adults, etc. For most humans, the magic of having someone across from you on the other side of the room sound as if they’re beside you whispering in your ear is ever fresh.

According to a May 12, 2015 news item on Nanowerk, the US Institute of National Standards and Technology’s (NIST) whispering gallery is not likely to cause any jostling for space as it exists at the nanoscale,

An international research group led by scientists at the U.S. Commerce Department’s National Institute of Standards and Technology (NIST) has developed a technique for creating nanoscale whispering galleries for electrons in graphene. The development opens the way to building devices that focus and amplify electrons just as lenses focus light and resonators (like the body of a guitar) amplify sound.

The NIST has provided a rather intriguing illustration of this work,

Caption: An international research group led by scientists at NIST has developed a technique for creating nanoscale whispering galleries for electrons in graphene. The researchers used the voltage from a scanning tunneling microscope (right) to push graphene electrons out of a nanoscale area to create the whispering gallery (represented by the protuberances on the left), which is like a circular wall of mirrors to the electron. credit: Jon Wyrick, CNST/NIST

Caption: An international research group led by scientists at NIST has developed a technique for creating nanoscale whispering galleries for electrons in graphene. The researchers used the voltage from a scanning tunneling microscope (right) to push graphene electrons out of a nanoscale area to create the whispering gallery (represented by the protuberances on the left), which is like a circular wall of mirrors to the electron.
credit: Jon Wyrick, CNST/NIST

A May 8, 2015 NIST news release, which originated the news item, gives a delightful introduction to whispering galleries and more details about this research (Note: Links have been removed),

In some structures, such as the dome in St. Paul’s Cathedral in London, a person standing near a curved wall can hear the faintest sound made along any other part of that wall. This phenomenon, called a whispering gallery, occurs because sound waves will travel along a curved surface much farther than they will along a flat one. Using this same principle, scientists have built whispering galleries for light waves as well, and whispering galleries are found in applications ranging from sensing, spectroscopy and communications to the generation of laser frequency combs.

“The cool thing is that we made a nanometer scale electronic analogue of a classical wave effect,” said NIST researcher Joe Stroscio. “These whispering galleries are unlike anything you see in any other electron based system, and that’s really exciting.”

Ever since graphene, a single layer of carbon atoms arranged in a honeycomb lattice, was first created in 2004, the material has impressed researchers with its strength, ability to conduct electricity and heat and many interesting optical, magnetic and chemical properties.

However, early studies of the behavior of electrons in graphene were hampered by defects in the material. As the manufacture of clean and near-perfect graphene becomes more routine, scientists are beginning to uncover its full potential.

When moving electrons encounter a potential barrier in conventional semiconductors, it takes an increase in energy for the electron to continue flowing. As a result, they are often reflected, just as one would expect from a ball-like particle.

However, because electrons can sometimes behave like a wave, there is a calculable chance that they will ignore the barrier altogether, a phenomenon called tunneling. Due to the light-like properties of graphene electrons, they can pass through unimpeded—no matter how high the barrier—if they hit the barrier head on. This tendency to tunnel makes it hard to steer electrons in graphene.

Enter the graphene electron whispering gallery.

To create a whispering gallery in graphene, the team first enriched the graphene with electrons from a conductive plate mounted below it. With the graphene now crackling with electrons, the research team used the voltage from a scanning tunneling microscope (STM) to push some of them out of a nanoscale-sized area. This created the whispering gallery, which is like a circular wall of mirrors to the electron.

“An electron that hits the step head-on can tunnel straight through it,” said NIST researcher Nikolai Zhitenev. “But if electrons hit it at an angle, their waves can be reflected and travel along the sides of the curved walls of the barrier until they began to interfere with one another, creating a nanoscale electronic whispering gallery mode.”

The team can control the size and strength, i.e., the leakiness, of the electronic whispering gallery by varying the STM tip’s voltage. The probe not only creates whispering gallery modes, but can detect them as well.

