Tag Archives: United Nations Educational Scientific and Cultural Organization

May 16, 2018: UNESCO’s (United Nations Educational, Scientific and Cultural Organization) First International Day of Light

Courtesy: UNESCO

From a May 11, 2018 United Nations Educational, Scientific and Cultural Organization (UNESCO) press release (received via email),

UNESCO will welcome leading scientists on 16 May 2018 for the 1st edition of the International Day of Light (02:30-08:00 pm) to celebrate the role light plays in our daily lives. Researchers and intellectuals will examine how light-based technologies can contribute to meet pressing challenges in diverse areas, such as medicine, education, agriculture and energy.

            UNESCO Director-General Audrey Azoulay will open this event, which will count with the participation of renowned scientists, including:

  • Kip Thorne, 2017 Nobel Prize in Physics, California Institute of Technology (United States of America).
  • Claude Cohen-Tannoudji, 1997 Nobel Prize in Physics, Collège de France.
  • Khaled Toukan, Director of the Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME) based in Allan, Jordan.

The programme of keynotes and roundtables will address many key issues including science policy, our perception of the universe, and international cooperation, through contributions from experts and scientists from around the world.

The programme also includes cultural events, an illumination of UNESCO Headquarters, a photonics science show and an exhibit on the advances of light-based technologies and art.

            The debates that flourished in 2015, in the framework of the International Year of Light, highlighted the importance of light sciences and light-based technologies in achieving the United Nations Sustainable Development Goals. Several thousand events were held in 147 countries during the Year placed under the auspices of UNESCO.  

The proclamation of 16 May as the International Day of Light was supported by UNESCO’s Executive Board following a proposal by Ghana, Mexico, New Zealand and the Russian Federation, and approved by the UNESCO General Conference in November 2017.

More information:

I have taken a look at the programme which is pretty interesting. Unfortunately, I can’t excerpt parts of it for inclusion here as very odd things happen when I attempt to ‘copy and paste’. On the plus side. there’s a bit more information about this ‘new day’ on its event page,

Light plays a central role in our lives. On the most fundamental level, through photosynthesis, light is at the origin of life itself. The study of light has led to promising alternative energy sources, lifesaving medical advances in diagnostics technology and treatments, light-speed internet and many other discoveries that have revolutionized society and shaped our understanding of the universe. These technologies were developed through centuries of fundamental research on the properties of light – starting with Ibn Al-Haytham’s seminal work, Kitab al-Manazir (Book of Optics), published in 1015 and including Einstein’s work at the beginning of the 20th century, which changed the way we think about time and light.

The International Day of Light celebrates the role light plays in science, culture and art, education, and sustainable development, and in fields as diverse as medicine, communications, and energy. The will allow many different sectors of society worldwide to participate in activities that demonstrates how science, technology, art and culture can help achieve the goals of UNESCO – building the foundation for peaceful societies.

The International Day of Light is celebrated on 16 May each year, the anniversary of the first successful operation of the laser in 1960 by physicist and engineer, Theodore Maiman. This day is a call to strengthen scientific cooperation and harness its potential to foster peace and sustainable development.

Happy International Day of Light on Wednesday, May 16, 2018!

AI (artificial intelligence) for Good Global Summit from May 15 – 17, 2018 in Geneva, Switzerland: details and an interview with Frederic Werner

With all the talk about artificial intelligence (AI), a lot more attention seems to be paid to apocalyptic scenarios: loss of jobs, financial hardship, loss of personal agency and privacy, and more with all of these impacts being described as global. Still, there are some folks who are considering and working on ‘AI for good’.

If you’d asked me, the International Telecommunications Union (ITU) would not have been my first guess (my choice would have been United Nations Educational, Scientific and Cultural Organization [UNESCO]) as an agency likely to host the 2018 AI for Good Global Summit. But, it turns out the ITU is a UN (United Nations agency) and, according to its Wikipedia entry, it’s an intergovernmental public-private partnership, which may explain the nature of the participants in the upcoming summit.

The news

First, there’s a May 4, 2018 ITU media advisory (received via email or you can find the full media advisory here) about the upcoming summit,

Artificial Intelligence (AI) is now widely identified as being able to address the greatest challenges facing humanity – supporting innovation in fields ranging from crisis management and healthcare to smart cities and communications networking.

The second annual ‘AI for Good Global Summit’ will take place 15-17 May [2018] in Geneva, and seeks to leverage AI to accelerate progress towards the United Nations’ Sustainable Development Goals and ultimately benefit humanity.

WHAT: Global event to advance ‘AI for Good’ with the participation of internationally recognized AI experts. The programme will include interactive high-level panels, while ‘AI Breakthrough Teams’ will propose AI strategies able to create impact in the near term, guided by an expert audience of mentors representing government, industry, academia and civil society – through interactive sessions. The summit will connect AI innovators with public and private-sector decision-makers, building collaboration to take promising strategies forward.

A special demo & exhibit track will feature innovative applications of AI designed to: protect women from sexual violence, avoid infant crib deaths, end child abuse, predict oral cancer, and improve mental health treatments for depression – as well as interactive robots including: Alice, a Dutch invention designed to support the aged; iCub, an open-source robot; and Sophia, the humanoid AI robot.

WHEN: 15-17 May 2018, beginning daily at 9 AM

WHERE: ITU Headquarters, 2 Rue de Varembé, Geneva, Switzerland (Please note: entrance to ITU is now limited for all visitors to the Montbrillant building entrance only on rue Varembé).

WHO: Confirmed participants to date include expert representatives from: Association for Computing Machinery, Bill and Melinda Gates Foundation, Cambridge University, Carnegie Mellon, Chan Zuckerberg Initiative, Consumer Trade Association, Facebook, Fraunhofer, Google, Harvard University, IBM Watson, IEEE, Intellectual Ventures, ITU, Microsoft, Massachusetts Institute of Technology (MIT), Partnership on AI, Planet Labs, Shenzhen Open Innovation Lab, University of California at Berkeley, University of Tokyo, XPRIZE Foundation, Yale University – and the participation of “Sophia” the humanoid robot and “iCub” the EU open source robotcub.

The interview

Frederic Werner, Senior Communications Officer at the International Telecommunication Union and** one of the organizers of the AI for Good Global Summit 2018 kindly took the time to speak to me and provide a few more details about the upcoming event.

Werner noted that the 2018 event grew out of a much smaller 2017 ‘workshop’ and first of its kind, about beneficial AI which this year has ballooned in size to 91 countries (about 15 participants are expected from Canada), 32 UN agencies, and substantive representation from the private sector. The 2017 event featured Dr. Yoshua Bengio of the University of Montreal  (Université de Montréal) was a featured speaker.

“This year, we’re focused on action-oriented projects that will help us reach our Sustainable Development Goals (SDGs) by 2030. We’re looking at near-term practical AI applications,” says Werner. “We’re matchmaking problem-owners and solution-owners.”

Academics, industry professionals, government officials, and representatives from UN agencies are gathering  to work on four tracks/themes:

In advance of this meeting, the group launched an AI repository (an action item from the 2017 meeting) on April 25, 2018 inviting people to list their AI projects (from the ITU’s April 25, 2018? AI repository news announcement),

ITU has just launched an AI Repository where anyone working in the field of artificial intelligence (AI) can contribute key information about how to leverage AI to help solve humanity’s greatest challenges.

This is the only global repository that identifies AI-related projects, research initiatives, think-tanks and organizations that aim to accelerate progress on the 17 United Nations’ Sustainable Development Goals (SDGs).

To submit a project, just press ‘Submit’ on the AI Repository site and fill in the online questionnaire, providing all relevant details of your project. You will also be asked to map your project to the relevant World Summit on the Information Society (WSIS) action lines and the SDGs. Approved projects will be officially registered in the repository database.

Benefits of participation on the AI Repository include:

WSIS Prizes recognize individuals, governments, civil society, local, regional and international agencies, research institutions and private-sector companies for outstanding success in implementing development oriented strategies that leverage the power of AI and ICTs.

Creating the AI Repository was one of the action items of last year’s AI for Good Global Summit.

We are looking forward to your submissions.

If you have any questions, please send an email to: ai@itu.int

“Your project won’t be visible immediately as we have to vet the submissions to weed out spam-type material and projects that are not in line with our goals,” says Werner. That said, there are already 29 projects in the repository. As you might expect, the UK, China, and US are in the repository but also represented are Egypt, Uganda, Belarus, Serbia, Peru, Italy, and other countries not commonly cited when discussing AI research.

Werner also pointed out in response to my surprise over the ITU’s role with regard to this AI initiative that the ITU is the only UN agency which has 192* member states (countries), 150 universities, and over 700 industry members as well as other member entities, which gives them tremendous breadth of reach. As well, the organization, founded originally in 1865 as the International Telegraph Convention, has extensive experience with global standardization in the information technology and telecommunications industries. (See more in their Wikipedia entry.)

Finally

There is a bit more about the summit on the ITU’s AI for Good Global Summit 2018 webpage,

The 2nd edition of the AI for Good Global Summit will be organized by ITU in Geneva on 15-17 May 2018, in partnership with XPRIZE Foundation, the global leader in incentivized prize competitions, the Association for Computing Machinery (ACM) and sister United Nations agencies including UNESCO, UNICEF, UNCTAD, UNIDO, Global Pulse, UNICRI, UNODA, UNIDIR, UNODC, WFP, IFAD, UNAIDS, WIPO, ILO, UNITAR, UNOPS, OHCHR, UN UniversityWHO, UNEP, ICAO, UNDP, The World Bank, UN DESA, CTBTOUNISDRUNOG, UNOOSAUNFPAUNECE, UNDPA, and UNHCR.

The AI for Good series is the leading United Nations platform for dialogue on AI. The action​​-oriented 2018 summit will identify practical applications of AI and supporting strategies to improve the quality and sustainability of life on our planet. The summit will continue to formulate strategies to ensure trusted, safe and inclusive development of AI technologies and equitable access to their benefits.

While the 2017 summit sparked the first ever inclusive global dialogue on beneficial AI, the action-oriented 2018 summit will focus on impactful AI solutions able to yield long-term benefits and help achieve the Sustainable Development Goals. ‘Breakthrough teams’ will demonstrate the potential of AI to map poverty and aid with natural disasters using satellite imagery, how AI could assist the delivery of citizen-centric services in smart cities, and new opportunities for AI to help achieve Universal Health Coverage, and finally to help achieve transparency and explainability in AI algorithms.

Teams will propose impactful AI strategies able to be enacted in the near term, guided by an expert audience of mentors representing government, industry, academia and civil society. Strategies will be evaluated by the mentors according to their feasibility and scalability, potential to address truly global challenges, degree of supporting advocacy, and applicability to market failures beyond the scope of government and industry. The exercise will connect AI innovators with public and private-sector decision-makers, building collaboration to take promising strategies forward.

