Tag Archives: Université Libre de Bruxelles

Nanotechnology announcements: a new book and a new report

Two quick announcements. The first concerns a forthcoming book to be published in March 2015. Titled, Nanotechnology Law & Guidelines: A Practical Guide for the Nanotechnology Industries in Europe, the book is featured in an Aug. 15, 2014 news item on Nanowerk,

The book is a concise guideline to different issues of nanotechnology in the European Legislation.- It offers an extensive review of all European Patent Office (EPO) cases on nanotechnological inventions. The challenge for new nanotechnology patents is to determine how patent criteria could be met in a patent application. This book shows how to identify the approach and the ways to cope with this challenge.

More about the book and purchasing options can be found on the publisher’s (Springer) Nanotechnology Law & Guidelines webpage,

[Table of Contents:]

Introduction.- Part I Nanotechnology from Research to Manufacture: The legal framework of the nanotechnology research and development.- Structuring the research and development of nanotechnologies.- Manufacturing nanotechnologies.-

Part II Protecting Nanotechnological Inventions: A Matter of Strategy : Trade Secrets vs. Patents and Utility Models.- Trade Secrets and Nanotechnologies.- International, European or National Patent for Nanotechnological Inventions ?- Nanotechnology Patents and Novelty.- Nanotechnology Patents and the Inventive Step.- Nanotechnology Patents and the Industrial Application.- Drafting Nanotechnology Patents Applications.- Utility Models as Alternative Means for Protecting Nanotechnological Inventions.- Copyright, Databases and Designs in the Nano Industry.- Managing and Transferring Nanotechnology Intellectual Property.-

Part III Nanotechnologies Investment and Finance.- Corporate Law and the nanotechnology industry.- Tax Law for the nanotechnology industry.- Investing and financing a nanotechnological project.-

Part IV Marketing Nanotechnologies.- Authorization and Registration Systems.- Product Safety and Liability.- Advertising “Nano”.- “Nano” Trademarks.- Importing and Exporting Nanotechnologies. Annexes: Analytic Table of EPO Cases on Nanotechnologies.- Analytic Table of National Cases on Nanotechnologies.- Analytic Table of OHIM Cases on Nano Trademarks.

I was able to find some information about the author, Anthony Bochon on his University of Stanford (where he is a Fellow) biography page,

Anthony Bochon is an associate in a Brussels-based law firm, an associate lecturer in EU Law & Trade Law/IP Law at the Université libre de Bruxelles and a lecturer in EU Law at the Brussels Business Institute. He is an associate researcher at the unit of Economic Law of the Faculty of Law of the Université libre de Bruxelles. Anthony graduated magna cum laude from the Université libre de Bruxelles in 2010 and received a year later an LL.M. from the University of Cambridge where he studied EU Law, WTO Law and IP Law. He has published on topics such as biotechnological patents, EU trade law and antitrust law since 2008. Anthony is also the author of the first European website devoted to the emerging legal area of nanotechnology law, a field about which he writes frequently and speaks regularly at international conferences. His legal practice is mainly focussed on EU Law, competition law and regulatory issues and he has a strong and relevant experience in IP/IT Law. He devotes his current research to EU and U.S. trade secrets law. Anthony has been a TTLF Fellow since June 2013.

On a completely other note and in the more recent future, there’s a report about the US National Nanotechnology Initiative to be released Aug. 28, 2014 as per David Bruggeman’s Aug. 14. 2014 posting on his Pasco Phronesis blog, (Note: A link has been removed)

On August 28 PCAST [President’s Council of Advisors on Science and Technology] will hold a public conference call in connection with the release of two new reports.  One will be a review of the National Nanotechnology Initiative (periodically required by law) … .

The call runs from 11:45 a.m. to 12:30 p.m. Eastern.  Registration is required, and closes at noon Eastern on the 26th..

That’s it for nanotechnology announcements today (Aug. 15, 2014).

Dimpling can be more than cute, morphable surfaces (smorphs) from MIT (Massachusetts Institute of Technology)

A morphable surface developed by an MIT team can change surface texture — from smooth to dimply, and back again — through changes in pressure. When the inside pressure is reduced, the flexible material shrinks, and the stiffer outer layer wrinkles. Increasing pressure returns the surface to a smooth state.