NIST researcher Yue Zhao fabricated the high mobility device and performed the measurements with her colleagues Fabian Natterer and Jon Wyrick. A team of theoretical physicists from the Massachusetts Institute of Technology developed the theory describing whispering gallery modes in graphene.

Here’s a link to and a citation for the paper,

Creating and probing electron whispering-gallery modes in graphene by Yue Zhao, Jonathan Wyrick, Fabian D. Natterer1, Joaquin F. Rodriguez-Nieva, Cyprian Lewandowski, Kenji Watanabe, Takashi Taniguchi, Leonid S. Levitov, Nikolai B. Zhitenev, & Joseph A. Stroscio. Science 8 May 2015:
Vol. 348 no. 6235 pp. 672-675 DOI: 10.1126/science.aaa7469

This paper is behind a paywall.

CRISPR genome editing tools and human genetic engineering issues

This post is going to feature a human genetic engineering roundup of sorts.

First, the field of human genetic engineering encompasses more than the human genome as this paper (open access until June 5, 2015) notes in the context of a discussion about a specific CRISPR gene editing tool,

CRISPR-Cas9 Based Genome Engineering: Opportunities in Agri-Food-Nutrition and Healthcare by Rajendran Subin Raj Cheri Kunnumal, Yau Yuan-Yeu, Pandey Dinesh, and Kumar Anil. OMICS: A Journal of Integrative Biology. May 2015, 19(5): 261-275. doi:10.1089/omi.2015.0023 Published Online Ahead of Print: April 14, 2015

Here’s more about the paper from a May 7, 2015 Mary Ann Liebert publisher news release on EurekAlert,

Researchers have customized and refined a technique derived from the immune system of bacteria to develop the CRISPR-Cas9 genome engineering system, which enables targeted modifications to the genes of virtually any organism. The discovery and development of CRISPR-Cas9 technology, its wide range of potential applications in the agriculture/food industry and in modern medicine, and emerging regulatory issues are explored in a Review article published in OMICS: A Journal of Integrative Biology, …

“CRISPR-Cas9 Based Genome Engineering: Opportunities in Agri-Food-Nutrition and Healthcare” provides a detailed description of the CRISPR system and its applications in post-genomics biology. Subin Raj, Cheri Kunnumal Rajendran, Dinish Pandey, and Anil Kumar, G.B. Pant University of Agriculture and Technology (Uttarakhand, India) and Yuan-Yeu Yau, Northeastern State University (Broken Arrow, OK) describe the advantages of the RNA-guided Cas9 endonuclease-based technology, including the activity, specificity, and target range of the enzyme. The authors discuss the rapidly expanding uses of the CRISPR system in both basic biological research and product development, such as for crop improvement and the discovery of novel therapeutic agents. The regulatory implications of applying CRISPR-based genome editing to agricultural products is an evolving issue awaiting guidance by international regulatory agencies.

“CRISPR-Cas9 technology has triggered a revolution in genome engineering within living systems,” says OMICS Editor-in-Chief Vural Özdemir, MD, PhD, DABCP. “This article explains the varied applications and potentials of this technology from agriculture to nutrition to medicine.

Intellectual property (patents)

The CRISPR technology has spawned a number of intellectual property (patent) issues as a Dec. 21,2014 post by Glyn Moody on Techdirt stated,

Although not many outside the world of the biological sciences have heard of it yet, the CRISPR gene editing technique may turn out to be one of the most important discoveries of recent years — if patent battles don’t ruin it. Technology Review describes it as:

… an invention that may be the most important new genetic engineering technique since the beginning of the biotechnology age in the 1970s. The CRISPR system, dubbed a “search and replace function” for DNA, lets scientists easily disable genes or change their function by replacing DNA letters. During the last few months, scientists have shown that it’s possible to use CRISPR to rid mice of muscular dystrophy, cure them of a rare liver disease, make human cells immune to HIV, and genetically modify monkeys.

