Tag Archives: UNESCO medals for nanoscience and nanotechnology

UNESCO and nanotechnology/nanoscience

UNESCO (United Nations Educational, Scientific, and Cultural Organization) has awarded another of its medals for nanoscience and nanotechnologies (I first wrote about this medal in my November 11, 2010 posting when it was awarded to “Russian Academician Zhores Ivanovich Alferov, winner of the 2000 Nobel Prize in Physics; and Chunli Bai, Professor of Chemistry at the Laboratory of Molecular Nanostructure and Nanotechnology in Beijing and Executive Vice-President of the Chinese Academy of Sciences.”

This time the award has gone to Victor Bykov. From the April 12, 2011 news item on Azonano,

Director General of NT-MDT Co. Victor Bykov has been awarded by the UNESCO medal and a diploma for “Contribution to development of nanoscience and nanotechnologies”.

The UNESCO medal “Contribution to development of nanoscience and nanotechnologies” was established on the 1st of March 2010 in the framework of the theme “Nanoscience and Nanotechnologies” in the Encyclopedia of Life Support Systems (EOLSS) published by UNESCO and EOLSS Publishers.

The medal is awarded by UNESCO Director General to representatives of nanoscience and nanotechnologies and scientific and public agencies, as well as politicians that contributed to the development of the above mentioned institutions in the spirit UNESCO’s priorities.

There sure seems to a strong Russian connection (from my Nov.11, 2010 posting),

The Medal was established at the initiative of the International Commission responsible for developing the Nanoscience and Nanotechnologies theme for the Encyclopedia of Life Support Systems (EOLSS)* published by UNESCO and EOLSS Publishers. This initiative was supported by the Russian Federation’s Permanent Delegation to UNESCO. The EOLSS constitutes one of the world’s biggest web-based archives as a trans-disciplinary science base for sustainable development.

It’s early days, not even six months since the launch for this award, so it’s a little difficult to do much more than to note an interesting coincidence.

While UNESCO gives out medals, it’s also holding meetings like this one, Meeting of the COMEST (World Commission on the Ethics of Scientific Knowledge and Technology) Working Group on the Ethics of Nanotechnologies, which was held on April 27 and 28, 2011. Excerpted from the April 28, 2011 news article by Narab Khan for the Kuwait News Agency (KUNA),

The Working Group on the Ethics of Nanotechnologies which is part of UNESCO’s World Commission on the Ethics of Scientific Knowledge and Technology (COMEST) is meeting in Brussels Wednesday and Thursday to examine the ethical dimension of Nanotechnolgies.

Alain Pompidou, President of COMEST, told a press conference here Wednesday that the body is composed of 18 members from all over the world representing different disciplines.

However, [the first concern is that] the rapid pace of development in Nanotechnolgoies is creating difficulties in the identification of and response to potential impacts, especially long term impacts.

Secondly, the science and technology are being driven by the wrong kind of interests, not in interest of humanity but in particular military interests, noted Crowley.

The military is the main supporters of nano research in many parts of the world especially in the US.

“There is a concern that the scientific research might be distorted by the search for specific military applications that might serve as a distraction from the focus of achieving the Millennium Development goals and putting science to work for the benefit of humankind as a whole,” warned the UNESCO official.

The third concern is that developing countries might be left behind by rapid new developments in science which might be regarded from the ethical point of view as unacceptable.

The fourth concern is risk-management of using nano-materials. They are in the shops and one might buy them without knowing it.

(It seems the Kuwait News Agency is the only one to report on this meeting.) This item served to pique my interest in UNESCO’s World Commission on the Ethics of Scientific Knowledge and Technology and so I’m providing this link so you can read more about them here. I’ve also found the agenda for the April 27 – 28, 2011 meeting of the Working Group on the Ethics of Nanotechnologies.

UNESCO, science, and nanotechnology?

It’s funny how you can forget that acronyms are in fact abbreviations and that UNESCO, which I associate with children and culture [ETA Nov. 29, 2010: I appear to have briefly conflated this organization with UNICEF which focuses on children], stands for United Nations Educational, Scientific and Cultural Organization. [emphasis mine] I was reminded of the science part of their mandate with the recent news of a new award. From the Nov. 4, 2010 news item on Azonano,

The first UNESCO Medals “For contributions to the development of nanoscience and nanotechnologies” were awarded on 2 November at Paris headquarters to two laureates: Russian Academician Zhores Ivanovich Alferov, winner of the 2000 Nobel Prize in Physics; and Chunli Bai, Professor of Chemistry at the Laboratory of Molecular Nanostructure and Nanotechnology in Beijing and Executive Vice-President of the Chinese Academy of Sciences.

The information (accompanied by a photograph featuring Irina Bokova [UNESCO Director-General] and Zhores Alferov [recipient able to attend in person])  is also available as a news item on the Nanowerk website. The reason this new medal/award has been established isn’t entirely clearly to me despite this description (from the news items),

The Medal was established at the initiative of the International Commission responsible for developing the Nanoscience and Nanotechnologies theme for the Encyclopedia of Life Support Systems (EOLSS)* published by UNESCO and EOLSS Publishers. This initiative was supported by the Russian Federation’s Permanent Delegation to UNESCO. The EOLSS constitutes one of the world’s biggest web-based archives as a trans-disciplinary science base for sustainable development.