A June 24, 2014 news item on Nanowerk features a story about the origins of the dimpled golf ball, aerodynamics, and some very pink material (Note: A link has been removed),

There is a story about how the modern golf ball, with its dimpled surface, came to be: In the mid-1800s, it is said, new golf balls were smooth, but became dimpled over time as impacts left permanent dents. Smooth new balls were typically used for tournament play, but in one match, a player ran short, had to use an old, dented one, and realized that he could drive this dimpled ball much further than a smooth one.

Whether that story is true or not, testing over the years has proved that a golf ball’s irregular surface really does dramatically increase the distance it travels, because it can cut the drag caused by air resistance in half. Now researchers at MIT are aiming to harness that same effect to reduce drag on a variety of surfaces — including domes that sometimes crumple in high winds, or perhaps even vehicles.

Detailed studies of aerodynamics have shown that while a ball with a dimpled surface has half the drag of a smooth one at lower speeds, at higher speeds that advantage reverses. So the ideal would be a surface whose smoothness can be altered, literally, on the fly — and that’s what the MIT team has developed.

The new work is described in a paper in the journal Advanced Materials (“Smart Morphable Surfaces for Aerodynamic Drag Control”) by MIT’s Pedro Reis and former MIT postdocs Denis Terwagne (now at the Université Libre de Bruxelles in Belgium) and Miha Brojan (now at the University of Ljubljana in Slovenia).

esearchers made this sphere to test their concept of morphable surfaces. Made of soft polymer with a hollow center, and a thin coating of a stiffer polymer, the sphere becomes dimpled when the air is pumped out of the hollow center, causing it to shrink. (Photo courtesy of the MIT researchers)

Researchers made this sphere to test their concept of morphable surfaces. Made of soft polymer with a hollow center, and a thin coating of a stiffer polymer, the sphere becomes dimpled when the air is pumped out of the hollow center, causing it to shrink. (Photo courtesy of the MIT researchers)

A June 24, 2014 MIT (Massachusetts Institute of Technology) news release (also on EurekAlert) by David Chandler, which originated the news item, provides more detail about the work,

The ability to change the surface in real time comes from the use of a multilayer material with a stiff skin and a soft interior — the same basic configuration that causes smooth plums to dry into wrinkly prunes. To mimic that process, Reis and his team made a hollow ball of soft material with a stiff skin — with both layers made of rubberlike materials — then extracted air from the hollow interior to make the ball shrink and its surface wrinkle.

“Numerous studies of wrinkling have been done on flat surfaces,” says Reis, an assistant professor of mechanical engineering and civil and environmental engineering. “Less is known about what happens when you curve the surface. How does that affect the whole wrinkling process?”

The answer, it turns out, is that at a certain degree of shrinkage, the surface can produce a dimpled pattern that’s very similar to that of a golf ball — and with the same aerodynamic properties.

The aerodynamic properties of dimpled balls can be a bit counterintuitive: One might expect that a ball with a smooth surface would sail through the air more easily than one with an irregular surface. The reason for the opposite result has to do with the nature of a small layer of the air next to the surface of the ball. The irregular surface, it turns out, holds the airflow close to the ball’s surface longer, delaying the separation of this boundary layer. This reduces the size of the wake — the zone of turbulence behind the ball — which is the primary cause of drag for blunt objects.

When the researchers saw the wrinkled outcomes of their initial tests with their multilayer spheres, “We realized that these samples look just like golf balls,” Reis says. “We systematically tested them in a wind tunnel, and we saw a reduction in drag very similar to that of golf balls.”

Because the surface texture can be controlled by adjusting the balls’ interior pressure, the degree of drag reduction can be controlled at will. “We can generate that surface topography, or erase it,” Reis says. “That reversibility is why this is pretty interesting; you can switch the drag-reducing effect on and off, and tune it.”

As a result of that variability, the team refers to these as “smart morphable surfaces” — or “smorphs,” for short. The pun is intentional, Reis says: The paper’s lead author — Terwagne, a Belgian comics fan — pointed out that one characteristic of Smurfs cartoon characters is that no matter how old they get, they never develop wrinkles.

Terwagne says that making the morphable surfaces for lab testing required a great deal of trial-and-error — work that ultimately yielded a simple and efficient fabrication process. “This beautiful simplicity to achieve a complex functionality is often used by nature,” he says, “and really inspired me to investigate further.”