Unfortunately, rivalry between scientists claiming the credit for key parts of CRISPR threatens to spill over into patent litigation:

[A researcher at the MIT-Harvard Broad Institute, Feng] Zhang cofounded Editas Medicine, and this week the startup announced that it had licensed his patent from the Broad Institute. But Editas doesn’t have CRISPR sewn up. That’s because [Jennifer] Doudna, a structural biologist at the University of California, Berkeley, was a cofounder of Editas, too. And since Zhang’s patent came out, she’s broken off with the company, and her intellectual property — in the form of her own pending patent — has been licensed to Intellia, a competing startup unveiled only last month. Making matters still more complicated, [another CRISPR researcher, Emmanuelle] Charpentier sold her own rights in the same patent application to CRISPR Therapeutics.

Things are moving quickly on the patent front, not least because the Broad Institute paid extra to speed up its application, conscious of the high stakes at play here:

Along with the patent came more than 1,000 pages of documents. According to Zhang, Doudna’s predictions in her own earlier patent application that her discovery would work in humans was “mere conjecture” and that, instead, he was the first to show it, in a separate and “surprising” act of invention.

The patent documents have caused consternation. The scientific literature shows that several scientists managed to get CRISPR to work in human cells. In fact, its easy reproducibility in different organisms is the technology’s most exciting hallmark. That would suggest that, in patent terms, it was “obvious” that CRISPR would work in human cells, and that Zhang’s invention might not be worthy of its own patent.


Ethical and moral issues

The CRISPR technology has reignited a discussion about ethical and moral issues of human genetic engineering some of which is reviewed in an April 7, 2015 posting about a moratorium by Sheila Jasanoff, J. Benjamin Hurlbut and Krishanu Saha for the Guardian science blogs (Note: A link has been removed),

On April 3, 2015, a group of prominent biologists and ethicists writing in Science called for a moratorium on germline gene engineering; modifications to the human genome that will be passed on to future generations. The moratorium would apply to a technology called CRISPR/Cas9, which enables the removal of undesirable genes, insertion of desirable ones, and the broad recoding of nearly any DNA sequence.

Such modifications could affect every cell in an adult human being, including germ cells, and therefore be passed down through the generations. Many organisms across the range of biological complexity have already been edited in this way to generate designer bacteria, plants and primates. There is little reason to believe the same could not be done with human eggs, sperm and embryos. Now that the technology to engineer human germlines is here, the advocates for a moratorium declared, it is time to chart a prudent path forward. They recommend four actions: a hold on clinical applications; creation of expert forums; transparent research; and a globally representative group to recommend policy approaches.

The authors go on to review precedents and reasons for the moratorium while suggesting we need better ways for citizens to engage with and debate these issues,

An effective moratorium must be grounded in the principle that the power to modify the human genome demands serious engagement not only from scientists and ethicists but from all citizens. We need a more complex architecture for public deliberation, built on the recognition that we, as citizens, have a duty to participate in shaping our biotechnological futures, just as governments have a duty to empower us to participate in that process. Decisions such as whether or not to edit human genes should not be left to elite and invisible experts, whether in universities, ad hoc commissions, or parliamentary advisory committees. Nor should public deliberation be temporally limited by the span of a moratorium or narrowed to topics that experts deem reasonable to debate.

I recommend reading the post in its entirety as there are nuances that are best appreciated in the entirety of the piece.

Shortly after this essay was published, Chinese scientists announced they had genetically modified (nonviable) human embryos. From an April 22, 2015 article by David Cyranoski and Sara Reardon in Nature where the research and some of the ethical issues discussed,

In a world first, Chinese scientists have reported editing the genomes of human embryos. The results are published1 in the online journal Protein & Cell and confirm widespread rumours that such experiments had been conducted — rumours that sparked a high-profile debate last month2, 3 about the ethical implications of such work.

In the paper, researchers led by Junjiu Huang, a gene-function researcher at Sun Yat-sen University in Guangzhou, tried to head off such concerns by using ‘non-viable’ embryos, which cannot result in a live birth, that were obtained from local fertility clinics. The team attempted to modify the gene responsible for β-thalassaemia, a potentially fatal blood disorder, using a gene-editing technique known as CRISPR/Cas9. The researchers say that their results reveal serious obstacles to using the method in medical applications.