“As the UN specialized agency for information and communication technologies, ITU is well placed to guide AI innovation towards the achievement of the UN Sustainable Development ​Goals. We are providing a neutral close quotation markplatform for international dialogue aimed at ​building a ​common understanding of the capabilities of emerging AI technologies.​​” Houlin Zhao, Secretary General ​of ITU​

Should you be close to Geneva, it seems that registration is still open. Just go to the ITU’s AI for Good Global Summit 2018 webpage, scroll the page down to ‘Documentation’ and you will find a link to the invitation and a link to online registration. Participation is free but I expect that you are responsible for your travel and accommodation costs.

For anyone unable to attend in person, the summit will be livestreamed (webcast in real time) and you can watch the sessions by following the link below,

https://www.itu.int/en/ITU-T/AI/2018/Pages/webcast.aspx

For those of us on the West Coast of Canada and other parts distant to Geneva, you will want to take the nine hour difference between Geneva (Switzerland) and here into account when viewing the proceedings. If you can’t manage the time difference, the sessions are being recorded and will be posted at a later date.

*’132 member states’ corrected to ‘192 member states’ on May 11, 2018 at 1500 hours PDT.

*Redundant ‘and’ removed on July 19, 2018.

Ingenuity Lab (a nanotechnology initiative), the University of Alberta, and Carlo Montemagno—what is happening in Canadian universities? (2 of 2)

You can find Part 1 of the latest installment in this sad story here.

Who says Carlo Montemagno is a star nanotechnology researcher?

Unusually and despite his eminent stature, Dr. Montemagno does not rate a Wikipedia entry. Luckily, his CV (curriculum vitae) is online (placed there by SIU) so we can get to know a bit more (the CV is a 63 pp. document) about the man’s accomplishments (Note: There are some formatting differences), Note: Unusually, I will put my comments into the excerpted CV using [] i.e., square brackets to signify my input,

Carlo Montemagno, PhD
University of Alberta
Department of Chemical and Materials Engineering
and
NRC/CNRC National Institute for Nanotechnology
Edmonton, AB T6G 2V4
Canada

 

Educational Background

1995, Ph.D., Department of Civil Engineering and Geological Sciences, College of Earth and Mineral Sciences University of Notre Dame

1990, M.S., Petroleum and Natural Gas Engineering, College of Earth and Mineral Sciences, Pennsylvania State University

1980, B.S., Agricultural and Biological Engineering, College of Engineering, Cornell University

Supplemental Education

1986, Practical Environmental Law, Federal Publications, Washington, DC

1985, Effective Executive Training Program, Wharton Business School, University of Pennsylvannia, Philadelphia, PA

1980, Civil Engineer Corp Officer Project, CECOS & General Management School, Port Hueneme, CA

[He doesn’t seem to have taken any courses in the last 30 years.]

Professional Experience

(Select Achievements)

Over three decades of experience in shepherding complex organizations both inside and outside academia. Working as a builder, I have led organizations in government, industry and higher education during periods of change and challenge to achieved goals that many perceived to be unattainable.

University of Alberta, Edmonton AB 9/12 to present

9/12 to present, Founding Director, Ingenuity Lab [largely defunct as of April 18, 2018], Province of Alberta

8/13 to present, Director Biomaterials Program, NRC/CNRC National Institute for Nanotechnology [It’s not clear if this position still exists.]

10/13 to present, Canada Research Chair, Government of Canada in Intelligent Nanosystems [Canadian universities receive up to $200,000 for an individual Canada research chair. The money can be used to fund the chair in its entirety or it can be added to other monies., e.g., faculty salary. There are two tiers, one for established researchers and one for new researchers. Montemagno would have been a Tier 1 Canada Research Chair. At McGill University {a major Canadian educational institution} for example, total compensation including salary, academic stipend, benefits, X-coded research funds would be a maximum of $200,000 at Montemagno’s Tier 1 level. See: here scroll down about 90% of the way).

3/13 to present, AITF iCORE Strategic Chair, Province of Alberta in BioNanotechnology and Biomimetic Systems [I cannot find this position in the current list of the University of Alberta Faculty of Science’s research chairs.]

9/12 to present, Professor, Faculty of Engineering, Chemical and Materials Engineering

Crafted and currently lead an Institute that bridges multiple organizations named Ingenuity Lab (www.ingenuitylab.ca). This Institute is a truly integrated multidisciplinary organization comprised of dedicated researchers from STEM, medicine, and the social sciences. Ingenuity Lab leverages Alberta’s strengths in medicine, engineering, science and, agriculture that are present in multiple academic enterprises across the province to solve grand challenges in the areas of energy, environment, and health and rapidly translate the solutions to the economy.

The exciting and relevant feature of Ingenuity Lab is that support comes from resources outside the normal academic funding streams. Core funding of approximately $8.6M/yr emerged by working and communicating a compelling vision directly with the Provincial Executive and Legislative branches of government. [In the material I’ve read, the money for the research was part of how Dr. Montemagno was wooed by the University of Alberta. My understanding is that he himself did not obtain the funding, which in CAD was $100M over 10 years. Perhaps the university was able to attract the funding based on Dr. Montemagno’s reputation and it was contingent on his acceptance?] I significantly augmented these base resources by developing Federal Government, and Industry partnership agreements with a suite of multinational corporations and SME’s across varied industry sectors.

Collectively, this effort is generating enhanced resource streams that support innovative academic programming, builds new research infrastructure, and enables high risk/high reward research. Just as important, it established new pathways to interact meaningfully with local and global communities.

Strategic Leadership

•Created the Ingenuity Lab organization including a governing board representing multiple academic institutions, government and industry sectors.

•Developed and executed a strategic plan to achieve near and long-term strategic objectives.

•Recruited~100 researchers representing a wide range disciplnes.[sic] [How hard can it be to attract researchers in this job climate?]

•Built out ~36,000 S.F. of laboratory and administrative space.

•Crafted operational policy and procedures.

•Developed and implemented a unique stakeholder inclusive management strategy focused on the rapid translation of solutions to the economy.

Innovation and Economic Engagement

•Member of the Expert Panel on innovation, commissioned by the Government of Alberta, to assess opportunities, challenges and design and implementation options for Alberta’s multi-billion dollar investment to drive long-term economic growth and diversification. The developed strategy is currently being implemented. [Details?]

•Served as a representive [sic] on multiple Canadian national trade missions to Asia, United States and the Middle East. [Sounds like he got to enjoy some nice trips.]

•Instituted formal development partnerships with several multi-national corporations including Johnson & Johnson, Cenovus and Sabuto Inc. [Details?]

•Launched multiple for-profit joint ventures founded on technologies collaboratively developed with industry with funding from both private and public sources. [Details?]

Branding

•Developed and implement a communication program focused on branding of Ingenuity Lab’s unique mission, both regionally and globally, to the lay public, academia, government, and industry. [Why didn’t the communication specialist do this? ]

This effort employs traditional paper, online, and social media outlets to effectively reach different demographics.

•Awarded “Best Nanotechnology Research Organization–2014” by The New Economy. [What is the New Economy? The Economist, yes. New Economy, no.]

Global Development

•Executed formal research and education partnerships with the Yonsei Institute of Convergence Technology and the Yonsei Bio-IT MicroFab Center in Korea, Mahatma Gandhi University in India. and the Italian Institute of Technology. [{1}The Yonsei Institute of Convergence Technology doesn’t have any news items prior to 2015 or after 2016. The Ingenuity Lab and/or Carlo Montemagno did not feature in them. {2} There are six Mahatma Ghandi Universities in India. {3} The Italian Institute of Technology does not have any news listings on the English language version of its site.]

•Opened Ingenuity Lab, India in May 2015. Focused on translating 21st-century technology to enable solutions appropriate for developing nations in the Energy, Agriculture, and Health economic sectors. [Found this May 9, 2016 notice on the Asia Pacific Foundation of Canada website, noting this: “… opening of the Ingenuity Lab Research Hub at Mahatma Gandhi University in Kottayam, in the Indian state of Kerala.” There’s also this May 6, 2016 news release. I can’t find anything on the Mahatma Ghandi University Kerala website.]

•Established partnership research and development agreements with SME’s in both Israel and India.

•Developed active research collaborations with medical and educational institutions in Nepal, Qatar, India, Israel, India and the United States.

Community Outreach

•Created Young Innovators research experience program to educate, support and nurture tyro undergraduate researchers and entrepreneurs.

•Developed an educational game, “Scopey’s Nano Adventure” for iOS and Android platforms to educate 6yr to 10yr olds about Nanotechnology. [What did the children learn? Was this really part of the mandate?]

•Delivered educational science programs to the lay public at multiple, high profile events. [Which events? The ones on the trade junkets?]

University of Cincinnati, Cincinnati OH 7/06 to 8/12

7/10 to 8/12 Founding Dean, College of Engineering and Applied Science

7/09 to 6/10 Dean, College of Applied Science

7/06 to 6/10 Dean, College of Engineering

7/06 to 8/12 Geier Professor of College of Engineering Engineering Education

7/06 to 8/12, Professor of Bioengineering, College of Engineering & College of Medicine

University of California, Los Angeles 7/01 to 6/06

5/03 to 6/06, Associate Director California Nanosystems Institute

7/02 to 6/06, Co-Director NASA Center for Cell Mimetic Space Exploration

7/02 to 6/06, Founding Department Chair, Department of Bioengineering

7/02 to 6/06, Chair Biomedical Engineering IDP

7/01 to 6/02, Chair of Academic Biomedical Engineering IDP Affairs

7/01 to 6/06, Carol and Roy College of Engineering and Applied Doumani Professor of Sciences Biomedical Engineering

7/01 to 6/06, Professor Mechanical and Aerospace Engineering

Recommending Montemagno

Presumably the folks at Southern Illinois University asked for recommendations from Montemagno’s previous employers. So, how did he get a recommendation from the folks in Alberta when according to Spoerre’s April 10, 2018 article the Ingenuity Lab was undergoing a review as of June 2017 by the province of Alberta’s Alberta Innovates programme? I find it hard to believe that the folks at the University of Alberta were unaware of the review.

When you’re trying to get rid of someone, it’s pretty much standard practice that once they’ve gotten the message, you give a good recommendation to their prospective employer. The question begs to be asked, how many times have employers done this for Montemagno?

Stars in their eyes

Every one exaggerates a bit on their résumé or CV. One of my difficulties with this whole affair lies in how Montemagno can be described as a ‘nanotechnology star’. The accomplishments foregrounded on Montemagno’s CV are administrative and if memory serves, the University of Cincinnati too. Given the situation with the Ingenuity Lab, I’m wondering about these accomplishments.

Was due diligence performed by SIU, the University of the Alberta, or anywhere else that Montemagno worked? I realize that you’re not likely to get much information from calling up the universities where he worked previously, especially if there was a problem and they wanted to get rid of him. Still, did someone check out his degrees, his start-ups,  dig a little deeper into some of his claims?

His credentials and stated accomplishments are quite impressive and I, too,  would have been dazzled. (He also lists positions at the Argonne National Laboratory and at Cornell University.) I’ve picked at some bits but one thing that stands out to me is the move from UCLA to the University of Cincinnati. It’s all big names: UCLA, Cornell, NASA, Argonne and then, not: University of Cincinnati, University of Alberta, Southern Illinois University—what happened?

