Tag Archives: University of Alberta

Nanoscale light confinement without metal (photonic circuits) at the University of Alberta (Canada)

To be more accurate, this is a step forward towards photonic circuits according to an Aug. 20, 2014 news item on Azonano,

The invention of fibre optics revolutionized the way we share information, allowing us to transmit data at volumes and speeds we’d only previously dreamed of. Now, electrical engineering researchers at the University of Alberta are breaking another barrier, designing nano-optical cables small enough to replace the copper wiring on computer chips.

This could result in radical increases in computing speeds and reduced energy use by electronic devices.

“We’re already transmitting data from continent to continent using fibre optics, but the killer application is using this inside chips for interconnects—that is the Holy Grail,” says Zubin Jacob, an electrical engineering professor leading the research. “What we’ve done is come up with a fundamentally new way of confining light to the nano scale.”

At present, the diameter of fibre optic cables is limited to about one thousandth of a millimetre. Cables designed by graduate student Saman Jahani and Jacob are 10 times smaller—small enough to replace copper wiring still used on computer chips. (To put that into perspective, a dime is about one millimetre thick.)

An Aug. 19, 2014 University of Alberta news release by Richard Cairney (also on EurekAlert), which originated the news item, provides more technical detail and information about funding,

 Jahani and Jacob have used metamaterials to redefine the textbook phenomenon of total internal reflection, discovered 400 years ago by German scientist Johannes Kepler while working on telescopes.

Researchers around the world have been stymied in their efforts to develop effective fibre optics at smaller sizes. One popular solution has been reflective metallic claddings that keep light waves inside the cables. But the biggest hurdle is increased temperatures: metal causes problems after a certain point.

“If you use metal, a lot of light gets converted to heat. That has been the major stumbling block. Light gets converted to heat and the information literally burns up—it’s lost.”

Jacob and Jahani have designed a new, non-metallic metamaterial that enables them to “compress” and contain light waves in the smaller cables without creating heat, slowing the signal or losing data. …

The team’s research is funded by the Natural Sciences and Engineering Research Council of Canada and the Helmholtz-Alberta Initiative.

Jacob and Jahani are now building the metamaterials on a silicon chip to outperform current light confining strategies used in industry.

Given that this work is being performed at the nanoscale and these scientists are located within the Canadian university which houses Canada’s National Institute of Nanotechnology (NINT), the absence of any mention of the NINT comes as a surprise (more about this organization after the link to the researchers’ paper).

Here’s a link to and a citation for the paper,

Transparent subdiffraction optics: nanoscale light confinement without metal by Saman Jahani and Zubin Jacob. Optica, Vol. 1, Issue 2, pp. 96-100 (2014) http://dx.doi.org/10.1364/OPTICA.1.000096

This paper is open access.

In a search for the NINT’s website I found this summary at the University of Alberta’s NINT webpage,

The National Institute for Nanotechnology (NINT) was established in 2001 and is operated as a partnership between the National Research Council and the University of Alberta. Many NINT researchers are affiliated with both the National Research Council and University of Alberta.

NINT is a unique, integrated, multidisciplinary institute involving researchers from fields such as physics, chemistry, engineering, biology, informatics, pharmacy, and medicine. The main focus of the research being done at NINT is the integration of nano-scale devices and materials into complex nanosystems that can be put to practical use. Nanotechnology is a relatively new field of research, so people at NINT are working to discover “design rules” for nanotechnology and to develop platforms for building nanosystems and materials that can be constructed and programmed for a particular application. NINT aims to increase knowledge and support innovation in the area of nanotechnology, as well as to create work that will have long-term relevance and value for Alberta and Canada.

The University of Alberta’s NINT webpage also offers a link to the NINT’s latest rebranded website, The failure to mention the NINT gets more curious when looking at a description of NINT’s programmes one of which is hybrid nanoelectronics (Note: A link has been removed),

Hybrid NanoElectronics provide revolutionary electronic functions that may be utilized by industry through creating circuits that operate using mechanisms unique to the nanoscale. This may include functions that are not possible with conventional circuitry to provide smaller, faster and more energy-efficient components, and extend the development of electronics beyond the end of the roadmap.

After looking at a list of the researchers affiliated with the NINT, it’s apparent that neither Jahani or Jacob are part of that team. Perhaps they have preferred to work independently of the NINT ,which is one of the Canada National Research Council’s institutes.

Hemp as a substitute for graphene in supercapacitors

As a member of the Cannabis plant family, hemp has an undeserved reputation due to its cousin’s (marijuana) notoriety and consciousness-altering properties. Hemp is, by contrast, the Puritan in the family, associated by the knowledgeable with virtues of thrift and hard work.

An Aug. 12, 2014 news item on Nanowerk highlights a hemp/supercapacitor presentation at the 248th meeting of the American Chemical Society (ACS),

As hemp makes a comeback in the U.S. after a decades-long ban on its cultivation, scientists are reporting that fibers from the plant can pack as much energy and power as graphene, long-touted as the model material for supercapacitors. They’re presenting their research, which a Canadian start-up company is working on scaling up, at the 248th National Meeting & Exposition of the American Chemical Society (ACS), the world’s largest scientific society.

David Mitlin, Ph.D., explains that supercapacitors are energy storage devices that have huge potential to transform the way future electronics are powered. Unlike today’s rechargeable batteries, which sip up energy over several hours, supercapacitors can charge and discharge within seconds. But they normally can’t store nearly as much energy as batteries, an important property known as energy density. One approach researchers are taking to boost supercapacitors’ energy density is to design better electrodes. Mitlin’s team has figured out how to make them from certain hemp fibers — and they can hold as much energy as the current top contender: graphene.

An Aug. 12, 2014 ACS news release features David Mitlin, formerly of the University of Alberta (Canada) where this research took place,, Mitlin is now with now with Clarkson University in New York,

“Our device’s electrochemical performance is on par with or better than graphene-based devices,” Mitlin says. “The key advantage is that our electrodes are made from biowaste using a simple process, and therefore, are much cheaper than graphene.”

The race toward the ideal supercapacitor has largely focused on graphene — a strong, light material made of atom-thick layers of carbon, which when stacked, can be made into electrodes. Scientists are investigating how they can take advantage of graphene’s unique properties to build better solar cells, water filtration systems, touch-screen technology, as well as batteries and supercapacitors. The problem is it’s expensive.

Mitlin’s group decided to see if they could make graphene-like carbons from hemp bast fibers. The fibers come from the inner bark of the plant and often are discarded from Canada’s fast-growing industries that use hemp for clothing, construction materials and other products. …

His team found that if they heated the fibers for 24 hours at a little over 350 degrees Fahrenheit, and then blasted the resulting material with more intense heat, it would exfoliate into carbon nanosheets.