“I believe this is the first report of CRISPR/Cas9 applied to human pre-implantation embryos and as such the study is a landmark, as well as a cautionary tale,” says George Daley, a stem-cell biologist at Harvard Medical School in Boston, Massachusetts. “Their study should be a stern warning to any practitioner who thinks the technology is ready for testing to eradicate disease genes.”


Huang says that the paper was rejected by Nature and Science, in part because of ethical objections; both journals declined to comment on the claim. (Nature’s news team is editorially independent of its research editorial team.)

He adds that critics of the paper have noted that the low efficiencies and high number of off-target mutations could be specific to the abnormal embryos used in the study. Huang acknowledges the critique, but because there are no examples of gene editing in normal embryos he says that there is no way to know if the technique operates differently in them.

Still, he maintains that the embryos allow for a more meaningful model — and one closer to a normal human embryo — than an animal model or one using adult human cells. “We wanted to show our data to the world so people know what really happened with this model, rather than just talking about what would happen without data,” he says.

This, too, is a good and thoughtful read.

There was an official response in the US to the publication of this research, from an April 29, 2015 post by David Bruggeman on his Pasco Phronesis blog (Note: Links have been removed),

In light of Chinese researchers reporting their efforts to edit the genes of ‘non-viable’ human embryos, the National Institutes of Health (NIH) Director Francis Collins issued a statement (H/T Carl Zimmer).

“NIH will not fund any use of gene-editing technologies in human embryos. The concept of altering the human germline in embryos for clinical purposes has been debated over many years from many different perspectives, and has been viewed almost universally as a line that should not be crossed. Advances in technology have given us an elegant new way of carrying out genome editing, but the strong arguments against engaging in this activity remain. These include the serious and unquantifiable safety issues, ethical issues presented by altering the germline in a way that affects the next generation without their consent, and a current lack of compelling medical applications justifying the use of CRISPR/Cas9 in embryos.” …

More than CRISPR

As well, following on the April 22, 2015 Nature article about the controversial research, the Guardian published an April 26, 2015 post by Filippa Lentzos, Koos van der Bruggen and Kathryn Nixdorff which makes the case that CRISPR techniques do not comprise the only worrisome genetic engineering technology,

The genome-editing technique CRISPR-Cas9 is the latest in a series of technologies to hit the headlines. This week Chinese scientists used the technology to genetically modify human embryos – the news coming less than a month after a prominent group of scientists had called for a moratorium on the technology. The use of ‘gene drives’ to alter the genetic composition of whole populations of insects and other life forms has also raised significant concern.

But the technology posing the greatest, most immediate threat to humanity comes from ‘gain-of-function’ (GOF) experiments. This technology adds new properties to biological agents such as viruses, allowing them to jump to new species or making them more transmissible. While these are not new concepts, there is grave concern about a subset of experiments on influenza and SARS viruses which could metamorphose them into pandemic pathogens with catastrophic potential.

In October 2014 the US government stepped in, imposing a federal funding pause on the most dangerous GOF experiments and announcing a year-long deliberative process. Yet, this process has not been without its teething-problems. Foremost is the de facto lack of transparency and open discussion. Genuine engagement is essential in the GOF debate where the stakes for public health and safety are unusually high, and the benefits seem marginal at best, or non-existent at worst. …

Particularly worrisome about the GOF process is that it is exceedingly US-centric and lacks engagement with the international community. Microbes know no borders. The rest of the world has a huge stake in the regulation and oversight of GOF experiments.

Canadian perspective?

I became somewhat curious about the Canadian perspective on all this genome engineering discussion and found a focus on agricultural issues in the single Canadian blog piece I found. It’s an April 30, 2015 posting by Lisa Willemse on Genome Alberta’s Livestock blog has a twist in the final paragraph,

The spectre of undesirable inherited traits as a result of DNA disruption via genome editing in human germline has placed the technique – and the ethical debate – on the front page of newspapers around the globe. Calls for a moratorium on further research until both the ethical implications can be worked out and the procedure better refined and understood, will undoubtedly temper research activities in many labs for months and years to come.