(If anyone better versed in the world of academe and career has answers, please do add them to the comments.)

It’s tempting to think the Peter Principle (one of them) was at work here. In brief, this principle states that as you keep getting better jobs on based on past performance you reach a point where you can’t manage the new challenges having risen to your level of incompetence.In accepting the offer from the University of Alberta had Dr. Montemagno risen to his level of incompetence? Or, perhaps it was just one big failure. Unfortunately, any excuses don’t hold up under the weight of a series of misjudgments and ethical failures. Still, I’m guessing that Dr. Montemagno was hoping for a big win on a project such as this (from an Oct. 19, 2016 news release on MarketWired),

Ingenuity Lab Carbon Solutions announced today that it has been named as one of the 27 teams advancing in the $20M NRG COSIA Carbon XPRIZE. The competition sees scientists develop technologies to convert carbon dioxide emissions into products with high net value.

The Ingenuity Lab Carbon Solutions team – headquartered in Edmonton of Alberta, Canada – has made it to the second round of competition. Its team of 14 has proposed to convert CO2 waste emitted from a natural gas power plant into usable chemical products.

Ingenuity Lab Carbon Solutions is comprised of a multidisciplinary group of scientists and engineers, and was formed in the winter of 2012 to develop new approaches for the chemical industry. Ingenuity Lab Carbon Solutions is sponsored by CCEMC, and has also partnered with Ensovi for access to intellectual property and know how.

I can’t identify CCEMC with any certainty but Ensovi is one of Montemagno’s six start-up companies, as listed in his CV,

Founder and Chief Technical Officer, Ensovi, LLC., Focused on the production of low-cost bioenergy and high-value added products from sunlight using bionanotechnology, Total Funding; ~$10M, November 2010-present.

Sadly the April 9,2018 NRG COSIA Carbon XPRIZE news release  announcing the finalists in round 3 of the competition includes an Alberta track of five teams from which the Ingenuity Lab is notably absent.

The Montemagno affair seems to be a story of hubris, greed, and good intentions. Finally, the issues associated with Dr. Montemagno give rise to another, broader question.

Is something rotten in Canada’s higher education establishment?

Starting with the University of Alberta:

it would seem pretty obvious that if you’re hiring family member(s) as part of the deal to secure a new member of faculty that you place and follow very stringent rules. No rewriting of the job descriptions, no direct role in hiring or supervising, no extra benefits, no inflated salaries in other words, no special treatment for your family as they know at the University of Alberta since they have policies for this very situation.

Yes, universities do hire spouses (although a daughter, a nephew, and a son-in-law seems truly excessive) and even when the university follows all of the rules, there’s resentment from staff (I know because I worked in a university). There is a caveat to the rule, there’s resentment unless that spouse is a ‘star’ in his or her own right or an exceptionally pleasant person. It’s also very helpful if the spouse is both.

I have to say I loved Fraser Forbes that crazy University of Alberta engineer who thought he’d make things better by telling us that the family’s salaries had been paid out of federal and provincial funds rather than university funds. (sigh) Forbes was the new dean of engineering at the time of his interview in the CBC’s April 10, 2018 online article but that no longer seems to be the case as of April 19, 2018.

Given Montemagno’s misjudgments, it seems cruel that Forbes was removed after one foolish interview. But, perhaps he didn’t want the job after all. Regardless, those people who were afraid to speak out about Dr. Montemagno cannot feel reassured by Forbes’ apparent removal.

Money, money, money

Anyone who has visited a university in Canada (and presumably the US too) has to have noticed the number of ‘sponsored’ buildings and rooms. The hunger for money seems insatiable and any sensible person knows it’s unsupportable over the long term.

The scramble for students

Mel Broitman in a Sept. 22, 2016 article for Higher Education lays out some harsh truths,

Make no mistake. It is a stunning condemnation and a “wakeup call to higher education worldwide”. The recent UNESCO report states that academic institutions are rife with corruption and turning a blind eye to malpractice right under their noses. When UNESCO, a United Nations organization created after the chaos of World War II to focus on moral and intellectual solidarity, makes such an alarming allegation, it’s sobering and not to be dismissed.

So although Canadians typically think of their society and themselves as among the more honest and transparent found anywhere, how many Canadian institutions are engaging in activities that border on dishonest and are not entirely transparent around the world?

It is overwhelmingly evident that in the last two decades we have witnessed first-hand a remarkable and callous disregard for academic ethics and standards in a scramble by Canadian universities and colleges to sign up foreign students, who represent tens of millions of dollars to their bottom lines.

We have been in a school auditorium in China and listened to the school owner tell prospective parents that the Grade 12 marks from the Canadian provincial school board program can be manipulated to secure admission for their children into Canadian universities. This, while the Canadian teachers sat oblivious to the presentation in Chinese.

In hundreds of our own interaction with students who completed the Canadian provincial school board’s curriculum in China and who achieved grades of 70% and higher in their English class have been unable to achieve even a basic level of English literacy in the written tests we have administered.   But when the largest country of origin for incoming international students and revenue is China – the Canadian universities admitting these students salivate over the dollars and focus less on due diligence.

We were once asked by a university on Canada’s west coast to review 200 applications from Saudi Arabia, in order to identify the two or three Saudi students who were actually eligible for conditional admission to that university’s undergraduate engineering program. But the proposal was scuttled by the university’s ESL department that wanted all 200 to enroll in its language courses. It insisted on and managed conditional admissions for all 200. It’s common at Canadian universities for the ESL program “tail” to wag the campus “dog” when it comes to admissions. In fact, recent Canadian government regulations have been proposed to crack down on this practice as it is an affront to academic integrity.

If you have time, do read the rest as it’s eye-opening. As for the report Broitman cites, I was not able to find it. Broitman gives a link to the report in response to one of the later comments and there’s a link in Tony Bates’s July 31, 2016 posting but you will get a “too bad, so sad” message should you follow either link.The closed I can get to it is this Advisory Statement for Effective International Practice; Combatting Corruption and Enhancing Integrity: A Contemporary Challenge for the Quality and Credibility of Higher Education (PDF). The ‘note’ was jointly published by the (US) Council for Higher Education (CHEA) and UNESCO.

What about the professors?

As they scramble for students, the universities appear to be cutting their ‘teaching costs’, from an April 18, 2018 article by Charles Menzies (professor of anthropology and an elected member of the UBC [University of British Columbia] Board)  for THE UBYSSEY (UBC) student newspaper,

For the first time ever at UBC the contributions of student tuition fees exceeded provincial government contributions to UBC’s core budget. This startling fact was the backdrop to a strenuous grilling of UBC’s VP Finance and Provost Peter Smailes by governors at the Friday the 13 meeting of UBC’s Board of Governors’ standing committee for finance.

Given the fact students contribute more to UBC’s budget than the provincial government, governors asked why more wasn’t being done to enhance the student experience. By way of explanation the provost reiterated UBC’s commitment to the student experience. In a back-and-forth with a governor the provost outlined a range of programs that focus on enhancing the student experience. At several points the chair of the Board would intervene and press the provost for more explanations and elaboration. For his part the provost responded in a measured and deliberate tone outlining the programs in play, conceding more could be done, and affirming the importance of students in the overall process.

As a faculty member listening to this, I wondered about the background discourse undergirding the discussion. How is focussing on a student’s experience at UBC related to our core mission: education and research? What is actually being meant by experience? Why is no one questioning the inadequacy of the government’s core contribution? What about our contingent colleagues? Our part-time precarious colleagues pick up a great deal of the teaching responsibilities across our campuses. Is there not something we can do to improve their working conditions? Remember, faculty working conditions are student learning conditions. From my perspective all these questions received short shrift.

I did take the opportunity to ask the provost, given how financially sound our university is, why more funds couldn’t be directed toward improving the living and working conditions of contingent faculty. However, this was never elaborated upon after the fact.

There is much about the university as a total institution that seems driven to cultivate experiences. A lot of Board discussion circles around ideas of reputation and brand. Who pays and how much they pay (be they governments, donors, or students) is also a big deal. Cultivating a good experience for students is central to many of these discussions.

What is this experience that everyone is talking about? I hear about classroom experience, residence experience, and student experience writ large. Very little of it seems to be specifically tied to learning (unless it’s about more engaging, entertaining, learning with technology). While I’m sure some Board colleagues will disagree with this conclusion, it does seem to me that the experience being touted is really the experience of a customer seeking fulfilment through the purchase of a service. What is seen as important is not what is learned, but the grade; not the productive struggle of learning but the validation of self in a great experience as a member of an imagined community. A good student experience very likely leads to a productive alumni relationship — one where the alumni feels good about giving money.

Inside UBC’s Board of Governors

Should anyone be under illusions as to what goes on at the highest levels of university governance, there is the telling description from Professor Jennifer Berdahl about her experience on a ‘search committee for a new university president’ of the shameful treatment of previous president, Arvind Gupta (from Berdahl’s April 25, 2018 posting on her eponymous blog),

If Prof. Chaudhry’s [Canada Research Chair and Professor Ayesha Chaudhry’s resignation was announced in an April 25, 2018 UBYSSEY article by Alex Nguyen and Zak Vescera] experience was anything like mine on the UBC Presidential Search Committee, she quickly realized how alienating it is to be one of only three faculty members on a 21-person corporate-controlled Board. It was likely even worse for Chaudhry as a woman of color. Combining this with the Board’s shenanigans that are designed to manipulate information and process to achieve desired decisions and minimize academic voices, a sense of helpless futility can set in. [emphasis mine]

These shenanigans include [emphasis mine] strategic seating arrangements, sudden breaks during meetings when conversation veers from the desired direction, hand-written notes from the secretary to speaking members, hundreds of pages of documents sent the night before a meeting, private tête-à-têtes arranged between a powerful board member and a junior or more vulnerable one, portals for community input vetted before sharing, and planning op-eds to promote preferred perspectives. These are a few of many tricks employed to sideline unpopular voices, mostly academic ones.

It’s impossible to believe that UBC’s BoG is the site for these shenanigans take place. The question I have is how many BoGs and how much damage are they inflicting?

Finally getting back to my point, simultaneous with cutting back on teaching and other associated costs and manipulative, childish behaviour at BoG meetings, large amounts of money are being spent to attract ‘stars’ such as Dr. Montemagno. The idea is to attract students (and their money) to the institution where they can network with the ‘stars’. What the student actually learns does not seem to be the primary interest.

So, what kind of deals are the universities making with the ‘stars’?

The Montemagno affair provides a few hints but, in the end,I don’t know and I don’t think anyone outside the ‘sacred circle’ does either. UBC, for example,is quite secretive and, seemingly, quite liberal in its use of nondisclosure agreements (NDA). There was the scandal a few years ago when president Arvind Gupta abruptly resigned after one year in his position. As far as I know, no one has ever gotten to the bottom of this mystery although there certainly seems to have been a fair degree skullduggery involved.