Mitlin’s team built their supercapacitors using the hemp-derived carbons as electrodes and an ionic liquid as the electrolyte. Fully assembled, the devices performed far better than commercial supercapacitors in both energy density and the range of temperatures over which they can work. The hemp-based devices yielded energy densities as high as 12 Watt-hours per kilogram, two to three times higher than commercial counterparts. They also operate over an impressive temperature range, from freezing to more than 200 degrees Fahrenheit.

“We’re past the proof-of-principle stage for the fully functional supercapacitor,” he says. “Now we’re gearing up for small-scale manufacturing.”

I have not been able to confirm the name for Mitlin’s startup but I think it’s called Alta Supercaps (Alta being an abbreviation for Alberta,, amongst other things, and supercaps for supercapacitors) as per the information about a new startup on the Mitlin Group webspace (scroll down to the July 2, 2013 news item) which can still be found on the University of Alberta website (as of Aug. 12, 2014).

For those who would like more technical details, there is this July 2013 article by Mark Crawford for the ASME (American Society of Mechanical Engineers); Note: A link has been removed.

Activated carbons, templated carbons, carbon nanofibers, carbon nanotubes, and graphene have all been intensively studied as materials for supercapacitor electrodes. High manufacturing costs is one issue—another is that the power characteristics of many of these carbons are limited. This is a result of high microporosity, which increases ion transport limitations.

“It is becoming well understood that the key to achieving high power in porous electrodes is to reduce the ion transport limitations” says Mitlin. “Nanomaterials based on graphene and their hybrids have emerged as a new class of promising high-rate electrode candidates—they are, however, too expensive to manufacture compared to activated carbons derived from pyrolysis of agricultural wastes, or from the coking operations.”

Biomass, which mainly contains cellulose and lignin by-products, is widely utilized as a feedstock for producing activated carbons. Mitlin decided to test hemp bast fiber’s unique cellular structure to see if it could produce graphene-like carbon nanosheets.

Hemp fiber waste was pressure-cooked (hydrothermal synthesis) at 180 °C for 24 hours. The resulting carbonized material was treated with potassium hydroxide and then heated to temperatures as high as 800 °C, resulting in the formation of uniquely structured nanosheets. Testing of this material revealed that it discharged 49 kW of power per kg of material—nearly triple what standard commercial electrodes supply, 17 kW/kg.

Mitlin and his team successfully synthesized two-dimensional, yet interconnected, carbon nanosheets with superior electrochemical storage properties comparable to those of state-of-the-art graphene-based electrodes. “We were able to achieve this by employing a biomass precursor with a unique structure—hemp bast fiber,” says Mitlin. “The resultant graphene-like nanosheets possess fundamentally different properties—such as pore size distribution, physical interconnectedness, and electrical conductivity—as compared to conventional biomass-derived activated carbons.”

This image from Wikimedia was used to illustrate the Crawford article,

Hemp bast fiber is a low-cost graphene-like nanomaterial. Image: Wikimedia Commons

Hemp bast fiber is a low-cost graphene-like nanomaterial. Image: Wikimedia Commons

It seems to me that over the last few months there have been more than the usual number of supercapacitor stories, which makes the race to create the one that will break through in the marketplace fascinating to observe.

Alberta’s summer of 2014 nano funding and the US nano community’s talks with the House of Representatives

I have two items concerning nanotechnology and funding. The first item features Michelle Rempel, Canada’s Minister of State for Western Economic Diversification (WD) who made two funding announcements this summer (2014) affecting the Canadian nanotechnology sector and, more specifically, the province of Alberta.

A June 20, 2014 WD Canada news release announced a $1.1M award to the University of Alberta,

Today, the Honourable Michelle Rempel, Minister of State for Western Economic Diversification, announced $1.1 million to help advance leading-edge atomic computing technologies.

Federal funds will support the University of Alberta with the purchase of an ultra-high resolution scanning tunneling microscope, which will enable researchers and scientists in western Canada and abroad to analyze electron dynamics and nanostructures at an atomic level. The first of its kind in North America, the microscope has the potential to significantly transform the semiconductor industry, as research findings aid in the prototype development and technology commercialization of new ultra low-power and low-temperature computing devices and industrial applications.

This initiative is expected to further strengthen Canada’s competitive position throughout the electronics value chain, such as microelectronics, information and communications technology, and the aerospace and defence sectors. The project will also equip graduate students with a solid foundation of knowledge and hands-on experience to become highly qualified, skilled individuals in today’s workforce.

One month later, a July 21, 2014 WD news release (hosted on the Alberta Centre for Advanced Micro and Nano Products [ACAMP]) announces this award,

Today, the Honourable Michelle Rempel, Minister of State for Western Economic Diversification, announced an investment of $3.3 million toward the purchase and installation of specialized advanced manufacturing and product development equipment at the Alberta Centre for Advanced Micro Nano Technology Products (ACAMP), as well as training on the use of this new equipment for small- and medium-sized enterprises (SMEs).

This support, combined with an investment of $800,000 from Alberta Innovates Technology Futures, will enable ACAMP to expand their services and provide businesses with affordable access to prototype manufacturing that is currently unavailable in western Canada. By helping SMEs accelerate the development and commercialization of innovative products, this project will help strengthen the global competitiveness of western Canadian technology companies.

Approximately 80 Alberta SMEs will benefit from this initiative, which is expected to result in the development of new product prototypes, the creation of new jobs in the field, as well as connections between SMEs and multi-national companies. This equipment will also assist ACAMP’s outreach activities across the western Canadian provinces.

I’m not entirely clear as to whether or not the June 2014 $1.1M award is considered part of the $3.3M award or if these are two different announcements. I am still waiting for answers to a June 20, 2014 query sent to Emily Goucher, Director of Communications to the Hon. Michelle Rempel,

Hi Emily!

Thank you for both the news release and the information about the embargo … happily not an issue at this point …

I noticed Robert Wolkow’s name in the release (I last posted about his work in a March 3, 2011 piece about his and his team’s entry into the Guinness Book of Records for the world’s smallest electron microscope tip (http://www.frogheart.ca/?tag=robert-wolkow) [Note: Wolkow was included in a list of quotees not included here in this July 29, 2014 posting]

I am assuming that the new microscope at the University of Alberta is specific to a different type of work than the one at UVic, which has a subatomic microscope (http://www.frogheart.ca/?p=10426)

Do I understand correctly that an STM is being purchased or is this an announcement of the funds and their intended use with no details about the STM available yet? After reading the news release closely, it looks to me like they do have a specific STM in mind but perhaps they don’t feel ready to make a purchase announcement yet?