On the surface, it’s hard to see how any of this will advance similar research in livestock or crops – at least initially.

Groups already wary of so-called “frankenfoods” may step up efforts to prevent genome-edited food products from hitting supermarket shelves. In the EU, where a stringent ban on genetically-modified (GM) foods is already in place, there are concerns that genome-edited foods will be captured under this rubric, holding back many perceived benefits. This includes pork and beef from animals with disease resistance, lower methane emissions and improved feed-to-food ratios, milk from higher-yield or hornless cattle, as well as food and feed crops with better, higher quality yields or weed resistance.

Still, at the heart of the human germline editing is the notion of a permanent genetic change that can be passed on to offspring, leading to concerns of designer babies and other advantages afforded only to those who can pay. This is far less of a concern in genome-editing involving crops and livestock, where the overriding aim is to increase food supply for the world’s population at lower cost. Given this, and that research for human medical benefits has always relied on safety testing and data accumulation through experimentation in non-human animals, it’s more likely that any moratorium in human studies will place increased pressure to demonstrate long-term safety of such techniques on those who are conducting the work in other species.

Willemse’s last paragraph offers a strong contrast to the Guardian and Nature pieces.

Finally, there’s a May 8, 2015 posting (which seems to be an automat4d summary of an article in the New Scientist) on a blog maintained by the Canadian Raelian Movement. These are people who believe that alien scientists landed on earth and created all the forms of life on this planet. You can find  more on their About page. In case it needs to be said, I do not subscribe to this belief system but I do find it interesting in and of itself and because one of the few Canadian sites that I could find offering an opinion on the matter even if it is in the form of a borrowed piece from the New Scientist.

Animal-based (some of it ‘fishy’) sunscreen from Oregon State University

In the Northern Hemisphere countries it’s time to consider one’s sunscreen options.While this Oregon State University into animal-based sunscreens is intriguing,  market-ready options likely won’t be available for quite some time. (There is a second piece of related research, more ‘fishy’ in nature [pun], featured later in this post.) From a May 12, 2015 Oregon State University news release,

Researchers have discovered why many animal species can spend their whole lives outdoors with no apparent concern about high levels of solar exposure: they make their own sunscreen.

The findings, published today in the journal eLife by scientists from Oregon State University, found that many fish, amphibians, reptiles, and birds can naturally produce a compound called gadusol, which among other biologic activities provides protection from the ultraviolet, or sun-burning component of sunlight.

The researchers also believe that this ability may have been obtained through some prehistoric, natural genetic engineering.

Here’s an amusing image to illustrate the researchers’ point,

Gadusol is the gene found in some animals which gives natural sun protection. Courtesy: Oregon State University

Gadusol is the gene found in some animals which gives natural sun protection.
Courtesy: Oregon State University

The news release goes on to describe gadusol and its believed evolutionary pathway,

The gene that provides the capability to produce gadusol is remarkably similar to one found in algae, which may have transferred it to vertebrate animals – and because it’s so valuable, it’s been retained and passed along for hundreds of millions of years of animal evolution.

“Humans and mammals don’t have the ability to make this compound, but we’ve found that many other animal species do,” said Taifo Mahmud, a professor in the OSU College of Pharmacy, and lead author on the research.

The genetic pathway that allows gadusol production is found in animals ranging from rainbow trout to the American alligator, green sea turtle and a farmyard chicken.

“The ability to make gadusol, which was first discovered in fish eggs, clearly has some evolutionary value to be found in so many species,” Mahmud said. “We know it provides UV-B protection, it makes a pretty good sunscreen. But there may also be roles it plays as an antioxidant, in stress response, embryonic development and other functions.”