Many researchers have studied various kinds of wrinkled surfaces, with possible applications in areas such as adhesion, or even unusual optical properties. “But we are the first to use wrinkling for aerodynamic properties,” Reis says.

The drag reduction of a textured surface has already expanded beyond golf balls: The soccer ball being used at this year’s World Cup, for example, uses a similar effect; so do some track suits worn by competitive runners. For many purposes, such as in golf and soccer, constant dimpling is adequate, Reis says.

But in other uses, the ability to alter a surface could prove useful: For example, many radar antennas are housed in spherical domes, which can collapse catastrophically in very high winds. A dome that could alter its surface to reduce drag when strong winds are expected might avert such failures, Reis suggests. Another application could be the exterior of automobiles, where the ability to adjust the texture of panels to minimize drag at different speeds could increase fuel efficiency, he says.

Delightful is not the first adjective that jumps to my mind when describing this work but I’m not an engineer (from the news release),

John Rogers, a professor of materials research and engineering at the University of Illinois at Urbana-Champaign who was not involved in this work, says, “It represents a delightful example of how controlled processes of mechanical buckling can be used to create three-dimensional structures with interesting aerodynamic properties. The type of dynamic tuning of sophisticated surface morphologies made possible by this approach would be difficult or impossible to achieve in any other way.”

Here’s a link to and a citation for the paper,

Smart Morphable Surfaces for Aerodynamic Drag Control by Denis Terwagne, Miha Brojan, and Pedro M. Reis. Advanced Materials DOI: 10.1002/adma.201401403 Article first published online: 23 JUN 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Peter Higgs and François Englert to receive 2013 Nobel Prize in Physics and TRIUMF name changes?

After all the foofaraw about finding/confirming the existence of the Higgs Boson or ‘god’ particle (featured in my July 4, 2012 posting amongst many others), the Royal Swedish Academy of Sciences has decided to award the 2013 Nobel prize for Physics to two of the individuals responsible for much of the current thinking about subatomic particles and mass (from the Oct. 8, 2013 news item on ScienceDaily),

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2013 to François Englert of Université Libre de Bruxelles, Brussels, Belgium, and Peter W. Higgs of the University of Edinburgh, UK, “for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s Large Hadron Collider.”

François Englert and Peter W. Higgs are jointly awarded the Nobel Prize in Physics 2013 for the theory of how particles acquire mass. In 1964, they proposed the theory independently of each other (Englert together with his now deceased colleague Robert Brout). In 2012, their ideas were confirmed by the discovery of a so called Higgs particle at the CERN laboratory outside Geneva in Switzerland.

TRIUMF, sometimes known as Canada’s national laboratory for particle and nuclear physics, has issued an Oct. 8, 2013 news release,

HIGGS, ENGLERT SHARE 2013 NOBEL PRIZE IN PHYSICS

Canadians Key Part of Historical Nobel Prize to “Godfathers” of the “God Particle”

(Vancouver, BC) — The Royal Swedish Academy of Sciences today awarded the Nobel Prize in physics to Professor Peter W. Higgs (Univ. of Edinburgh) and Professor François Englert (Univ. Libre de Bruxelles) to recognize their work developing the theory of what is now known as the Higgs field, which gives elementary particles mass.  Canadians have played critical roles in all stages of the breakthrough discovery Higgs boson particle that validates the original theoretical framework.  Throngs across Canada are celebrating.

More than 150 Canadian scientists and students at 10 different institutions are presently involved in the global ATLAS experiment at CERN.  Canada’s national laboratory for particle and nuclear physics, TRIUMF, has been a focal point for much of the Canadian involvement that has ranged from assisting with the construction of the LHC accelerator to building key elements of the ATLAS detector and hosting one of the ten global Tier-1 Data Centres that stores and processes the physics for the team of thousands.

“The observation of a Higgs Boson at about 125 GeV, or 130 times the mass of the proton, by both the ATLAS and CMS groups is a tremendous achievement,” said Rob McPherson, spokesperson of the ATLAS Canada collaboration, a professor of physics at the University of Victoria and Institute of Particle Physics scientist. “Its existence was predicted in 1964 when theorists reconciled how massive particles came into being.  It took almost half a century to confirm the detailed predictions of the theories in a succession of experiments, and finally to discover the Higgs Boson itself using our 2012 data.”