After a previous president, Martha Cook Piper took over the reigns in an interim arrangement, Dr. Santa J. Ono (his Wikipedia entry) was hired.  Interestingly, he was previously at the University of Cincinnati, one of Montemagno’s previous employers. That university’s apparent eagerness to treat Montemagno’s extras seems to have led to the University of Alberta’s excesses.  So, what deal did UBC make with Dr. Ono? I’m pretty sure both he and the university are covered by an NDA but there is this about his tenure as president at the University of Cincinnati (from a June 14, 2016 article by Jack Hauen for THE UBYSSEY),

… in exchange for UC not raising undergraduate tuition, he didn’t accept a salary increase or bonus for two years. And once those two years were up, he kept going: his $200,000 bonus in 2015 went to “14 different organizations and scholarships, including a campus LGBTQ centre, a local science and technology-focused high school and a program for first-generation college students,” according to the Vancouver Sun.

In 2013 he toured around the States promoting UC with a hashtag of his own creation — #HottestCollegeInAmerica — while answering anything and everything asked of him during fireside chats.

He describes himself as a “servant leader,” which is a follower of a philosophy of leadership focused primarily on “the growth and well-being of people and the communities to which they belong.”

“I see my job as working on behalf of the entire UBC community. I am working to serve you, and not vice-versa,” he said in his announcement speech this morning.

Thank goodness it’s possible to end this piece on a more or less upbeat note. Ono seems to be what my father would have called ‘a decent human being’. It’s nice to be able to include a ‘happyish’ note.

Plea

There is huge money at stake where these ‘mega’ science and technology projects are concerned. The Ingenuity Lab was $100M investment to be paid out over 10 years and some basic questions don’t seem to have been asked. How does this person manage money? Leaving aside any issues with an individual’s ethics and moral compass, scientists don’t usually take any courses in business and yet they are expected to manage huge budgets. Had Montemagno handled a large budget or any budget? It’s certainly not foregrounded (and I’d like to see dollar amounts) in his CV.

As well, the Ingenuity Lab was funded as a 10 year project. Had Montemagno ever stayed in one job for 10 years? Not according to his CV. His longest stint was approximately eight years when he was in the US Navy in the 1980s. Otherwise, it was five to six years, including the Ingenuity Lab stint.

Meanwhile, our universities don’t appear to be applying the rules and protocols we have in place to ensure fairness. This unseemly rush for money seems to have infected how Canadian universities attract (local, interprovincial, and, especially, international) students to pay for their education. The infection also seems to have spread into the ways ‘star’ researchers and faculty members are recruited to Canadian universities while the bulk of the teaching staff are ‘starved’ under one pretext or another while a BoG may or may not be indulging in shenanigans designed to drive decision-making to a preordained outcome. And, for the most part, this is occurring under terms of secrecy that our intelligence agencies must envy.

In the end, I can’t be the only person wondering how all this affects our science.

EuroScience Open Forum in Toulouse, France from July 9 to July 14, 2018

A March 22, 2018 EuroScience Open Forum (ESOF) 2018 announcement (received via email) trumpets some of the latest news for this event being held July 9 to July 14, 2018 in Toulouse, France. (Located in the south in the region known as the Occitanie, it’s the fourth largest city in France. Toulouse is situated on the River Garonne. See more in its Wikipedia entry.) Here’s the latest from the announcement,

ESOF 2018 Plenary Sessions

Top speakers and hot topics confirmed for the Plenary Sessions at ESOF 2018

Lorna Hughes, Professor at the University of Glasgow, Chair of the Europeana Research Advisory Board, will give a plenary keynote on “Digital humanities”. John Ioannidis, Professor of Medicine and of Health Research and Policy at Stanford University, famous for his PLoS Medicine paper on “Why most Published Research Findings are False”, will talk about “Reproducibility”. A third plenary will involve Marìa Teresa Ruiz, a Chilean astronomer and the 2017 L’Oreal UNESCO award for Women in Science: she will talk about exoplanets.

 

ESOF under the spotlights

French President’s high patronage: ESOF is at the top of the institutional agendas in 2018.

“Sharing science”. But also putting science at the highest level making it a real political and societal issue in a changing world. ESOF 2018 has officially received the “High Patronage” from the President of the French Republic Emmanuel Macron. ESOF 2018 has also been listed by the French Minister for Europe and Foreign Affairs among the 27 priority events for France.

A constellation of satellites around the ESOF planet!

Second focus on Satellite events:
4th GEO Blue Planet Symposium organised 4-6 July by Mercator Ocean.
ECSJ 2018, 5th European Conference of Science Journalists, co-organised by the French Association of Science Journalists in the News Press (AJSPI) and the Union of European Science Journalists’ Associations (EUSJA) on 8 July.
– Esprit de Découvertes (Discovery spirit) organised by the Académie des Sciences, Inscriptions et Belles Lettres de Toulouse on 8 July.

More Satellite events to come! Don’t forget to stay long enough in order to participate in these focused Satellite Events and … to discover the city.

The programme for ESOF 2018 can be found here.

Science meets poetry

As has become usual, there is a European City of Science event being held in Toulouse in concert (more or less) with and in celebration of the ESOF event. The City of Science event is being held from July 7 – July 16, 2018.

Organizers have not announced much in the way of programming for the City of Science other than a ‘Science meets Poetry’ meeting,

A unique feature of ESOF is the Science meets Poetry day, which is held at every Forum and brings poets and scientists together.

Indeed, there is today a real artistic movement of poets connected with ESOF. Famous participants from earlier meetings include contributors such as the late Seamus Heaney, Roald Hoffmann [sic] Jean-Pierre Luminet and Prince Henrik of Denmark, but many young and aspiring poets are also involved.

The meeting is in two parts:

  • lectures on subjects involving science with poetry
  • a poster session for contributed poems

There are competitions associated with the event and every Science meets Poetry day gives rise to the publication of Proceedings in book form.

In Toulouse, the event will be staged by EuroScience in collaboration with the Académie des Jeux Floraux of Toulouse, the Société des Poètes Français and the European Academy of Sciences Arts and Letters, under patronage of UNESCO. The full programme will be announced later, but includes such themes as a celebration of the number 7 in honour of the seven Troubadours of Toulouse, who held the first Jeux Floraux in the year 1323, Space Travel and the first poets and scientists who wrote about it (including Cyrano de Bergerac and Johannes Kepler), from Metrodorus and Diophantes of Alexandria to Fermat’s Last Theorem, the Poetry of Ecology, Lafayette’s ship the Hermione seen from America and many other thought-provoking subjects.

The meeting will be held in the Hôtel d’Assézat, one of the finest old buildings of the ancient city of Toulouse.

Exceptionally, it will be open to registered participants from ESOF and also to some members of the public within the limits of available space.

Tentative Programme for the Science meets Poetry day on the 12th of July 2018

(some Speakers are still to be confirmed)

  • 09:00 – 09:30 A welcome for the poets : The legendary Troubadours of Toulouse and the poetry of the number 7 (Philippe Dazet-Brun, Académie des Jeux Floraux)
  • 09:30 – 10:00 The science and the poetry of violets from Toulouse (Marie-Thérèse Esquerré-Tugayé  Laboratoire de Recherche en Sciences Végétales, Université Toulouse III-CNRS)
  • 10:00 –10:30  The true Cyrano de Bergerac, gascon poet, and his celebrated travels to the Moon (Jean-Charles Dorge, Société des Poètes Français)
  • 10:30 – 11:00  Coffee Break (with poems as posters)
  • 11:00 – 11:30 Kepler the author and the imaginary travels of the famous astronomer to the Moon. (Uli Rothfuss, die Kogge International Society of German-language authors )
  • 11:30 – 12:00  Spoutnik and Space in Russian Literature (Alla-Valeria Mikhalevitch, Laboratory of the Russian Academy of Sciences  Saint-Petersburg)
  • 12:00 – 12:30  Poems for the planet Mars (James Philip Kotsybar, the ‘Bard of Mars’, California and NASA USA)
  • 12:30 – 14:00  Lunch and meetings of the Juries of poetry competitions
  • 14:00 – 14:30  The voyage of the Hermione and « Lafayette, here we come ! » seen by an American poet (Nick Norwood, University of Columbus Ohio)
  • 14:30 –  15:00 Alexandria, Toulouse and Oxford : the poem rendered by Eutrope and Fermat’s Last Theorem (Chaunes [Jean-Patrick Connerade], European Academy of Sciences, Arts and Letters, UNESCO)
  • 15:00 –15:30  How biology is celebrated in contemporary poetry (Assumpcio Forcada, biologist and poet from Barcelona)
  • 15:30 – 16:00  A book of poems around ecology : a central subject in modern poetry (Sam Illingworth, Metropolitan University of Manchester)
  • 16:00 – 16:30  Coffee break (with poems as posters)
  • 16:30 – 17:00 Toulouse and Europe : poetry at the crossroads of European Languages (Stefka Hrusanova (Bulgarian Academy and Linguaggi-Di-Versi)
  • 17:00 – 17:30 Round Table : seven poets from Toulouse give their views on the theme : Languages, invisible frontiers within both science and poetry
  • 17:30 – 18:00 The winners of the poetry competitions are announced
  • 18:00 – 18:15 Chaunes. Closing remarks

I’m fascinated as in all the years I’ve covered the European City of Science events I’ve never before tripped across a ‘Science meets Poetry’ meeting. Sadly, there’s no contact information for those organizers. However, you can sign up for a newsletter and there are contacts for the larger event, European City of Science or as they are calling it in Toulouse, the Science in the City Festival,

Contact

Camille Rossignol (Toulouse Métropole)

camille.rossignol@toulouse-metropole.fr

+33 (0)5 36 25 27 83

François Lafont (ESOF 2018 / So Toulouse)

francois.lafont@toulouse2018.esof.eu

+33 (0)5 61 14 58 47

Travel grants for media types

One last note and this is for journalists. It’s still possible to apply for a travel grant, which helps ease but not remove the pain of travel expenses. From the ESOF 2018 Media Travel Grants webpage,

ESOF 2018 – ECSJ 2018 Travel Grants

The 5th European Conference of Science Journalists (ECSJ2018) is offering 50 travel + accommodation grants of up to 400€ to international journalists interested in attending ECSJ and ESOF.

We are looking for active professional journalists who cover science or science policy regularly (not necessarily exclusively), with an interest in reflecting on their professional practices and ethics. Applicants can be freelancers or staff, and can work for print, web, or broadcast media.

More information

ESOF 2018 Nature Travel Grants

Springer Nature is a leading research, educational and professional publisher, providing quality content to its communities through a range of innovative platforms, products and services and is home of trusted brands including Nature Research.

Nature Research has supported ESOF since its very first meeting in 2004 and is funding the Nature Travel Grant Scheme for journalists to attend ESOF2018 with the aim of increasing the impact of ESOF. The Nature Travel Grant Scheme offers a lump sum of £400 for journalists based in Europe and £800 for journalists based outside of Europe, to help cover the costs of travel and accommodation to attend ESOF2018.