In their study, the OSU researchers also found a way to naturally produce gadusol in high volumes using yeast. With continued research, it may be possible to develop gadusol as an ingredient for different types of sunscreen products, cosmetics or pharmaceutical products for humans.

A conceptual possibility, Mahmud said, is that ingestion of gadusol could provide humans a systemic sunscreen, as opposed to a cream or compound that has to be rubbed onto the skin.

The existence of gadusol had been known of in some bacteria, algae and other life forms, but it was believed that vertebrate animals could only obtain it from their diet. The ability to directly synthesize what is essentially a sunscreen may play an important role in animal evolution, and more work is needed to understand the importance of this compound in animal physiology and ecology, the researchers said.

Here’s a link to and a citation for the paper,

De novo synthesis of a sunscreen compound in vertebrates by Andrew R Osborn, Khaled H Almabruk, Garrett Holzwarth, Shumpei Asamizu, Jane LaDu, Kelsey M Kean, P Andrew Karplus, Robert L Tanguay, Alan T Bakalinsky, and Taifo Mahmud. eLife 2015;4:e05919 DOI: http://dx.doi.org/10.7554/eLife.05919 Published May 12, 2015

This is an open access paper.

The second piece of related research, also published yesterday on May 12, 2015, comes from a pair of scientists at Harvard University. From a May 12, 2015  eLife news release on EurekAlert,

Scientists from Oregon State University [two authors are listed for the ‘zebrafish’ paper and both are from Harvard University] have discovered that fish can produce their own sunscreen. They have copied the method used by fish for potential use in humans.

In the study published in the journal eLife, scientists found that zebrafish are able to produce a chemical called gadusol that protects against UV radiation. They successfully reproduced the method that zebrafish use by expressing the relevant genes in yeast. The findings open the door to large-scale production of gadusol for sunscreen and as an antioxidant in pharmaceuticals.

Gadusol was originally identified in cod roe and has since been discovered in the eyes of the mantis shrimp, sea urchin eggs, sponges, and in the dormant eggs and newly hatched larvae of brine shrimps. It was previously thought that fish can only acquire the chemical through their diet or through a symbiotic relationship with bacteria.

Marine organisms in the upper ocean and on reefs are subject to intense and often unrelenting sunlight. Gadusol and related compounds are of great scientific interest for their ability to protect against DNA damage from UV rays. There is evidence that amphibians, reptiles, and birds can also produce gadusol, while the genetic machinery is lacking in humans and other mammals.

The team were investigating compounds similar to gadusol that are used to treat diabetes and fungal infections. It was believed that the biosynthetic enzyme common to all of them, EEVS, was only present in bacteria. The scientists were surprised to discover that fish and other vertebrates contain similar genes to those that code for EEVS.

Curious about their function in animals, they expressed the zebrafish gene in E. coli and analysis suggested that fish combine EEVS with another protein, whose production may be induced by light, to produce gadusol. To check that this combination is really sufficient, the scientists transferred the genes to yeast and set them to work to see what they would create. This confirmed the production of gadusol. Its successful production in yeast provides a viable route to commercialisation.

As well as providing UV protection, gadusol may also play a role in stress responses, in embryonic development, and as an antioxidant.

Here’s a link to and a citation for the second paper from this loosely affiliated team of Oregon State University and Harvard University researchers,

Biochemistry: Shedding light on sunscreen biosynthesis in zebrafish by Carolyn A Brotherton and Emily P Balskus. eLife 2015;4:e07961 DOI: http://dx.doi.org/10.7554/eLife.07961 Published May 12, 2015

This paper, too, is open access.

One final bit and this is about the journal, eLife, from their news release on EurekAlert,

About eLife

eLife is a unique collaboration between the funders and practitioners of research to improve the way important research is selected, presented, and shared. eLife publishes outstanding works across the life sciences and biomedicine — from basic biological research to applied, translational, and clinical studies. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, and the Wellcome Trust. Learn more at elifesciences.org.

It seems this journal is a joint, US (Howard Hughes Medical Institute), German (Max Planck Society), UK (Wellcome Trust) effort.