The Brout-Englert-Higgs (BEH) mechanism was first proposed in 1964 in two papers published independently, the first by Belgian physicists Robert Brout and François Englert, and the second by British physicist Peter Higgs. It explains how the force responsible for beta decay is much weaker than electromagnetism, but is better known as the mechanism that endows fundamental particles with mass. A third paper, published by Americans Gerald Guralnik and Carl Hagen with their British colleague Tom Kibble further contributed to the development of the new idea, which now forms an essential part of the Standard Model of particle physics. As was pointed out by Higgs, a key prediction of the idea is the existence of a massive boson of a new type, which was discovered by the ATLAS and CMS experiments at CERN in 2012.

The next step will be to determine the precise nature of the Higgs particle and its significance for our understanding of the universe. Are its properties as expected for the Higgs boson predicted by the Standard Model of particle physics? Or is it something more exotic? The Standard Model describes the fundamental particles from which we, and every visible thing
in the universe, are made, and the forces acting between them. All the matter that we can see, however, appears to be no more than about 4% of the total. A more exotic version of the Higgs particle could be a bridge to understanding the 96% of the universe that remains obscure.

TRIUMF salutes Peter Higgs and François Englert for their groundbreaking work recognized by today’s Nobel Prize and congratulates the international team of tens of thousands of scientists, engineers, students, and many more from around the world who helped make the discovery.

For spokespeople at the major Canadian universities involved in the Higgs discovery, please see the list below:

CANADIAN CONTACTS

U of Alberta: Doug Gingrich, gingrich@ualberta.ca, 780-492-9501
UBC:  Colin Gay, cgay@physics.ubc.ca, 604-822-2753
Carleton U: Gerald Oakham (& TRIUMF), oakham@physics.carleton.ca, 613-520-7539
McGill U: Brigitte Vachon (also able to interview in French), vachon@physics.mcgill.ca, 514-398-6478
U of Montreal: Claude Leroy (also able to interview in French),leroy@lps.uontreal.ca, 514-343-6722
Simon Fraser U: Mike Vetterli (& TRIUMF, also able to interview in French), vetm@triumf.ca, 778-782-5488
TRIUMF: Isabel Trigger (also able to interview in French), itrigger@triumf.ca, 604-222-7651
U of Toronto: Robert Orr, orr@physics.utoronto.ca, 416-978-6029
U of Victoria: Rob McPherson, rmcphers@triumf.ca, 604-222-7654
York U: Wendy Taylor, taylorw@yorku.ca, 416-736-2100 ext 77758

While I know Canadians have been part of the multi-year, multi-country effort to determine the existence or non-existence of the Higgs Boson and much more in the field of particle physics, I would prefer we were not described as “… Key Part of Historical Nobel Prize … .” The question that springs to mind is: how were Canadian efforts key to this work? The answer is not revealed in the news release, which suggests that the claim may be a little overstated. On the other hand, I do like the bit about ‘saluting Higgs and Englert for their groundbreaking work’.

As for TRIUMF and what appears to be a series of name changes, I’m left somewhat puzzled, This Oct. 8, 2013 news release bears the name (or perhaps it’s a motto or tagline of some sort?): TRIUMF — Accelerating Science for Canada, meanwhile the website still sports this: TRIUMF Canada’s national laboratory for particle and nuclear physics while a July 17, 2013 TRIUMF news release gloried in this name: TRIUMF Accelerators, Inc., (noted in my July 18, 2013 posting). Perhaps TRIUMF is trying to follow in CERN’s footsteps. CERN was once known as the ‘European particle physics laboratory’ but is now known as the European Organization for Nuclear Research and seems to also have the tagline: ‘Accelerating science’.

Prosthetics and the human brain

On the heels of research which suggests that humans tend to view their prostheses, including wheel chairs, as part of their bodies, researchers in Europe  have announced the development of a working exoskeleton powered by the wearer’s thoughts.

First, there’s the ‘wheelchair’ research, from the Mar. 6, 2013 news item on ScienceDaily,

People with spinal cord injuries show strong association of wheelchairs as part of their body, not extension of immobile limbs.

The human brain can learn to treat relevant prosthetics as a substitute for a non-working body part, according to research published March 6 in the open access journal PLOS ONE by Mariella Pazzaglia and colleagues from Sapienza University and IRCCS Fondazione Santa Lucia of Rome in Italy, supported by the International Foundation for Research in Paraplegie.