If there is information about the STM that will be purchased I would deeply appreciate receiving it.

Thank you for your time.

As I wait, there’s more news from  the US as members of that country’s nanotechnology community testify at a second hearing before the House of Representatives. The first (a May 20, 2014 ‘National Nanotechnology Initiative’ hearing held before the Science, Space, and Technology
Subcommittee on Research and Technology) was mentioned in an May 23, 2014 posting  where I speculated about the community’s response to a smaller budget allocation (down to $1.5B in 2015 from $1.7B in 2014).

This second hearing is being held before the Energy and Commerce Subcommittee on Commerce, Manufacturing and Trade and features an appearance by James Tour from Rice University according to a July 28, 2014 news item on Azonano,

At the hearing, titled “Nanotechnology: Understanding How Small Solutions Drive Big Innovation,” Tour will discuss and provide written testimony on the future of nanotechnology and its impact on U.S. manufacturing and jobs. Tour is one of the most cited chemists in the country, and his Tour Group is a leader in patenting and bringing to market nanotechnology-based methods and materials.

Who: James Tour, Rice’s T.T. and W.F. Chao Chair in Chemistry and professor of materials science and nanoengineering and of computer science.

What: Exploring breakthrough nanotechnology opportunities.

When: 10:15 a.m. EDT Tuesday, July 29.

Where: Room 2322, Rayburn House Office Building, Washington, D.C.

The hearing will explore the current state of nanotechnology and the direction it is headed so that members can gain a better understanding of the policy changes that may be necessary to keep up with advancements. Ultimately, the subcommittee hopes to better understand what issues will confront regulators and how to assess the challenges and opportunities of nanotechnology.

You can find a notice for this July 2014 hearing and a list of witnesses along with their statements here. As for what a second hearing might mean within the context of the US National Nanotechnology Initiative, I cannot say with any certainty. But, this is the first time in six years of writing this blog where there have been two hearings post-budget but as a passive collector of this kind of information this may be a reflection of my information collection strategies rather than a response to a smaller budget allocation. Still, it’s interesting.

Canada Grand Challenges May 2014 grants

Grand Challenges Canada (mentioned here many times including this Nov. 21, 2013 posting which featured their ‘Stars in Global Health’ programme grants announcement for Fall 2013) has announced a new round of awards. From a May 22, 2014 Grand Challenges Canada news release (can be found on EurekAlert),

Grand Challenges Canada, funded by the Government of Canada, today announces investments of $12 million in projects worldwide, aimed squarely at improving the health and saving the lives of mothers, newborns and children in developing countries.

The news release goes on to describe two different grants,

Four Canadian-based projects (from Guelph, Toronto, Waterloo and Winnipeg) with proven impact and sustainability will share $2.6 million in scale-up grants and loans from Grand Challenges Canada, matched by $2.6 million from private and public partners, bringing total “transition-to-scale” investments to $5.2 million.

In addition, Grand Challenges Canada “Stars in Global Health” [awarded] seed grants of $112,000 each ($6.8 million in total) …

[emphases mine]

I checked here to find Spring 2014 ‘Transition to scale’ grants and ‘Seed’ grants for the Canada Grand Challenges (GCC) programme.

I’m highlighting two of the funded projects. First, there’s ‘Lucky Iron Fish’ which won a ‘transition-scale-grant’ for the University of Guelph, from the news release on EurekAlert,

The little “Lucky Iron Fish,” now in growing use by cooks in Cambodia, has proven effective in reducing rampant iron deficiency among women – the cause of premature labour, hemorrhaging during childbirth and poor brain development among babies. Initial local reluctance to use a loose piece of iron in cooking pots was overcome by a clever design tapping into Cambodian folklore about a fish species that brings good fortune. In partnership with small businesses across Cambodia, plans for this year and next call for production and distribution of 60,000 lucky iron fish, made from recycled material at a cost of about $5 each, which provide health benefits for roughly three years.

(Lucky Iron Fish, Guelph, a transition-to-scale investment, grant #0355, video, images. More information: http://bit.ly/1mIZeWr)

Here’s more detail about the project from the GCC’s list of May 2014 successful GCC grants,

A lucky little fish to fight iron deficiency among women in Cambodia
Lucky Iron Fish, Guelph
Project number: 0355-05-30
Total new transition to scale investment: $860,000

In Cambodia, six in 10 women are anemic due to iron deficiency in their diets, causing premature labour, hemorrhaging during childbirth and the impaired brain development of their babies.

Usually obtained through red meat or other iron-rich foods, a small chunk of iron added to water in the cooking pot can release a life-saving iron supplement.  But attempts to persuaders to do so were unsuccessful.

On a 2008 study mission in Cambodia, University of Guelph researcher Chris Charles thought of creating a piece of iron shaped like a local river fish believed to bring good luck and fortune.

His simple idea succeeded beyond all expectations.  Women happily placed the Lucky Iron Fish in their cooking pots and, in the months that followed, anemia in the village fell dramatically.

A Lucky Iron Fish is small enough to be stirred easily but large enough to provide about 75 per cent of daily iron requirements.

“The results are stunning,” says Dr. Alastair Summerlee, President of the University of Guelph and Chair of the Board of Directors of Lucky Iron Fish. “Initial results show a huge decrease in anemia and the village women say they feel good, experience no dizziness and have fewer headaches. The iron fish is incredibly powerful.”

Small businesses across Cambodia will produce and distribute the fish with quality control measures in place.  About 7.5 cm (3 inches) long, and made from recycled material at a cost of about $5 each, the iron fish provides health benefits for roughly three years.

“Our goal is to produce 10,000 Lucky Iron Fish this year and another 150,000 next year,” says Gavin Armstrong, President and CEO of Lucky Iron Fish.

Taking the project to scale offers profound potential health benefits to many women in Cambodia with potential markets throughout the world.
Grand Challenges Canada’s $500,000 loan to Lucky Iron Fish is part of a total scale-up financing package of $860,000, and augments earlier commitments of equity investors, Innovation Guelph, and the University of Guelph.

The second one is a ‘Rising Star’ project at the University of Alberta. From a May 22, 2014 University of Alberta news release (also on EurekAlert but dated May 23, 2014),

A University of Alberta researcher’s star is rising thanks to her idea to detect deadly pathogens such as E. coli using a paper device only slightly larger than a postage stamp.

Frédérique Deiss, a post-doctoral fellow in the Faculty of Science, is working on ways to help detect food- and water-borne pathogens using a paper-based diagnostic tool that could be used anywhere, including developing countries. The idea earned the electrochemist $112,000 in research funding from Grand Challenges Canada after being selected as one of their Stars in Global Health.