More information

Good luck!

(My previous posting about this ESOF 2018 was Sept. 4, 2017 [scroll down about 50% of the way] should you be curious.)

World heritage music stored in DNA

It seems a Swiss team from the École Polytechnique de Lausanne (EPFL) have collaborated with American companies Twist Bioscience and Microsoft, as well as, the University of Washington (state) to preserve two iconic jazz pieces on DNA (deoxyribonucleic acid) according to a Sept. 29, 2017 news item on phys.org,,

Thanks to an innovative technology for encoding data in DNA strands, two items of world heritage – songs recorded at the Montreux Jazz Festival [held in Switzerland] and digitized by EPFL – have been safeguarded for eternity. This marks the first time that cultural artifacts granted UNESCO heritage status have been saved in such a manner, ensuring they are preserved for thousands of years. The method was developed by US company Twist Bioscience and is being unveiled today in a demonstrator created at the EPFL+ECAL Lab.

“Tutu” by Miles Davis and “Smoke on the Water” by Deep Purple have already made their mark on music history. Now they have entered the annals of science, for eternity. Recordings of these two legendary songs were digitized by the Ecole Polytechnique Fédérale de Lausanne (EPFL) as part of the Montreux Jazz Digital Project, and they are the first to be stored in the form of a DNA sequence that can be subsequently decoded and listened to without any reduction in quality.

A Sept. 29, 2017 EPFL press release by Emmanuel Barraud, which originated the news item, provides more details,

This feat was achieved by US company Twist Bioscience working in association with Microsoft Research and the University of Washington. The pioneering technology is actually based on a mechanism that has been at work on Earth for billions of years: storing information in the form of DNA strands. This fundamental process is what has allowed all living species, plants and animals alike, to live on from generation to generation.

The entire world wide web in a shoe box

All electronic data storage involves encoding data in binary format – a series of zeros and ones – and then recording it on a physical medium. DNA works in a similar way, but is composed of long strands of series of four nucleotides (A, T, C and G) that make up a “code.” While the basic principle may be the same, the two methods differ greatly in terms of efficiency: if all the information currently on the internet was stored in the form of DNA, it would fit in a shoe box!

Recent advances in biotechnology now make it possible for humans to do what Mother Nature has always done. Today’s scientists can create artificial DNA strands, “record” any kind of genetic code on them and then analyze them using a sequencer to reconstruct the original data. What’s more, DNA is extraordinarily stable, as evidenced by prehistoric fragments that have been preserved in amber. Artificial strands created by scientists and carefully encapsulated should likewise last for millennia.

To help demonstrate the feasibility of this new method, EPFL’s Metamedia Center provided recordings of two famous songs played at the Montreux Jazz Festival: “Tutu” by Miles Davis, and “Smoke on the Water” by Deep Purple. Twist Bioscience and its research partners encoded the recordings, transformed them into DNA strands and then sequenced and decoded them and played them again – without any reduction in quality.

The amount of artificial DNA strands needed to record the two songs is invisible to the naked eye, and the amount needed to record all 50 years of the Festival’s archives, which have been included in UNESCO’s [United Nations Educational, Scientific and Cultural Organization] Memory of the World Register, would be equal in size to a grain of sand. “Our partnership with EPFL in digitizing our archives aims not only at their positive exploration, but also at their preservation for the next generations,” says Thierry Amsallem, president of the Claude Nobs Foundation. “By taking part in this pioneering experiment which writes the songs into DNA strands, we can be certain that they will be saved on a medium that will never become obsolete!”

A new concept of time

At EPFL’s first-ever ArtTech forum, attendees got to hear the two songs played after being stored in DNA, using a demonstrator developed at the EPFL+ECAL Lab. The system shows that being able to store data for thousands of years is a revolutionary breakthrough that can completely change our relationship with data, memory and time. “For us, it means looking into radically new ways of interacting with cultural heritage that can potentially cut across civilizations,” says Nicolas Henchoz, head of the EPFL+ECAL Lab.

Quincy Jones, a longstanding Festival supporter, is particularly enthusiastic about this technological breakthrough: “With advancements in nanotechnology, I believe we can expect to see people living prolonged lives, and with that, we can also expect to see more developments in the enhancement of how we live. For me, life is all about learning where you came from in order to get where you want to go, but in order to do so, you need access to history! And with the unreliability of how archives are often stored, I sometimes worry that our future generations will be left without such access… So, it absolutely makes my soul smile to know that EPFL, Twist Bioscience and their partners are coming together to preserve the beauty and history of the Montreux Jazz Festival for our future generations, on DNA! I’ve been a part of this festival for decades and it truly is a magnificent representation of what happens when different cultures unite for the sake of music. Absolute magic. And I’m proud to know that the memory of this special place will never be lost.

A Sept. 29, 2017 Twist Bioscience news release is repetitive in some ways but interesting nonetheless,

Twist Bioscience, a company accelerating science and innovation through rapid, high-quality DNA synthesis, today announced that, working with Microsoft and University of Washington researchers, they have successfully stored archival-quality audio recordings of two important music performances from the archives of the world-renowned Montreux Jazz Festival.
These selections are encoded and stored in nature’s preferred storage medium, DNA, for the first time. These tiny specks of DNA will preserve a part of UNESCO’s Memory of the World Archive, where valuable cultural heritage collections are recorded. This is the first time DNA has been used as a long-term archival-quality storage medium.
Quincy Jones, world-renowned Entertainment Executive, Music Composer and Arranger, Musician and Music Producer said, “With advancements in nanotechnology, I believe we can expect to see people living prolonged lives, and with that, we can also expect to see more developments in the enhancement of how we live. For me, life is all about learning where you came from in order to get where you want to go, but in order to do so, you need access to history! And with the unreliability of how archives are often stored, I sometimes worry that our future generations will be left without such access…So, it absolutely makes my soul smile to know that EPFL, Twist Bioscience and others are coming together to preserve the beauty and history of the Montreux Jazz Festival for our future generations, on DNA!…I’ve been a part of this festival for decades and it truly is a magnificent representation of what happens when different cultures unite for the sake of music. Absolute magic. And I’m proud to know that the memory of this special place will never be lost.”
“Our partnership with EPFL in digitizing our archives aims not only at their positive exploration, but also at their preservation for the next generations,” says Thierry Amsallem, president of the Claude Nobs Foundation. “By taking part in this pioneering experiment which writes the songs into DNA strands, we can be certain that they will be saved on a medium that will never become obsolete!”
The Montreux Jazz Digital Project is a collaboration between the Claude Nobs Foundation, curator of the Montreux Jazz Festival audio-visual collection and the École Polytechnique Fédérale de Lausanne (EPFL) to digitize, enrich, store, show, and preserve this notable legacy created by Claude Nobs, the Festival’s founder.
In this proof-of-principle project, two quintessential music performances from the Montreux Jazz Festival – Smoke on the Water, performed by Deep Purple and Tutu, performed by Miles Davis – have been encoded onto DNA and read back with 100 percent accuracy. After being decoded, the songs were played on September 29th [2017] at the ArtTech Forum (see below) in Lausanne, Switzerland. Smoke on the Water was selected as a tribute to Claude Nobs, the Montreux Jazz Festival’s founder. The song memorializes a fire and Funky Claude’s rescue efforts at the Casino Barrière de Montreux during a Frank Zappa concert promoted by Claude Nobs. Miles Davis’ Tutu was selected for the role he played in music history and the Montreux Jazz Festival’s success. Miles Davis died in 1991.
“We archived two magical musical pieces on DNA of this historic collection, equating to 140MB of stored data in DNA,” said Karin Strauss, Ph.D., a Senior Researcher at Microsoft, and one of the project’s leaders.  “The amount of DNA used to store these songs is much smaller than one grain of sand. Amazingly, storing the entire six petabyte Montreux Jazz Festival’s collection would result in DNA smaller than one grain of rice.”
Luis Ceze, Ph.D., a professor in the Paul G. Allen School of Computer Science & Engineering at the University of Washington, said, “DNA, nature’s preferred information storage medium, is an ideal fit for digital archives because of its durability, density and eternal relevance. Storing items from the Montreux Jazz Festival is a perfect way to show how fast DNA digital data storage is becoming real.”
Nature’s Preferred Storage Medium
Nature selected DNA as its hard drive billions of years ago to encode all the genetic instructions necessary for life. These instructions include all the information necessary for survival. DNA molecules encode information with sequences of discrete units. In computers, these discrete units are the 0s and 1s of “binary code,” whereas in DNA molecules, the units are the four distinct nucleotide bases: adenine (A), cytosine (C), guanine (G) and thymine (T).
“DNA is a remarkably efficient molecule that can remain stable for millennia,” said Bill Peck, Ph.D., chief technology officer of Twist Bioscience.  “This is a very exciting project: we are now in an age where we can use the remarkable efficiencies of nature to archive master copies of our cultural heritage in DNA.   As we develop the economies of this process new performances can be added any time.  Unlike current storage technologies, nature’s media will not change and will remain readable through time. There will be no new technology to replace DNA, nature has already optimized the format.”
DNA: Far More Efficient Than a Computer 
Each cell within the human body contains approximately three billion base pairs of DNA. With 75 trillion cells in the human body, this equates to the storage of 150 zettabytes (1021) of information within each body. By comparison, the largest data centers can be hundreds of thousands to even millions of square feet to hold a comparable amount of stored data.
The Elegance of DNA as a Storage Medium
Like music, which can be widely varied with a finite number of notes, DNA encodes individuality with only four different letters in varied combinations. When using DNA as a storage medium, there are several advantages in addition to the universality of the format and incredible storage density. DNA can be stable for thousands of years when stored in a cool dry place and is easy to copy using polymerase chain reaction to create back-up copies of archived material. In addition, because of PCR, small data sets can be targeted and recovered quickly from a large dataset without needing to read the entire file.
How to Store Digital Data in DNA
To encode the music performances into archival storage copies in DNA, Twist Bioscience worked with Microsoft and University of Washington researchers to complete four steps: Coding, synthesis/storage, retrieval and decoding. First, the digital files were converted from the binary code using 0s and 1s into sequences of A, C, T and G. For purposes of the example, 00 represents A, 10 represents C, 01 represents G and 11 represents T. Twist Bioscience then synthesizes the DNA in short segments in the sequence order provided. The short DNA segments each contain about 12 bytes of data as well as a sequence number to indicate their place within the overall sequence. This is the process of storage. And finally, to ensure that the file is stored accurately, the sequence is read back to ensure 100 percent accuracy, and then decoded from A, C, T or G into a two-digit binary representation.
Importantly, to encapsulate and preserve encoded DNA, the collaborators are working with Professor Dr. Robert Grass of ETH Zurich. Grass has developed an innovative technology inspired by preservation of DNA within prehistoric fossils.  With this technology, digital data encoded in DNA remains preserved for millennia.
About UNESCO’s Memory of the World Register
UNESCO established the Memory of the World Register in 1992 in response to a growing awareness of the perilous state of preservation of, and access to, documentary heritage in various parts of the world.  Through its National Commissions, UNESCO prepared a list of endangered library and archive holdings and a world list of national cinematic heritage.
A range of pilot projects employing contemporary technology to reproduce original documentary heritage on other media began. These included, for example, a CD-ROM of the 13th Century Radzivill Chronicle, tracing the origins of the peoples of Europe, and Memoria de Iberoamerica, a joint newspaper microfilming project involving seven Latin American countries. These projects enhanced access to this documentary heritage and contributed to its preservation.
“We are incredibly proud to be a part of this momentous event, with the first archived songs placed into the UNESCO Memory of the World Register,” said Emily Leproust, Ph.D., CEO of Twist Bioscience.
About ArtTech
The ArtTech Foundation, created by renowned scientists and dignitaries from Crans-Montana, Switzerland, wishes to stimulate reflection and support pioneering and innovative projects beyond the known boundaries of culture and science.
Benefitting from the establishment of a favorable environment for the creation of technology companies, the Foundation aims to position itself as key promoter of ideas and innovative endeavors within a landscape of “Culture and Science” that is still being shaped.
Several initiatives, including our annual global platform launched in the spring of 2017, are helping to create a community that brings together researchers, celebrities in the world of culture and the arts, as well as investors and entrepreneurs from Switzerland and across the globe.
 