The researchers found that wheelchair-bound study participants with spinal cord injuries perceived their body’s edges as being plastic and flexible to include the wheelchair, independent of time since their injury or experience with using a wheelchair. Patients with lower spinal cord injuries who retained upper body movement showed a stronger association of the wheelchair with their body than those who had spinal cord impairments in the entire body.

According to the authors, this suggests that rather than being thought of only as an extension of the immobile limbs, the wheelchairs had become tangible, functional substitutes for the affected body part. …

As I mentioned in a Jan. 30, 2013 posting,

There have been some recent legal challenges as to what constitutes one’s body (from The Economist article, You, robot? [you can find the article here: http://www.economist.com/node/21560986]),

If you are dependent on a robotic wheelchair for mobility, for example, does the wheelchair count as part of your body? Linda MacDonald Glenn, an American lawyer and bioethicist, thinks it does. Ms Glenn (who is not involved in the RoboLaw project) persuaded an initially sceptical insurance firm that a “mobility assistance device” damaged by airline staff was more than her client’s personal property, it was an extension of his physical body. The airline settled out of court.

According to the Mar. 6, 2013 news release on EurekAlert from the Public Library of Science (PLoS), the open access article by Pazzaglia and her colleagues can be found here (Note: I have added a link),

Pazzaglia M, Galli G, Scivoletto G, Molinari M (2013) A Functionally Relevant Tool for the Body following Spinal Cord Injury. PLOS ONE 8(3): e58312.doi:10.1371/journal.pone.0058312

At almost the same time as Pazzaglia’s work,  a “Mind-controlled Exoskeleton” is announced in a Mar. 7, 2013 news item on ScienceDaily,

Every year thousands of people in Europe are paralysed by a spinal cord injury. Many are young adults, facing the rest of their lives confined to a wheelchair. Although no medical cure currently exists, in the future they could be able to walk again thanks to a mind-controlled robotic exoskeleton being developed by EU-funded researchers.

The system, based on innovative ‘Brain-neural-computer interface’ (BNCI) technology — combined with a light-weight exoskeleton attached to users’ legs and a virtual reality environment for training — could also find applications in there habilitation of stroke victims and in assisting astronauts rebuild muscle mass after prolonged periods in space.

The Mar. 7, 2013 news release on CORDIS, which originated the news item, offers a description of the “Mindwalker” project,

‘Mindwalker was proposed as a very ambitious project intended to investigate promising approaches to exploit brain signals for the purpose of controlling advanced orthosis, and to design and implement a prototype system demonstrating the potential of related technologies,’ explains Michel Ilzkovitz, the project coordinator at Space Applications Services in Belgium.

The team’s approach relies on an advanced BNCI system that converts electroencephalography (EEG) signals from the brain, or electromyography (EMG) signals from shoulder muscles, into electronic commands to control the exoskeleton.

The Laboratory of Neurophysiology and Movement Biomechanics at the Université Libre de Bruxelles (ULB) focused on the exploitation of EEG and EMG signals treated by an artificial neural network, while the Foundation Santa Lucia in Italy developed techniques based on EMG signals modelled by the coupling of neural and biomechanical oscillators.

One approach for controlling the exoskeleton uses so-called ‘steady-state visually evoked potential’, a method that reads flickering visual stimuli produced at different frequencies to induce correlated EEG signals. Detection of these EEG signals is used to trigger commands such as ‘stand’, ‘walk’, ‘faster’ or ‘slower’.

A second approach is based on processing EMG signals generated by the user’s shoulders and exploits the natural arm-leg coordination in human walking: arm-swing patterns can be perceived in this way and converted into control signals commanding the exoskeleton’s legs.

A third approach, ‘ideation’, is also based on EEG-signal processing. It uses the identification and exploitation of EEG Theta cortical signals produced by the natural mental process associated with walking. The approach was investigated by the Mindwalker team but had to be dropped due to the difficulty, and time needed, in turning the results of early experiments into a fully exploitable system.

Regardless of which method is used, the BNCI signals have to be filtered and processed before they can be used to control the exoskeleton. To achieve this, the Mindwalker researchers fed the signals into a ‘Dynamic recurrent neural network'(DRNN), a processing technique capable of learning and exploiting the dynamic character of the BNCI signals.

‘This is appealing for kinematic control and allows a much more natural and fluid way of controlling an exoskeleton,’ Mr Ilzkovitz says.