For the next 18 months, Deiss will be working at the U of A and with farmers near Nairobi, Kenya, in collaboration with the International Livestock Research Institute, to develop and test a prototype that provides an affordable method for detecting pathogens such as salmonella or E. coli, which can be present in raw milk, on equipment, or in water or waste water.

“Some areas do not have the infrastructure to do this kind of monitoring all the time. These devices are simple and sensible enough to use that farmers could almost do the tests themselves, and test every day rather than once a week or even more sporadically,” said Deiss, who is working in the lab of Ratmir Derda.

Her idea for a diagnostic tool made of paper is just that at the moment—an idea. Funding from Grand Challenges Canada will allow her to develop an electrochemical diagnostic device made of paper and tape. Conductive ink applied to the paper would create an electrode that would allow researchers to detect the presence of targeted bacteria.

Slightly larger than a postage stamp and even cheaper to make at less than 10 cents, the device would be extremely portable, self-contained and sealed—meaning anyone performing the tests would not risk exposure to potentially harmful bacteria, Deiss said. It would also allow testing of non-purified samples—a time- and cost-saving step not possible in some parts of the world, including farms around Nairobi, she added.

Within six months, Deiss hopes to develop a working prototype capable of detecting non-pathogenic bacteria, and by one year a device able to safely detect deadly pathogens such as E. coli. She also plans to work with ILRI and farmers in Nairobi to test the device in the field, comparing results with conventional methods.

Here’s a video of Deiss describing her idea,

You can find more videos featuring researchers and their GCC projects on GCC’s YouTube channel.

I wish all the best of luck to all the researchers and I’m pretending to myself that the two projects featured here can be described as nanotechnology.

BRAIN and ethics in the US with some Canucks (not the hockey team) participating (part two of five)

The Brain research, ethics, and nanotechnology (part one of five) May 19, 2014 post kicked off a series titled ‘Brains, prostheses, nanotechnology, and human enhancement’ which brings together a number of developments in the worlds of neuroscience*, prosthetics, and, incidentally, nanotechnology in the field of interest called human enhancement. Parts one through four are an attempt to draw together a number of new developments, mostly in the US and in Europe. Due to my language skills which extend to English and, more tenuously, French, I can’t provide a more ‘global perspective’. Part five features a summary.

Before further discussing the US Presidential Commission for the Study of Bioethical Issues ‘brain’ meetings mentioned in part one, I have some background information.

The US launched its self-explanatory BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative (originally called BAM; Brain Activity Map) in 2013. (You can find more about the history and details in this Wikipedia entry.)

From the beginning there has been discussion about how nanotechnology will be of fundamental use in the US BRAIN initiative and the European Union’s 10 year Human Brain Project (there’s more about that in my Jan. 28, 2013 posting). There’s also a 2013 book (Nanotechnology, the Brain, and the Future) from Springer, which, according to the table of contents, presents an exciting (to me) range of ideas about nanotechnology and brain research,

I. Introduction and key resources

1. Nanotechnology, the brain, and the future: Anticipatory governance via end-to-end real-time technology assessment by Jason Scott Robert, Ira Bennett, and Clark A. Miller
2. The complex cognitive systems manifesto by Richard P. W. Loosemore
3. Analysis of bibliometric data for research at the intersection of nanotechnology and neuroscience by Christina Nulle, Clark A. Miller, Harmeet Singh, and Alan Porter
4. Public attitudes toward nanotechnology-enabled human enhancement in the United States by Sean Hays, Michael Cobb, and Clark A. Miller
5. U.S. news coverage of neuroscience nanotechnology: How U.S. newspapers have covered neuroscience nanotechnology during the last decade by Doo-Hun Choi, Anthony Dudo, and Dietram Scheufele
6. Nanoethics and the brain by Valerye Milleson
7. Nanotechnology and religion: A dialogue by Tobie Milford

II. Brain repair

8. The age of neuroelectronics by Adam Keiper
9. Cochlear implants and Deaf culture by Derrick Anderson
10. Healing the blind: Attitudes of blind people toward technologies to cure blindness by Arielle Silverman
11. Ethical, legal and social aspects of brain-implants using nano-scale materials and techniques by Francois Berger et al.
12. Nanotechnology, the brain, and personal identity by Stephanie Naufel

III. Brain enhancement

13. Narratives of intelligence: the sociotechnical context of cognitive enhancement by Sean Hays
14. Towards responsible use of cognitive-enhancing drugs by the healthy by Henry T. Greeley et al.
15. The opposite of human enhancement: Nanotechnology and the blind chicken debate by Paul B. Thompson
16. Anticipatory governance of human enhancement: The National Citizens’ Technology Forum by Patrick Hamlett, Michael Cobb, and David Guston
a. Arizona site report
b. California site report
c. Colorado site reportd. Georgia site report
e. New Hampshire site report
f. Wisconsin site report

IV. Brain damage

17. A review of nanoparticle functionality and toxicity on the central nervous system by Yang et al.
18. Recommendations for a municipal health and safety policy for nanomaterials: A Report to the City of Cambridge City Manager by Sam Lipson
19. Museum of Science Nanotechnology Forum lets participants be the judge by Mark Griffin
20. Nanotechnology policy and citizen engagement in Cambridge, Massachusetts: Local reflexive governance by Shannon Conley

Thanks to David Bruggeman’s May 13, 2014 posting on his Pasco Phronesis blog, I stumbled across both a future meeting notice and documentation of the  Feb. 2014 meeting of the Presidential Commission for the Study of Bioethical Issues (Note: Links have been removed),

Continuing from its last meeting (in February 2014), the Presidential Commission for the Study of Bioethical Issues will continue working on the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative in its June 9-10 meeting in Atlanta, Georgia.  An agenda is still forthcoming, …

In other developments, Commission staff are apparently going to examine some efforts to engage bioethical issues through plays.  I’d be very excited to see some of this happen during a Commission meeting, but any little bit is interesting.  The authors of these plays, Karen H. Rothenburg and Lynn W. Bush, have published excerpts in their book The Drama of DNA: Narrative Genomics.  …

The Commission also has a YouTube channel …

Integrating a theatrical experience into the reams of public engagement exercises that technologies such as stem cell, GMO (genetically modified organisms), nanotechnology, etc. tend to spawn seems a delightful idea.