About EPFL
EPFL, one of the two Swiss Federal Institutes of Technology, based in Lausanne, is Europe’s most cosmopolitan technical university with students, professors and staff from over 120 nations. A dynamic environment, open to Switzerland and the world, EPFL is centered on its three missions: teaching, research and technology transfer. EPFL works together with an extensive network of partners including other universities and institutes of technology, developing and emerging countries, secondary schools and colleges, industry and economy, political circles and the general public, to bring about real impact for society.
About Twist Bioscience
At Twist Bioscience, our expertise is accelerating science and innovation by leveraging the power of scale. We have developed a proprietary semiconductor-based synthetic DNA manufacturing process featuring a high throughput silicon platform capable of producing synthetic biology tools, including genes, oligonucleotide pools and variant libraries. By synthesizing DNA on silicon instead of on traditional 96-well plastic plates, our platform overcomes the current inefficiencies of synthetic DNA production, and enables cost-effective, rapid, high-quality and high throughput synthetic gene production, which in turn, expedites the design, build and test cycle to enable personalized medicines, pharmaceuticals, sustainable chemical production, improved agriculture production, diagnostics and biodetection. We are also developing new technologies to address large scale data storage. For more information, please visit www.twistbioscience.com. Twist Bioscience is on Twitter. Sign up to follow our Twitter feed @TwistBioscience at https://twitter.com/TwistBioscience.

If you hadn’t read the EPFL press release first, it might have taken a minute to figure out why EPFL is being mentioned in the Twist Bioscience news release. Presumably someone was rushing to make a deadline. Ah well, I’ve seen and written worse.

I haven’t been able to find any video or audio recordings of the DNA-preserved performances but there is an informational video (originally published July 7, 2016) from Microsoft and the University of Washington describing the DNA-based technology,

I also found this description of listening to the DNA-preserved music in an Oct. 6, 2017 blog posting for the Canadian Broadcasting Corporation’s (CBC) Day 6 radio programme,

To listen to them, one must first suspend the DNA holding the songs in a solution. Next, one can use a DNA sequencer to read the letters of the bases forming the molecules. Then, algorithms can determine the digital code those letters form. From that code, comes the music.

It’s complicated but Ceze says his team performed this process without error.

You can find out more about UNESCO’s Memory of the World and its register here , more about the EPFL+ECAL Lab here, and more about Twist Bioscience here.

5D data storage is forever

Combine nanostructured glass and femtosecond laser writing with five-dimensional digital data and you can wave goodbye to any anxieties about losing information. Researchers at Southampton University (UK) made the announcement in a Feb. 15, 2016 news item on ScienceDaily,

Scientists at the University of Southampton have made a major step forward in the development of digital data storage that is capable of surviving for billions of years.

Using nanostructured glass, scientists from the University’s Optoelectronics Research Centre (ORC) have developed the recording and retrieval processes of five dimensional (5D) digital data by femtosecond laser writing.

A Feb. 15, 2016 University of Southampton press release (also on EurekAlert), which originated the news item, offers more detail,

The storage allows unprecedented properties including 360 TB [Terabyte]/disc data capacity, thermal stability up to 1,000°C and virtually unlimited lifetime at room temperature (13.8 billion years at 190°C ) opening a new era of eternal data archiving. As a very stable and safe form of portable memory, the technology could be highly useful for organisations with big archives, such as national archives, museums and libraries, to preserve their information and records.

The technology was first experimentally demonstrated in 2013 when a 300 kb [kilobit] digital copy of a text file was successfully recorded in 5D.

Now, major documents from human history such as [the] Universal Declaration of Human Rights (UDHR), Newton’s Opticks, Magna Carta and Kings [sic] James Bible, have been saved as digital copies that could survive the human race. A copy of the UDHR encoded to 5D data storage was recently presented to UNESCO by the ORC at the International Year of Light (IYL) closing ceremony in Mexico.

The documents were recorded using ultrafast laser, producing extremely short and intense pulses of light. The file is written in three layers of nanostructured dots separated by five micrometres (one millionth of a metre).

The self-assembled nanostructures change the way light travels through glass, modifying polarisation of light that can then be read by combination of optical microscope and a polariser, similar to that found in Polaroid sunglasses.

Coined as the ‘Superman memory crystal’, as the glass memory has been compared to the “memory crystals” used in the Superman films, the data is recorded via self-assembled nanostructures created in fused quartz. The information encoding is realised in five dimensions: the size and orientation in addition to the three dimensional position of these nanostructures.

Professor Peter Kazansky, from the ORC, says: “It is thrilling to think that we have created the technology to preserve documents and information and store it in space for future generations. This technology can secure the last evidence of our civilisation: all we’ve learnt will not be forgotten.”

The researchers will present their research at the photonics industry’s renowned SPIE—The International Society for Optical Engineering Conference in San Francisco, USA this week. The invited paper, ‘5D Data Storage by Ultrafast Laser Writing in Glass’ will be presented on Wednesday 17 February [2016].

The team are now looking for industry partners to further develop and commercialise this ground-breaking new technology.

I have written a number of pieces about digitization, data storage, and memory such as this Jan. 30, 2014 post titled, Does digitizing material mean it’s safe? A tale of Canada’s Fisheries and Oceans scientific libraries. If you scroll down about 50% of the way, you’ll find some material that provides an overview.

Universal Declaration of Human Rights recorded into 5D optical data

Universal Declaration of Human Rights recorded into 5D optical data

 

Islamic Educational Scientific and Cultural Organization (ISESCO) for Science and Technology and an award for Dr. Mahiran Basri

Professor Dr Mahiran Basri of the Universiti Putra Malaysia (UPM) received an award from the Islamic Educational Scientific and Cultural Organization (ISESCO) for Science and Technology (I believe the similarity of ISESCO to UNESCO is intentional, which makes it smart marketing) for her work in oil palm research. This event has occasioned a Jan. 21, 2015 news item on phys.org,

The use of oils and fats has been successfully diversified, resulting in an innovation formulated through nanotechnology that is beneficial to pharmaceutical and cosmetics industries.

A Faculty of Science, Universiti Putra Malaysia (UPM) lecturer, Professor Dr Mahiran Basri, not only succeeded in producing new useful substances made of oils and fats for the industry, but also managed to produce them through environmental-friendly ways.

A Jan. 22, 2015 UPM news release (Malaysia is on the other side of the date line) by Azaman Zakaria, which originated the news item, describes her work and award in more detail,

“This organic synthesis uses enzymes and it is produced through nanotechnology. Our focus is to process new substances derived from oils and fats,” she said in an interview at her office.

In the field of cosmetics, for instance, she said there are antioxidants and anti-aging substances, through the use of nanotechnology, those substances can easily absorb through the skin.

This way, they would be more effective, she added.

“What is also important is that the materials are clean and safe,” said the winner of the Islamic Educational Scientific and Cultural Organization (ISESCO) for Science and Technology 2014 award, which was held in Rabat, Morocco, in December.

The recognition was based on her active research and excellent performance in the field of chemistry including her far-reaching oil palm research that has contributed to the pharmaceutical and cosmetics industries.

The award was presented by the ISESCO Director General, Dr Abdulaziz Othman Altwaijri as Prof Mahiran took home a certificate, a medal and a cash prize of USD$5,000.

The biennial award has been organised by the Organisation of the Islamic Conference (OIC) since 1979 to foster and strengthen collaboration in the fields of science, education and culture among the OIC members.

According to Mahiran, efforts have been formulated to commercialise the innovation although it may take time.

“At this stage, we have obtained a pre-commercial project from Malaysian Technology Development Corporation (MTDC),” she said.

Professor Mahiran said in pharmaceuticals, an innovation has successfully produced a drugs delivery method to penetrate the ‘blood brain barrier’, especially for diseases that are associated with the brain, such as Alzheimer, Parkinson, epilepsy and meningitis.

“Drugs are normally hard to reach beyond the ‘blood brain barrier’. Thus we created drugs through nanotechnology, and that way we hope they are more effective,” she said.

She added, the innovation has been tested on animals and there were visible positive effects.

Meanwhile, in the agro-chemcial field, Professor Mahiran said, the formulation was made in a nano form to kill weeds and also perform as a cleaning agent to the environment, thus improve the development of the agricultural industry.

“The ingredients in the cosmetic, pharmaceutical and agro-chemical formulations are made through nanotechnology to produce the best for their efficacy, bio-availability in the products and ensure the safety of the consumers” she affirmed.

Professor Dr Mahiran has led 20 research projects in more than 3 decades since 1982, with provisions of grants worth more than RM7 million.

Her series of scientific research have also garnered her numerous awards including the prestigious Archer Daniels Midlands Award from the American Oil Chemists’ Society and the Ram Rais Biotechnology Award at the International Invention and Innovation Exhibition (ITEX) 2004 – UPM.

For anyone curious about ISESCO you can find the website here (with your pick of three languages). There’s also this description in its Wikipedia entry,

Islamic Educational, Scientific and Cultural Organization (ISESCO) was established by the Organisation of the Islamic Cooperation (OIC) in May 1979. ISESCO is one of the largest international Islamic organizations and specializes in the fields of education, science, and culture. Its headquarters are in Rabat, Morocco.

By the way, UNESCO (United Nations Organization for Education, Science and Culture) was founded in 1945.