The team adopted a similarly practical approach for collecting EEG signals from the user’s scalp. Most BNCI systems are either invasive, requiring electrodes to be placed directly into brain tissue, or require users to wear a ‘wet’ capon their head, necessitating lengthy fitting procedures and the use of special gels to reduce the electrical resistance at the interface between the skin and the electrodes. While such systems deliver signals of very good quality and signal-to-noise ratio, they are impractical for everyday use.

The Mindwalker team therefore turned to a ‘dry’ technology developed by Berlin-based eemagine Medical Imaging Solutions: a cap covered in electrodes that the user can fit themselves, and which uses innovative electronic components to amplify and optimise signals before sending them to the neural network.

‘The dry EEG cap can be placed by the subject on their head by themselves in less than a minute, just like a swimming cap,’ Mr Ilzkovitz says.

Before proceeding any further with details, here’s what the Mindwalker looks like,

© MINDWALKER (downladed from http://cordis.europa.eu/fetch?CALLER=OFFR_TM_EN&ACTION=D&RCN=10601)

© MINDWALKER (downloaded from http://cordis.europa.eu/fetch?CALLER=OFFR_TM_EN&ACTION=D&RCN=10601)

After finding a way to collect the EEG/EMG signals and interpret them, the researchers needed to create the exoskeleton (from the CORDIS news release),

The universities of Delft and Twente in the Netherlands proposed an innovative approach for the design of the exoskeleton and its control. The exoskeletonis designed to be sufficiently robust to bear the weight of a 100 kg adult and powerful enough to recover balance from external causes of instability such as the user’s own torso movements during walking or a gentle push from the back or side. Compared to other exoskeletons developed to date it is relatively light, weighing less than 30 kg without batteries, and, because a final version of the system should be self-powered, it is designed to minimise energy consumption.

The Mindwalker researchers achieved energy efficiency through the use of springs fitted inside the joints that are capable of absorbing and recovering some of the energy otherwise dissipated during walking, and through the development of an efficient strategy for controlling the exoskeleton.

Most exoskeletons are designed to be balanced when stationary or quasi-static and to move by little steps inside their ground stability perimeter, an approach known as ‘Zero moment point’, or ZMP. Although this approach is commonly used for controlling humanoid robots, when applied to exoskeletons, it makes them heavy and slow – and usually requires users to be assisted by a walking frame, sticks or some other support device when they move.

Alternatively, a more advanced and more natural control strategy can replicate the way humans actually walk, with a controlled loss of balance in the walking direction.

‘This approach is called “Limit-cycle walking” and has been implemented using model predictive control to predict the behaviour of the user and exoskeleton and for controlling the exoskeleton during the walk. This was the approach investigated in Mindwalker,’ Mr Ilzkovitz says.

To train users to control the exoskeleton, researchers from Space Applications Services developed a virtual-reality training platform, providing an immersive environment in which new users can safely become accustomed to using the system before testing it out in a clinical setting, and, the team hope, eventually using it in everyday life.

By the end of this year, tests with able-bodied trial users will be completed. The system will then be transferred to the Foundation Santa Lucia for conducting a clinical evaluation until May 2013 with five to 10volunteers suffering from spinal cord injuries. These trials will help identify shortcomings and any areas of performance improvement, the project coordinator says.

In the meantime, the project partners are continuing research on different components for a variety of potential applications. The project coordinator notes, for example, that elements of the system could be adapted for the rehabilitation of stroke victims or to develop easy-to-use exoskeletons for elderly people for mobility support.

Space Applications Services, meanwhile, is also exploring applications of the Mindwalker technology to train astronauts and help them rebuild muscle mass after spending long periods of time in zero-gravity environments.

There’s more about the European Commission’s Seventh Programme-funded Mindwalker project here.

Parallel with these developments in Europe, Miguel Nicolelis of Duke University has stated that he will have a working exoskeleton (Walk Again Project)  for the kickoff by a paraplegic individual for the opening of the World Cup (soccer/football) in Brazil in 2014. I mentioned Nicolelis and his work most recently in a Mar. 4, 2013 posting.

Taken together, this research which strongly suggests that people can perceive prostheses as being part of their bodies and exoskeletons that are powered by the wearer’s thoughts, we seem to be edging closer to a world where machines and humans become one.