Yesterday (November 10, 2010), UNESCO released its UNESCO Science Report; The Current Status of Science Around the World for 2010. This is the fifth report in the series with the next most recent report in the series being released in 2005. From the UNESCO website page for the report,

Europe, Japan and the USA (the Triad) may still dominate research and development (R&D) but they are increasingly being challenged by the emerging economies and above all by China. This is just one of the findings of the UNESCO Science Report 2010, which is being launched at UNESCO headquarters in Paris today [Nov. 10, 2010].

Written by a team of independent experts who are each covering the country or region from which they hail, the UNESCO Science Report 2010 analyses the trends and developments that have shaped scientific research, innovation and higher education over the past five years, including the impact of the current global economic recession, which has hit the Triad harder than either Brazil, China or India. The report depicts an increasingly competitive environment, one in which the flow of information, knowledge, personnel and investment has become a two-way traffic. Both China and India, for instance, are using their newfound economic might to invest in high-tech companies in Europe and elsewhere to acquire technological expertise overnight. Other large emerging economies are also spending more on research and development than before, among them Brazil, Mexico, South Africa and Turkey.

If more countries are participating in science, we are also seeing a shift in global influence. China is a hair’s breadth away from counting more researchers than either the USA or the European Union, for instance, and now publishes more scientific articles than Japan.

Even countries with a lesser scientific capacity are finding that they can acquire, adopt and sometimes even transform existing technology and thereby ‘leapfrog’ over certain costly investments, such as infrastructure like land lines for telephones. Technological progress is allowing these countries to produce more knowledge and participate more actively than before in international networks and research partnerships with countries in both North and South. This trend is fostering a democratization of science worldwide. In turn, science diplomacy is becoming a key instrument of peace-building and sustainable development in international relations.

I found the report thanks to Jenara Nerenberg’s article, USA to Soon Trail Developing Countries in R&D, Asia on the Rise: UNESCO Report, on the Fast Company website,

The United States has decreased its research and development (R&D) prowess and is increasingly threatened by the scientific capabilities and innovations of developing countries like India and China, indicates a UNESCO report released today. The UNESCO Science Report reveals that Asia has increased its global share of R&D to 32%, up from 27% in 2002, and the global share of R&D out of the EU, Japan, and the U.S. combined has decreased from 83% to 76%, though they remain the leader in number of yearly patents initiated.

The news is in line with recent Fast Company reporting about the decline of America’s competitiveness and dwindling quality of math and science education, as well as emerging “South-South” collaborations between India and African nations, especially in infrastructure development and vaccine research.The changing trends point to the ever-increasing role of India and China and to some extent South Africa in providing the world with leading scientific and technological discoveries.

Canada is also covered in the report. The author, Paul Dufour, is a Canadian science policy expert as per this contributor biography on The Mark website,

Mr. Dufour was most recently based at Natural Resources Canada, on executive interchange from the Canadian-based International Development Research Centre. He was previously the interim Executive Director at the former Office of the National Science Advisor in the federal Government advising on international S&T matters and broad questions of R&D directions for the country. He has a rich experience in addressing the interaction between science and international relations, especially in the context of research capacity with the developing world.

He has travelled extensively; he lectures regularly on science policy; he has authored numerous articles on international S&T relations and Canadian innovation policy. He is series co-editor of the Cartermill Guides to World Science and past North American editor to Outlook on Science Policy.

I have glanced through the report and it notes that Canada provides excellent support and gets correspondingly good results for academic science and that the practice of science research in the industrial sector is poorly supported by Canadian business interests (sometimes termed as a lack of business innovation). Happily, he does discuss the poverty of ‘science culture’  in Canada, albeit briefly,

Developing a science culture

In addition to the pursuit of priority-setting and the examination of its appropriate place in shaping future public policy and investment in innovation and R&D, other debates are emerging. These are centred on improving the science culture and outreach in the country, including by augmenting the participation of women and the Aboriginal population in the knowledge society (Dufour, 2009). Women account for 47% of the labour force and 57% of university graduates but only 20% of doctoral degrees awarded in science and engineering. Some of the responsibility for Canada’s deteriorating appreciation of the value of knowledge centres on its lack of a science culture in its widest form, both in the political realm and among certain segments of the population and research community. There is an antagonism here between what some have termed a ‘politically clueless research community versus a scientifically illiterate political class’. A Science Media Centre has been proposed to improve science communication within the media. Efforts are also under way at various science centres and museums across the country to strengthen public understanding. Events include a National Science and Technology Week and a major physics festival organized by the Perimeter Institute. Some provinces, especially in Quebec, have long-standing traditions and tools in support of science outreach, given the promotion of science in the French language. Overall, however, the science culture gap remains. The scientific communities must share some of the responsibility for this. Often poorly organized, with limited means of outreach and inadequate communication tools, the research lobbies are increasingly faced with having to make a better case for why the future of the country lies with more, rather than less, research and technology – innovation in its broadest sense.

The private sector is also struggling to be more effective in articulating its own needs and concerns over the lack of necessary resources and strategic vision. (p. 74, print & PDF)

I have a few nits to pick but not the time to do it. If you are interested, this chapter on Canada’s science provides a good overview of the national situation and how that compares globally.