UNESCO course: Nanotechnology for Water and Wastewater Treatment 2015 call for applications

Despite an initially puzzling announcement from UNESCO (United Nations Educational, Scientific, and Cultural Organization), I was able to track down a description for the course on studyfinder.nl,

Nanotechnology for Water and Wastewater Treatment

UNESCO-IHE Institute for Water Education

Certificate / Diploma Short course Delft [Netherlands]

Field of study     Agriculture and environment
Course description     The course overviews the state-of-the-art and novel developments of nanotechnology in applications for drinking water production and wastewater treatment.
Study subjects     Framework: Nanoparticles and Water; Environmental Fate; Risk Analysis. Nanotechnology for Water/Wastewater Treatment: Physical, Chemical and Biological Properties of Nanoparticles. High-Performance Water and Wastewater Purification Systems: Nanofiltration, Nanosorbents and Nanocatalysts. Nanoparticles that Sense and Treat Disease: Biosensors and Desinfectants.
Course objectives     Apply innovative applications of nanotechnology in drinking water production and wastewater treatment. Familiar with the state-of-the-art, impact and cost-benefit analysis of nanotechnology processes for water and wastewater treatment. Communicate successfully on nanoscience and nanotechnology interfacing with environmental chemistry, environmental engineering and bioprocess.

Duration     2 weeks full-time
Language of instruction     English

There is a bit more information on the UNESCO website’s Short Courses Nanotechnology for Water and Wastewater Treatment webpage,

The emergence of nanobiotechnology and the incorporation of living microorganisms in biomicroelectronic devices are revolutionizing interdisciplinary opportunities for microbiologists and biotechnologists to participate in understanding microbial processes in and from the environment. Moreover, it offers revolutionary perspectives to develop and exploit these processes in completely new ways.

This short course presents an opportunity to learn and discuss about various innovative research aspects of nanoscience and nanotechnology interfacing with environmental chemistry, environmental engineering and bioprocess technology amongst professionals as well as young researchers and PhD students.

You can access the 2015 call for applications on this UNESCO webpage. For more information contact,

Piet Lens

Professor of Environmental Biotechnology

Phone +31152151816
Email

Does digitizing material mean it’s safe? A tale of Canada’s Fisheries and Oceans scientific libraries

As has been noted elsewhere the federal government of Canada has shut down a number of Fisheries and Oceans Canada libraries in a cost-saving exercise. The government is hoping to save some $440,000 in the 2014-15 fiscal year by digitizing, consolidating, and discarding the libraries and their holdings.

One would imagine that this is being done in a measured, thoughtful fashion but one would be wrong.

Andrew Nikiforuk in a December 23, 2013 article for The Tyee wrote one of the first articles about the closure of the fisheries libraries,

Scientists say the closure of some of the world’s finest fishery, ocean and environmental libraries by the Harper government has been so chaotic that irreplaceable collections of intellectual capital built by Canadian taxpayers for future generations has been lost forever.

Glyn Moody in a Jan. 7, 2014 post on Techdirt noted this,

What’s strange is that even though the rationale for this mass destruction is apparently in order to reduce costs, opportunities to sell off more valuable items have been ignored. A scientist is quoted as follows:

“Hundreds of bound journals, technical reports and texts still on the shelves, presumably meant for the garbage or shredding. I saw one famous monograph on zooplankton, which would probably fetch a pretty penny at a used science bookstore… anybody could go in and help themselves, with no record kept of who got what.”

Gloria Galloway in a Jan. 7, 2014 article for the Globe and Mail adds more details about what has been lost,

Peter Wells, an adjunct professor and senior research fellow at the International Ocean Institute at Dalhousie University in Halifax, said it is not surprising few members of the public used the libraries. But “the public benefits by the researchers and the different research labs being able to access the information,” he said.

Scientists say it is true that most modern research is done online.

But much of the material in the DFO libraries was not available digitally, Dr. Wells said, adding that some of it had great historical value. And some was data from decades ago that researchers use to determine how lakes and rivers have changed.

“I see this situation as a national tragedy, done under the pretext of cost savings, which, when examined closely, will prove to be a false motive,” Dr. Wells said. “A modern democratic society should value its information resources, not reduce, or worse, trash them.”

Dr. Ayles [Burton Ayles, a former DFO regional director and the former director of science for the Freshwater Institute in Winnipeg] said the Freshwater Institute had reports from the 1880s and some that were available nowhere else. “There was a whole core people who used that library on a regular basis,” he said.

Dr. Ayles pointed to a collection of three-ringed binders, occupying seven metres of shelf space, that contained the data collected during a study in the 1960s and 1970s of the proposed Mackenzie Valley pipeline. For a similar study in the early years of this century, he said, “scientists could go back to that information and say, ‘What was the baseline 30 years ago? What was there then and what is there now?’ ”

When asked how much of the discarded information has been digitized, the government did not provide an answer, but said the process continues.

Today, Margo McDiarmid’s Jan. 30, 2014 article for the Canadian Broadcasting Corporation (CBC) news online further explores digitization of the holdings,

Fisheries and Oceans is closing seven of its 11 libraries by 2015. It’s hoping to save more than $443,000 in 2014-15 by consolidating its collections into four remaining libraries.

Shea [Fisheries and Oceans Minister Gail Shea] told CBC News in a statement Jan. 6 that all copyrighted material has been digitized and the rest of the collection will be soon. The government says that putting material online is a more efficient way of handling it.

But documents from her office show there’s no way of really knowing that is happening.

“The Department of Fisheries and Oceans’ systems do not enable us to determine the number of items digitized by location and collection,” says the response by the minister’s office to MacAulay’s inquiry. [emphasis mine]

The documents also that show the department had to figure out what to do with 242,207 books and research documents from the libraries being closed. It kept 158,140 items and offered the remaining 84,067 to libraries outside the federal government.

Shea’s office told CBC that the books were also “offered to the general public and recycled in a ‘green fashion’ if there were no takers.”

The fate of thousands of books appears to be “unknown,” although the documents’ numbers show 160 items from the Maurice Lamontagne Library in Mont Jolie, Que., were “discarded.”  A Radio-Canada story in June about the library showed piles of volumes in dumpsters.

And the numbers prove a lot more material was tossed out. The bill to discard material from four of the seven libraries totals $22,816.76

Leaving aside the issue of whether or not rare books were given away or put in dumpsters, It’s not confidence-building when the government minister can’t offer information about which books have been digitized and where they might located online.

Interestingly,  Fisheries and Oceans is not the only department/ministry shutting down libraries (from McDiarmid’s CBC article),

Fisheries and Oceans is just one of the 14 federal departments, including Health Canada and Environment Canada, that have been shutting physical libraries and digitizing or consolidating the material into closed central book vaults.

I was unaware of the problems with Health Canada’s libraries but Laura Payton’s and Max Paris’ Jan. 20, 2014 article for CBC news online certainly raised my eyebrows,

Health Canada scientists are so concerned about losing access to their research library that they’re finding workarounds, with one squirrelling away journals and books in his basement for colleagues to consult, says a report obtained by CBC News.

The draft report from a consultant hired by the department warned it not to close its library, but the report was rejected as flawed and the advice went unheeded.

Before the main library closed, the inter-library loan functions were outsourced to a private company called Infotrieve, the consultant wrote in a report ordered by the department. The library’s physical collection was moved to the National Science Library on the Ottawa campus of the National Research Council last year.

“Staff requests have dropped 90 per cent over in-house service levels prior to the outsource. This statistic has been heralded as a cost savings by senior HC [Health Canada] management,” the report said.

“However, HC scientists have repeatedly said during the interview process that the decrease is because the information has become inaccessible — either it cannot arrive in due time, or it is unaffordable due to the fee structure in place.”

….

The report noted the workarounds scientists used to overcome their access problems.

Mueller [Dr. Rudi Mueller, who left the department in 2012] used his contacts in industry for scientific literature. He also went to university libraries where he had a faculty connection.

The report said Health Canada scientists sometimes use the library cards of university students in co-operative programs at the department.

Unsanctioned libraries have been created by science staff.

“One group moved its 250 feet of published materials to an employee’s basement. When you need a book, you email ‘Fred,’ and ‘Fred’ brings the book in with him the next day,” the consultant wrote in his report.

“I think it’s part of being a scientist. You find a way around the problems,” Mueller told CBC News.

Unsanctioned, underground libraries aside, the assumption that digitizing documents and books ensures access is false.  Glyn Moody in a Nov. 12, 2013 article for Techdirt gives a chastening example of how vulnerable our digital memories are,

The Internet Archive is the world’s online memory, holding the only copies of many historic (and not-so-historic) Web pages that have long disappeared from the Web itself.

Bad news:

This morning at about 3:30 a.m. a fire started at the Internet Archive’s San Francisco scanning center.

Good news:

no one was hurt and no data was lost. Our main building was not affected except for damage to one electrical run. This power issue caused us to lose power to some servers for a while.

Bad news:

Some physical materials were in the scanning center because they were being digitized, but most were in a separate locked room or in our physical archive and were not lost. Of those materials we did unfortunately lose, about half had already been digitized. We are working with our library partners now to assess.

That loss is unfortunate, but imagine if the fire had been in the main server room holding the Internet Archive’s 2 petabytes of data. Wisely, the project has placed copies at other locations …

That’s good to know, but it seems rather foolish for the world to depend on the Internet Archive always being able to keep all its copies up to date, especially as the quantity of data that it stores continues to rise. This digital library is so important in historical and cultural terms: surely it’s time to start mirroring the Internet Archive around the world in many locations, with direct and sustained support from multiple governments.

In addition to the issue of vulnerability, there’s also the issue of authenticity, from my June 5, 2013 posting about science, archives and memories,

… Luciana Duranti [Professor and Chair, MAS {Master of Archival Studies}Program at the University of British Columbia and Director, InterPARES] and her talk titled, Trust and Authenticity in the Digital Environment: An Increasingly Cloudy Issue, which took place in Vancouver (Canada) last year (mentioned in my May 18, 2012 posting).

Duranti raised many, many issues that most of us don’t consider when we blithely store information in the ‘cloud’ or create blogs that turn out to be repositories of a sort (and then don’t know what to do with them; ça c’est moi). She also previewed a Sept. 26 – 28, 2013 conference to be hosted in Vancouver by UNESCO (United Nations Educational, Scientific, and Cultural Organization), “Memory of the World in the Digital Age: Digitization and Preservation.” (UNESCO’s Memory of the World programme hosts a number of these themed conferences and workshops.)

The Sept. 2013 UNESCO ‘memory of the world’ conference in Vancouver seems rather timely in retrospect. The Council of Canadian Academies (CCA) announced that Dr. Doug Owram would be chairing their Memory Institutions and the Digital Revolution assessment (mentioned in my Feb. 22, 2013 posting; scroll down 80% of the way) and, after checking recently, I noticed that the Expert Panel has been assembled and it includes Duranti. Here’s the assessment description from the CCA’s ‘memory institutions’ webpage,

Library and Archives Canada has asked the Council of Canadian Academies to assess how memory institutions, which include archives, libraries, museums, and other cultural institutions, can embrace the opportunities and challenges of the changing ways in which Canadians are communicating and working in the digital age.

Background

Over the past three decades, Canadians have seen a dramatic transformation in both personal and professional forms of communication due to new technologies. Where the early personal computer and word-processing systems were largely used and understood as extensions of the typewriter, advances in technology since the 1980s have enabled people to adopt different approaches to communicating and documenting their lives, culture, and work. Increased computing power, inexpensive electronic storage, and the widespread adoption of broadband computer networks have thrust methods of communication far ahead of our ability to grasp the implications of these advances.