Interestingly, the meeting in June 2014 will coincide with the book’s release date. I dug further and found these snippets of information. The book is being published by Oxford University Press and is available in both paperback and e-book formats. The authors are not playwrights, as one might assume. From the Author Information page,

Lynn Bush, PhD, MS, MA is on the faculty of Pediatric Clinical Genetics at Columbia University Medical Center, a faculty associate at their Center for Bioethics, and serves as an ethicist on pediatric and genomic advisory committees for numerous academic medical centers and professional organizations. Dr. Bush has an interdisciplinary graduate background in clinical and developmental psychology, bioethics, genomics, public health, and neuroscience that informs her research, writing, and teaching on the ethical, psychological, and policy challenges of genomic medicine and clinical research with children, and prenatal-newborn screening and sequencing.

Karen H. Rothenberg, JD, MPA serves as Senior Advisor on Genomics and Society to the Director, National Human Genome Research Institute and Visiting Scholar, Department of Bioethics, Clinical Center, National Institutes of Health. She is the Marjorie Cook Professor of Law, Founding Director, Law & Health Care Program and former Dean at the University of Maryland Francis King Carey School of Law and Visiting Professor, Johns Hopkins Berman Institute of Bioethics. Professor Rothenberg has served as Chair of the Maryland Stem Cell Research Commission, President of the American Society of Law, Medicine and Ethics, and has been on many NIH expert committees, including the NIH Recombinant DNA Advisory Committee.

It is possible to get a table of contents for the book but I notice not a single playwright is mentioned in any of the promotional material for the book. While I like the idea in principle, it seems a bit odd and suggests that these are purpose-written plays. I have not had good experiences with purpose-written plays which tend to be didactic and dull, especially when they’re not devised by a professional storyteller.

You can find out more about the upcoming ‘bioethics’ June 9 – 10, 2014 meeting here.  As for the Feb. 10 – 11, 2014 meeting, the Brain research, ethics, and nanotechnology (part one of five) May 19, 2014 post featured Barbara Herr Harthorn’s (director of the Center for Nanotechnology in Society at the University of California at Santa Barbara) participation only.

It turns out, there are some Canadian tidbits. From the Meeting Sixteen: Feb. 10-11, 2014 webcasts page, (each presenter is featured in their own webcast of approximately 11 mins.)

Timothy Caulfield, LL.M., F.R.S.C., F.C.A.H.S.

Canada Research Chair in Health Law and Policy
Professor in the Faculty of Law
and the School of Public Health
University of Alberta

Eric Racine, Ph.D.

Director, Neuroethics Research Unit
Associate Research Professor
Institut de Recherches Cliniques de Montréal
Associate Research Professor,
Department of Medicine
Université de Montréal
Adjunct Professor, Department of Medicine and Department of Neurology and Neurosurgery,
McGill University

It was a surprise to see a couple of Canucks listed as presenters and I’m grateful that the Presidential Commission for the Study of Bioethical Issues is so generous with information. in addition to the webcasts, there is the Federal Register Notice of the meeting, an agenda, transcripts, and presentation materials. By the way, Caulfield discussed hype and Racine discussed public understanding of science with regard to neuroscience both fitting into the overall theme of communication. I’ll have to look more thoroughly but it seems to me there’s no mention of pop culture as a means of communicating about science and technology.

Links to other posts in the Brains, prostheses, nanotechnology, and human enhancement five-part series:

Part one: Brain research, ethics, and nanotechnology (May 19, 2014 post)

Part three: Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society issued May 2014 by US Presidential Bioethics Commission (May 20, 2014)

Part four: Brazil, the 2014 World Cup kickoff, and a mind-controlled exoskeleton (May 20, 2014)

Part five: Brains, prostheses, nanotechnology, and human enhancement: summary (May 20, 2014)

* ‘neursocience’ corrected to ‘neuroscience’ on May 20, 2014.

Grand Challenges Canada funds 83 projects to improve global health

For the third year in a row (as per my Dec. 22, 2011 posting and my Nov. 22, 2012 posting), I’m featuring Grand Challenges Canada funding for its ‘Stars in Global Health’ programme . From the Grand Challenges Canada (GCC) Nov. 21, 2013 news release,

Imaginative: 83 Bold Innovations to Improve Global Health Receive Grand Challenges Canada Funding

Among novel ideas to reduce disease, save lives in developing world:
Diagnostic diapers to detect deadly rotavirus; Rolling water barrel;
Special yogurt offsets pesticides, heavy metals, toxins in food;
Inventive shoe, boot material releases bug repellent when walking

50 innovators from low- and middle-income countries,
plus 33 from Canada, share $9.3 million in seed grants

Grand Challenges Canada, funded by the Government of Canada, today extends seed grants of $100,000 each to 83 inventive new ideas for addressing health problems in resource-poor countries.

The Grand Challenges Canada “Stars in Global Health” program seeks breakthrough and affordable innovations that could transform the way disease is treated in the developing world — innovations that may benefit the health of developed world citizens as well.

Of the 83 grants announced today, 50 are given to innovators in 15 low- and middle-income nations worldwide and 33 to Canadian-originated projects, to be implemented in a total of 30 countries throughout the developing world.

“Innovation powers development leading to better health and more jobs. I feel proud that Canada, through Grand Challenges Canada, has supported almost 300 bold ideas to date in our Stars in Global Health program,” says Dr. Peter A. Singer, Chief Executive Officer of Grand Challenges Canada.  “This is one of the largest pipelines of innovations in global health in the world today.”

Says the Honourable Christian Paradis, Canadian Minister of International Development and Minister for La Francophonie: “Grand Challenges Canada’s portfolio of projects shows how innovators with bold ideas have the potential to make a big impact on global health.  By connecting game-changing ideas with some of the most pressing global health challenges, these projects will lead to sustainable and affordable health solutions in low- and middle-income countries.”

The portfolio of 83 creative, out-of-the-box ideas, selected through independent peer review from 451 applications, includes projects submitted by social entrepreneurs, private sector companies and non-government organizations as well as university researchers.  Among them:

Diagnostics

  • A simple, portable, dry, yeast-based blood screening test (Belize, Jamaica).  WHO estimates almost half of 46 million blood donations in low-income countries are inadequately tested;  in Africa up to 10% of new HIV infections are caused by transfusions.  A University of Toronto-developed yeast-based blood screening tool will detect combinations of diseases. Like baking yeast, it can be stored dry, and can be grown locally with minimal equipment and training, improving accessibility in rural areas.
  • A bedside, Litmus paper-like test to detect bronchitis (Brazil, India). Being pioneered at McMaster University with international collaborators, a simple sputum test will detect infectious and allergic bronchitis in adults and children, reducing mis-diagnosis in developing countries and saving resources: time, steroids, antibiotics.

