Tag Archives: Ultrafast Dynamic Piezoresistive Response of Graphene-Based Cellular Elastomers

Exceeding the sensitivity of skin with a graphene elastomer

A Jan. 14, 2016 news item on Nanowerk announces the latest in ‘sensitive’ skin,

A new sponge-like material, discovered by Monash [Monash University in Australia] researchers, could have diverse and valuable real-life applications. The new elastomer could be used to create soft, tactile robots to help care for elderly people, perform remote surgical procedures or build highly sensitive prosthetic hands.

Graphene-based cellular elastomer, or G-elastomer, is highly sensitive to pressure and vibrations. Unlike other viscoelastic substances such as polyurethane foam or rubber, G-elastomer bounces back extremely quickly under pressure, despite its exceptionally soft nature. This unique, dynamic response has never been found in existing soft materials, and has excited and intrigued researchers Professor Dan Li and Dr Ling Qiu from the Monash Centre for Atomically Thin Materials (MCATM).

A Jan. 14, 2016 Monash University media release, which originated the news item, offers some insights from the researchers,

According to Dr Qiu, “This graphene elastomer is a flexible, ultra-light material which can detect pressures and vibrations across a broad bandwidth of frequencies. It far exceeds the response range of our skin, and it also has a very fast response time, much faster than conventional polymer elastomer.

“Although we often take it for granted, the pressure sensors in our skin allow us to do things like hold a cup without dropping it, crushing it, or spilling the contents. The sensitivity and response time of G-elastomer could allow a prosthetic hand or a robot to be even more dexterous than a human, while the flexibility could allow us to create next generation flexible electronic devices,” he said.

Professor Li, a director of MCATM, said, ‘Although we are still in the early stages of discovering graphene’s potential, this research is an excellent breakthrough. What we do know is that graphene could have a huge impact on Australia’s economy, both from a resources and innovation perspective, and we’re aiming to be at the forefront of that research and development.’

Dr Qiu’s research has been published in the latest edition of the prestigious journal Advanced Materials and is protected by a suite of patents.

Are they trying to protect the work from competition or wholesale theft of their work?

After all, the idea behind patents and copyrights was to encourage innovation and competition by ensuring that inventors and creators would benefit from their work. An example that comes to mind is the Xerox company which for many years had a monopoly on photocopy machines by virtue of their patent. Once the patent ran out (patents and copyrights were originally intended to be in place for finite time periods) and Xerox had made much, much money, competitors were free to create and market their own photocopy machines, which they did quite promptly. Since those days, companies have worked to extend patent and copyright time periods in efforts to stifle competition.

Getting back to Monash, I do hope the researchers are able to benefit from their work and wish them well. I also hope that they enjoy plenty of healthy competition spurring them onto greater innovation.

Here’s a link to and a citation for their paper,

Ultrafast Dynamic Piezoresistive Response of Graphene-Based Cellular Elastomers by Ling Qiu, M. Bulut Coskun, Yue Tang, Jefferson Z. Liu, Tuncay Alan, Jie Ding, Van-Tan Truong, and Dan Li. Advanced Materials Volume 28, Issue 1 January 6, 2016Pages 194–200 DOI: 10.1002/adma.201503957 First published: 2 November 2015

This paper appears to be open access.