These trends present both significant challenges and opportunities for traditional memory institutions as they work towards ensuring that valuable information is safeguarded and maintained for the long term and for the benefit of future generations. It requires that they keep track of new types of records that may be of future cultural significance, and of any changes in how decisions are being documented. As part of this assessment, the Council’s expert panel will examine the evidence as it relates to emerging trends, international best practices in archiving, and strengths and weaknesses in how Canada’s memory institutions are responding to these opportunities and challenges. Once complete, this assessment will provide an in-depth and balanced report that will support Library and Archives Canada and other memory institutions as they consider how best to manage and preserve the mass quantity of communications records generated as a result of new and emerging technologies.

The Council’s assessment is running concurrently with the Royal Society of Canada’s expert panel assessment on Libraries and Archives in 21st century Canada. Though similar in subject matter, these assessments have a different focus and follow a different process. The Council’s assessment is concerned foremost with opportunities and challenges for memory institutions as they adapt to a rapidly changing digital environment. In navigating these issues, the Council will draw on a highly qualified and multidisciplinary expert panel to undertake a rigorous assessment of the evidence and of significant international trends in policy and technology now underway. The final report will provide Canadians, policy-makers, and decision-makers with the evidence and information needed to consider policy directions. In contrast, the RSC panel focuses on the status and future of libraries and archives, and will draw upon a public engagement process.

So, the government is shutting down libraries in order to save money and they’re praying (?) that the materials have been digitized and adequate care has been taken to ensure that they will not be lost in some disaster or other. Meanwhile the Council of Canadian Academies is conducting an assessment of memory institutions in the digital age. The approach seems to backwards.

On a more amusing note, Rick Mercer parodies at lease one way scientists are finding to circumvent the cost-cutting exercise in an excerpt (approximately 1 min.)  from his Jan. 29, 2014 Rick Mercer Report telecast (thanks Roz),

Mercer’s comment about sports and Canada’s Prime Minister, Stephen Harper’s preferences is a reference to Harper’s expressed desire to write a book about hockey and possibly a veiled reference to Harper’s successful move to prorogue parliament during the 2010 Winter Olympic games in Vancouver in what many observers suggested was a strategy allowing Harper to attend the games at his leisure.

Whether or not you agree with the decision to shutdown some libraries, the implementation seems to have been a remarkably sloppy affair.

Nano, agriculture, and water

Surprisingly, the Council of Canadian Academies’ (CCA) Water and Agriculture in Canada: Towards Sustainable Management of Water Resources assessment (published Feb. 2013) had very little to with regard to how emerging technologies such as synthetic biology and nanotechnology are having and will have an impact on water and agriculture. Here’s the bit on synthetic biology,

Synthetic Biology

Synthetic biology is defined as the design and construction of new biological parts, devices, and systems and the re-design of existing natural biological systems for useful purposes (RAE, 2009). It is an emerging technology that is expected to have wide-ranging implications for agriculture in the future (RAE, 2009). The agricultural technology sector anticipates that synthetic biology will lead to greater productivity, profitability, and sustainability by increasing, for example: crop water productivity; nitrogen use efficiency; yields; pest, disease, and drought resistance; and the quality, quantity, and processing characteristics of agricultural products Dunbar, 2011). However, as with current methods of transgenic manipulation, concerns relating to the safety and health impacts of synthetic biology will need to be responsibly and carefully addressed (RAE, 2009). (print version pp. 134-5)

Surely they could have found a more recent reference than 2009. I don’t disagree with the overall assessment of synthetic biology but I think they were a bit miserly to confine themselves to a single paragraph.

As for nanotechnologies,

5.11 Nanotechnologies

Nanotechnology applications are being developed for different agricultural uses including: the detection of pathogenic and parasitic organisms; sensing of environmental conditions and properties (such as humidity, soil moisture, and soil and groundwater contaminants); the controlled release of fertilizers and pesticides; improved water retention in soils and uptake by plants; drug delivery and improved nutrient utilization in livestock; degradation of organic contaminants; and water treatment (Kabiri et al., 2011; Knauer & Bucheli, 2009; Manimegalai et al., 2011; Thornton, 2010). Wireless nanosensors, for example, can be used in combination
with remote sensing and precision irrigation systems to greatly enhance WUE.

Nanoscale technologies for fertilizer and pesticide application can greatly reduce runoff and water contamination. Most nanotechnologies are still in their infancy, and associated risks and benefits must be carefully evaluated. Nonetheless, they represent a promising approach towards greater improvements in WUE (OECD, 2010). However, the potential for negative impacts of nanotechnologies on the environment and health needs to be researched (Knauer & Bucheli, 2009) and their application supported by risk assessment. (pp. 144-5; print version)

Not much attention paid to nanotechnology either, although they did manage to find some more recent references. I wonder why they didn’t organize the information about synthetic biology and nanotechnology  in a section on emerging technologies and discuss some of the implications and research  at more length. Certainly there’s a lot of interest and concern regarding nanotechnology impacts on agriculture and water.

I have two more items for this posting (to prove my point at least in part), one is about nanomaterials and fertilizer and the other one is about two UN organizations and their nanotechnology and water purification initiative.

The Institute for Agriculture and Trade Policy (IATP) has released a report about nanomaterials in soil fertilizers according to an April 26, 2013 news item on Nanowerk (Note: A link has been removed),

Nanomaterials added to soil via fertilizers and treated sewage waste used to fertilize fields could threaten soil health necessary to keep land productive, says a new report released today by the Institute for Agriculture and Trade Policy (IATP). Peer-reviewed scientific research also indicates possible negative impacts of nano-fertilizers on public health and the food supply.

IATP’s report, Nanomaterials in Soil: Our Future Food Chain? (pdf), draws attention to the delicate soil food chain, including microbes and microfauna, that enable plant growth and produce new soil. Laboratory experiments have indicated that sub-molecular nanoparticles could damage beneficial soil microbes and the digestive systems of earthworms, essential engineers in maintaining soil health.

The IATP April 24, 2013 news release, which originated the news item,

Nanomaterials are advertised as a component of market-available fertilizers—designed to increase the effectiveness of fertilizers by making them the same size as plant and root pores—but because nanotechnology is an unregulated global industry, there is no pre-market safety assessment. Several researchers assume that nanomaterials are increasingly present in biosolids (also known as sewage sludge) used as fertilizer on about 60 percent of U.S. agricultural land. [emphasis mine]

“In light of published research, the Obama administration should institute an immediate moratorium on fertilizing with biosolids from sewage treatment plants near nanomaterial fabrication facilities. A moratorium would give researchers time to determine whether nanomaterials in soil can be made safe and to research alternatives to building soil heath, rather than depending on fertilization with biosolids.” says IATP’s Dr. Steve Suppan.

Over time, the report explains, nanomaterials in these agricultural inputs can accumulate and harm soil health. More research is urgently needed to adequately understand possible long-term impacts of nanotechnology.

“As agri-nanotechnology rapidly enters the market, can soil health and everything that depends on it can be sustained without regulation?” asks Suppan. “That’s the question regulators, researchers and anyone involved in our food system should be asking themselves.”

The report also details risks specific to farmers and farmworkers applying dried biosolids that incorporate nanomaterials, including inflammation of the lungs, fibrosis and other toxicological impacts.

With no regulatory system in place—in the U.S. or elsewhere—for producing, and selling nano-fertilizers, IATP’s report concludes by asking for governments to require robust technology assessments involving biological engineers, soil scientists, public health professionals, farmers and concerned citizens before allowing indiscriminate application by industry.

It seems to me IATP could have cited some facts, rather than assumptions,  in the news release, and perhaps even referenced a study or two relative to their claim of risks “specific to farmers and farmworkers applying dried biosolids that incorporate nanomaterials, including inflammation of the lungs, fibrosis and other toxicological impacts.” I have looked at the report briefly and there is some interesting and valuable research in there although I haven’t looked closely enough to see if any of it supports the claims in their news release.  I suspect not since they usually trumpet those findings and numbers loudly.

As for the two UN agencies and their water purification and nanotechnology initiative, this May 31, 2013 UNESCO (United Nations Educational, Scientific, and Culture Organization) news release explains,

Providing access to clean water is one of the most pressing challenges in developing countries. Lack of access to safe drinking water impacts the lives and well-being of millions of people, whereas non-existent, or inadequate, wastewater treatment is threatening the quality of water resources, as well as ecosystems that we depend on.  Conventional water purification and wastewater treatment technologies often require large infrastructure, high initial capital investment, and considerable operating costs associated with the use of energy and chemicals.

What is the potential that nanotechnology holds to address these water problems?   What nanotechnologies offer the most immediate promise in water purification and wastewater treatment? Which areas of water use are in the largest need of a technological upgrade and innovation?

These were the main questions raised by a joint UNESCO-UNIDO  session on “Nanotechnology Applications in Water Purification and Wastewater Treatment”, which was the kick-off event of cooperation between UNESCO and the United Nations Industrial Development Organization (UNIDO), which the two organizations have recently embarked on in the area of nanotechnology for clean water in developing countries.

Under this cooperation, the two organizations will work together on a number of joint activities to explore the potential of nanotechnology in water purification and wastewater treatment, as an emerging technology that may provide sustainable and innovative solutions to reach the Millennium Development Goals on safe drinking water and basic sanitation, as well as to contribute towards the post-2015 development agenda and future Sustainable Development Goals.  Complementing ongoing activities of UNESCO’s International Hydrological Programme aimed at promoting water sciences, the cooperation with the Investment and Technology Unit of UNIDO brings a perspective on how advances in emerging technological developments, such as those in nanotechnology, can be utilized to enhance existing solutions to water problems and make a paradigm shift in water treatment systems, as industrial applications of nanotechnology are expanding rapidly.

Experts participating in the session presented research findings on promising nanotechnology applications in water such as improved membrane technologies, removal of bacteria and other pollutants, including pharmaceuticals and trace contaminants, water quality monitoring, remediation of polluted water systems, greater wastewater reuse, desalinization, as well as less-water intensive agriculture.  The session did not focus on the optimistic technological aspect alone.   Discussions touched upon also on how to draw the line between opportunities and challenges that limit nanotechnology applications in water.

The session emphasized the need for a balanced approach to nanotechnology applications in water and underlined the risks associated with toxicology and wider impacts on human health and the environment as of importance for further deliberations given that water is a basic human need and integral to health and well-being.  Another issue of consideration was ethical issues of nanotechnology applications in water that arise from uncertainties related to environmental and health risks. Participants of the session also shared experiences on community engagement in making nanotechnologies relevant to local needs by presenting an example of using nanotechnology to provide clean water in a school in a developing country village.

Given these recent doings with IATP and UNIDO/UNESCO, I was truly surprised at how little attention the CCA paid to nanotechnologies and, by extension, the other emerging technologies.