Water, sanitation, hygiene and general health

  • Special yogurts formulated to offset the harm to health caused by heavy metals, pesticides and other toxics in food (Africa).  Between 2006-2009 in Nairobi, only 17% of the total maize sampled and 5% of feed was fit for human and animal consumption respectively. University of Western Ontario researchers have developed novel yogurts containing a bacteria that, in the stomach, sequesters certain toxins and heavy metals and degrades some pesticides.
  • Addressing arsenic-laced groundwater. In Bangladesh, 1 in 5 deaths (600,000 per year) occur due to groundwater arsenic, dubbed by WHO as the largest mass poisoning in history, with some 77 million people at risk.  Project 1) Toronto-based PurifAid will deploy new filtration units via franchised villagers who will filter and deliver purified water, perform maintenance, acquire new filters and dispose of old ones, which can be used to produce biofuels.  Project 2) A project based at the University of Calgary, meanwhile, will work to increase the use of Western Canadian lentils in Bangladeshi diets.  The crop is rich in selenium, which can decrease arsenic levels and improve health.
  • “WaterWheel” (India, Kenya, Mongolia).  This simple, innovative device from India is a wheeled water container that enables the collection and transport of 3 to 5 times as much water as usual per trip, as well as hygienic storage, saving valuable time for productive activities and improving health.

Malaria

  • A vaccine based on a newly-discovered antibody in men that prevents malaria infection in the placenta (Benin, Colombia).  Colombian men exposed to malaria are found to have antibodies that can prevent infection in the placenta of a pregnant woman. This University of Alberta finding forms the basis for developing a novel vaccine against several forms of malaria, which cause 10,000 maternal deaths and 200,000 stillbirths annually.
  • Insect-repellent clothing, footwear and wall plaster (East Africa).  1) In Tanzania, the Africa Technical Research Institute will lead the design and manufacture of attractive, affordable insecticide-treated clothing while 2) the Ifakara Health Institute will develop anti-mosquito footwear material that slowly releases repellents from the friction of walking.  A key advantage: no compliance or change in habits required.  3) Uganda’s Med Biotech Laboratories, meanwhile, will produce a colorful, insecticide-infused ‘plaster’ for the outside walls of African village homes.

Maternal and child health

  • Mothers Telling Mothers: improving maternal health through storytelling (Uganda).  Work by Twezimbe Development Association has found that stories told by mothers in their own words and reflecting shared realities are most likely to increase the number of moms seeking skilled health care, and convince policymakers to improve healthcare access.  This project will capture 3 to 5 minutes stories to be shared through digital media platforms and health clinics.

Mobile technology

  • Digital African Health Library (Sub-Saharan Africa).  The University of Calgary-led project is creating an app to support bedside care by medical doctors in Africa: a smartphone-accessible resource providing evidence-based, locally-relevant decision support and health information.  A pilot involving 65 doctors in Rwanda showed point of care answers to patient questions more than tripled to 43%, with self-reported improvement in patient outcomes.

Health care

  • Simple sticker helps track clean surfaces in healthcare facilities (Philippines).  WHO estimates that 10% to 30% of all patients in developing country health care facilities acquire an infection.   An innovative sticker for hospital surfaces developed by Lunanos Inc. changes colour when a cleaner is applied and fades color after a predetermined period of time, helping staff track and ensure cleanliness of equipment and other frequently touched surfaces.
  • “Mystery clients” to assess and improve quality of TB care (India).  India accounts for 25% of global tuberculosis (TB) incidence.  To evaluate variations in practice quality, and identify ways to improve TB management in India, this project, led by Canada’s McGill University, will send researchers into clinics posing as a patient with standard TB symptoms.  The project builds on earlier work related to angina, asthma and dysentery, which revealed incorrect diagnoses and treatment.

And many more.

A complete set of 83 short project descriptions, with links to additional project details, available photos / video, and local contact information, is available in the full news release online here: http://bit.ly/HOLt5b

Here’s a video for the one of the projects (filtering arsenic out of Bangladesh’s water),

I chose this project somewhat haphazardly. It caught my attention as I have written more than once about purification efforts and as it turns out, this is a Canada-based project (with a Bangladeshi partner, BRAC) from the University of Toronto.

You may have heard the video’s narrator mention scotch whiskey, here’s why (from the YouTube page hosting the project video,page),

We plan to roll out a new generation of filtration units which run on an organic by-product of the beverage industry. The units address many of the failings of existing devices (they require no power or chemicals and are very low maintenance).

This project gets still more interesting (from the full project description page),

Device for the Remediation and Attenuation of Multiple Pollutants (DRAM) removes 95% of arsenic from contaminated water within 5 minutes of exposure. With an estimated 600,000 deaths directly attributable to arsenic poisoning every year, these units hold the potential to save millions of lives. Existing solutions are too complicated and suffer from significant usability issues (2012 UNICEF study).

We will deploy our units through a franchise business model. [emphasis mine] Local villagers will filter and deliver purified water, perform maintenance, acquire new media, and dispose spent media. The current market leader, the Sono Filter, has less than 20% uptake (according to UNICEF). DRAM costs only 25% of this solution, has lower maintenance requirements (4-6 month media cycle vs. 2 week media cycle), higher durability, and can be retrofitted onto existing tube wells villagers use thereby requiring no behavior change. The spent media (which must be replaced every 4-6 months) can be used to produce biofuels, giving PurifAid a decisive capability over competitors.

With the assistance of our local partner BRAC (ranked #1 on Global Journal’s list of top NGOs in 2012) we will retrofit our units onto existing tubewells. Contaminated water is pumped from the tubewell into the unit where it passes into the bottom of the unit, rising up through a bed of the organic filter media, binding the arsenic. Clean water is displaced and forced out of the top of the unit and out through the built-in tap. Our community based solution will begin with a proof-of-concept installation in the Mujibnagar District (pop. 1.3 million). BRAC will assist in testing our filter water quality on the ground and these results will be used to obtain regulatory approval for our technology. We will then operationalize our community-run DRAM systems. A council of local stakeholders will nominate prospective franchisees amongst villagers. These villagers will replace filter media in 4 month intervals and order annual delivery of new media. We are securing partnerships with nearby distilleries to locally source the filter media. [emphasis mine] Disposal will be handled by a local caretaker who will store spent media in bulk before transferring it for use as biofuel. Caretaker salary, media sourcing, and delivery costs will be paid by charging a levy on customer households. PurifAid will monitor behavioural and health indicators to ascertain DRAM’s immediate and long-term impact. To this end PurifAid has partnered with Ashalytics, a start-up global health analytics company, to report operational issues, measure impact, and communicate important metrics to key staff and stakeholders via mobile phones. This results in an environmentally-friendly value chain that uses beverage industry waste, maximizing positive impact. If the Bangladesh installations are a success then this system can be introduced across the Indian subcontinent and in west Africa, where arsenic in groundwater poses a serious health problem. DRAM has the potential to improve the lives of millions globally.

After 18 months we envisage having installed 15 DRAM systems supplying 45 liters of purified water per day to 2,700 households. In order to ensure maintenance, 15 paid caretakers will operate the pumps and a driver will supply the caretakers with fresh media every 4-6 months. Biannually, new bulk media will be provided to storage unit in the village, spent media will in turn be taken to a plant and converted to biofuel. Villagers will invest collectively to purchase, install and operate DRAM on pre-existing tube wells – thus no behavioral changes needed.

Our filters employ a new water filtration technology. Our franchise model involves social and business innovation, empowering communities to manage their own water treatment under the stewardship of a local partner that manages 17 social businesses with combined annual revenues of $93m in 2011.

(Aside: Don’t they ask for a ‘dram’ of whiskey in the movies?) This project is intended to do more than purify water; it’s designed to create jobs. Bravo!

Now back to the news release for details about the countries and agencies involved,

The global portfolio of grants, broken down by region and country:

30 projects based in 6 African countries (16 in Kenya, 5 in Tanzania, 5 in Uganda, 2 in Nigeria and 1 each in Senegal and Ghana)
17 projects based in 7 countries in Asia (7 in India, 2 in Pakistan 4 in Thailand and 1 each in Bangladesh, Cambodia, Mongolia and the Philippines)
Two projects based in South America (Peru) and one in Europe (Armenia)
33 projects based in 11 Canadian cities (14 in Toronto, 3 each in Calgary, Montreal and Vancouver, 2 each in Winnipeg, Edmonton and London, and 1 each in Halifax, Hamilton, Ottawa and Saskatoon)

The Canadian-based projects will be implemented worldwide (a majority of them implemented simultaneously in more than one country):

15 countries in Africa (5 in Kenya, 4 in Tanzania, 3 each in Uganda and Ethiopia, 2 each in Rwanda, Somalia, South Africa, South Sudan, and Zambia, and 1 each in Benin, Botswana, Ghana,  Malawi, Nigeria, and DR Congo)
8 countries in Asia (8 in India, 6 in Bangladesh, 1 each in Bhutan, China, Nepal, Pakistan, Philippines and Thailand)
5 countries in South and Latin America (Belize, Brazil, Colombia, Jamaica, Peru.) and
1 in the Middle East (Egypt)

Including today’s grants, total investments to date under the Grand Challenges Canada “Stars in Global Health” program is $32 million in 295 projects.

For full details: http://bit.ly/HOLt5b

* * * * *

About Grand Challenges Canada

Grand Challenges Canada is dedicated to supporting Bold Ideas with Big Impact in global

health. We are funded by the Government of Canada through the Development Innovation Fund announced in the 2008 Federal Budget. We fund innovators in low- and middle-income countries and Canada. Grand Challenges Canada works with the International Development Research Centre (IDRC), the Canadian Institutes of Health Research (CIHR), and other global health foundations and organizations to find sustainable, long-term solutions through Integrated Innovation − bold ideas that integrate science, technology, social and business innovation. Grand Challenges Canada is hosted at the Sandra Rotman Centre.

Please visit grandchallenges.ca  and look for us on Facebook, Twitter, YouTube and LinkedIn.

About Canada’s International Development Research Centre

The International Development Research Centre (IDRC) supports research in developing countries to promote growth and development. IDRC also encourages sharing this knowledge with policymakers, other researchers and communities around the world. The result is innovative, lasting local solutions that aim to bring choice and change to those who need it most. As the Government of Canada’s lead on the Development Innovation Fund, IDRC draws on decades of experience managing publicly funded research projects to administer the Development Innovation Fund. IDRC also ensures that developing country researchers and concerns are front and centre in this exciting new initiative.

www.idrc.ca

About Canadian Institutes of Health Research

The Canadian Institutes of Health Research (CIHR) is the Government of Canada’s health research investment agency. CIHR’s mission is to create new scientific knowledge and to enable its translation into improved health, more effective health services and products, and a strengthened Canadian health care system. Composed of 13 Institutes, CIHR provides leadership and support to more than 14,100 health researchers and trainees across Canada. CIHR will be responsible for the administration of international peer review, according to international standards of excellence. The results of CIHR-led peer reviews will guide the awarding of grants by Grand Challenges Canada from the Development Innovation Fund.

www.cihr-irsc.gc.ca

About the Department of Foreign Affairs, Trade and Development Canada

The mandate of Foreign Affairs, Trade and Development Canada is to manage Canada’s diplomatic and consular relations, to encourage the country’s international trade, and to lead Canada’s international development and humanitarian assistance.

www.international.gc.ca

About Sandra Rotman Centre

The Sandra Rotman Centre is based at University Health Network and the University of Toronto. We develop innovative global health solutions and help bring them to scale where they are most urgently needed. The Sandra Rotman Centre hosts Grand Challenges Canada.

www.srcglobal.org

I have found it confusing that there’s a Grand Challenges Canada and the Bill and Melinda Gates Foundation has a Grand Challenges programme, both of which making funding announcements at this time of year. I did make some further investigations which I noted in my Dec. 22, 2011 posting,

Last week, the Bill & Melinda Gates Foundation announced a $21.1 M grant over three years for research into point-of-care diagnostic tools for developing nations. A Canadian nongovermental organization (NGO) will be supplementing this amount with $10.8 M for a total of $31.9 M. (source: Dec. 16, 2011 AFP news item [Agence France-Presse] on MedicalXpress.com)

At this point, things get a little confusing. The Bill & Melinda Gates Foundation has a specific program called Grand Challenges in Global Health and this grant is part of that program. Plus, the Canadian NGO is called Grand Challenges Canada (couldn’t they have found a more distinctive name?), which is funded by a federal Canadian government initiative known as the Development Innovation Fund (DIF). …

Weirdly, no one consulted with me when they named the Bil & Melinda Gates Foundation programme or the Canadian NGO.

Alberta’s (Canada) Ingenuity Lab and its nanotechnology dreams

I believe the Nov. 6, 2013 news release from Alberta’s Ingenuity Lab was meant to announce this new lab’s existence (why does Alberta need another nanotechnology-focused institution?),

Alberta’s first accelerator laboratory brings together some of nanotechnology’s leading players to make small science have a big impact in Alberta, by harnessing and commercializing emerging technologies, and simultaneously addressing some of the grand challenges faced by our province.

“We still have an incredible amount to learn from nature. This we know,” says Ingenuity Lab Director, Dr. Carlo Montemagno. “The opportunity in front of us is the potential to create a bio-enabled, globally-competitive and value-added industry while training the next generation of researchers and innovators in Alberta.”

With a research team of 25 strong and growing, Ingenuity Lab is focusing its research on the mining, energy, agriculture and health sectors, and is a $40 million provincial government led initiative working in partnership with the National Institute for Nanotechnology (NINT), Campus Alberta and industry.

Alberta already hosts the National Institute of Nanotechnology (which was and perhaps still is partially funded by the province of Alberta) and there’s ACAMP “(Alberta Centre for Advanced MNT Products) is a not for profit organization that provides specialized services to micro nano technology clients. Clients have access to world-class equipment, facilities …” Both the University of Alberta and the University of Calgary have any number of labs dedicated to nanotechnology research and then there’s nanoAlberta which now lives on as part of  Alberta Innovates where* it’s listed on their Programs and Services page. It seems to me they have a number of organizations devoted to nanotechnology research and/or commercialization in Alberta. By the way, Canada’s National Institute of Nanotechnology (NINT) can still be found on two different websites; there’s the NINT on the National Research Council of Canada website and there’s the NINT on the University of Alberta website.

While the lab’s Nov. 19, 2013 news release (h/t Nanowerk) explores the lab’s goals, it doesn’t really answer the question: why another one?,

Dr. Carlo Montemagno and a world-class team of researchers are working across disciplines to identify innovative solutions to some of the province’s most difficult issues, including optimal resource extraction while enhancing environmental stewardship of Alberta’s signature natural resources [oil sands].

“Nanotechnology will have a significant impact on Canada’s economic prosperity and global competitive advantage,” says Ingenuity Lab Director, Dr. Carlo Montemagno.  “This enhanced understanding of matter will provide the necessary underpinning for revolutionary discoveries across disciplines that will forever change the way we envisage the future.”

Ingenuity Lab is applying recent advances in targeted drug delivery and other areas to develop novel technologies that will enable the recovery of valuable materials, currently discarded as waste, from our industrial operations and the environment.

The Ingenuity research team is engineering new materials that have the capability to detect, extract and bind to rare earth and precious metals that exist in nature or synthetic materials. As this approach is refined, it will spawn a variety of applications like reclamation of trace amounts of valuable or harmful materials from soil, water and industrial process streams, including tailing ponds.

“Our molecular recognition techniques, what we call biomining, offer the ability to maximize the utility of our resources, establish a new path forward to restore damaged lands and water and to reaffirm Canada’s commitment to societal and economic prosperity,” says Dr. Montemagno. “The further we delve into the very makeup of the natural and inorganic components of our universe, the more opportunities we uncover. This radical shift away from conventional thinking means that we leverage research gains beyond their intended purpose. We achieve a multiplier effect that increases the capacity of nanotechnology to address the grand challenges facing modern industrial societies.”

I became a little curious about Dr. Montemagno and found this on the Ingenuity Lab’s About the Director page,

Dr. Carlo Montemagno

“The purpose of scientific study is to create new knowledge by working at the very edge where world-changing knowledge unfolds.” – C. Montemagno

Driven by the principles of excellence, honor and responsibility and an unwavering commitment to education as an engine of economic prosperity, Dr. Montemagno has become a world-renowned expert in nanotechnology and is responsible for creating groundbreaking innovations which solve complex challenges in the areas of informatics, agriculture, chemical refining, transportation, energy, and healthcare.

He was Founding Dean of the College of Engineering and Applied Sciences at University of Cincinnati; received a Bachelor of Science degree in Agriculture and Bio Engineering from Cornell University; a Master’s Degree  in Petroleum and Natural Gas Engineering from Penn State and a Ph.D. in Civil Engineering and Geological Sciences from Notre Dame.

“Research and education are critical to success because the transfer of knowledge creates economic prosperity.” — C. Montemagno

Dr. Montemagno has been recognized with prestigious awards including the Feynman Prize (for creating single molecule biological motors with nano-scale silicon devices); the Earth Award Grand Prize (for cell-free artificial photosynthesis with over 95% efficiency); the CNBC Business Top 10 Green Innovator award (for Aquaporin Membrane water purification and desalination technology); and named a Bill & Melinda Gates Grand Challenge Winner (for a pH sensing active microcapsule oral vaccine delivery system which increased vaccine stability and demonstrated rapid uptake in the lower GI tract.)

Despite my doubts, I wish the Ingenuity Lab folks good luck with their efforts.

*where’s changed to where, Feb. 3, 2014

Sustainable Development Technology Canada, Vive Crop, two projects, and $14.7M in funding

The Canadian government used to create Crown Corporations, a kind of quasi-government agency/ business corporation that was run as a not-for-profit operation. Sustainable Development Technology Canada (SDTC) bears some of the marks of a crown corporation (completely government-funded) but it’s self-described as a not-for-profit foundation. Before getting to the main event (Vive Crop) here’s a little bit from the SDTC Profile page,

Sustainable Development Technology Canada (SDTC) is a not-for-profit foundation that finances and supports the development and demonstration of clean technologies which provide solutions to issues of climate change, clean air, water quality and soil, and which deliver economic, environmental and health benefits to Canadians.

SDTC operates two funds aimed at the development and demonstration of innovative technological solutions. The SD Tech Fund™ supports projects that address climate change, air quality, clean water, and clean soil. The NextGen Biofuels Fund™ supports the establishment of first-of-kind large demonstration-scale facilities for the production of next-generation renewable fuels.

SDTC is clearly focused on the economy and entrepreneurship in addition to sustainability as per their Sept. 9, 2013 news release about  a recent $14.7M investment,

The Government of Canada is showing its commitment to a green Canadian economy with an in investment of $14.7 million to help four new clean technology projects from across the country reach commercialization. The announcement was made today by the Honourable Joe Oliver, Minister of Natural Resources, and Dr. Vicky Sharpe, President and CEO of Sustainable Development Technology Canada (SDTC).

“Canada must nurture highly skilled individuals and new ideas that will help our businesses innovate, secure new markets and create well-paying jobs,” said Minister Oliver. “By supporting advanced research and technology, our government is investing in Canadian prosperity and a cleaner environment.”

“The projects announced today are great examples of the Canadian innovation and entrepreneurship that characterizes SDTC’s portfolio, valued at more than $2 billion and brimming with innovative technological solutions,” said Vicky Sharpe, President and CEO of SDTC. “Canadian cleantech leaders are continuing to create economic opportunities and open up avenues to new export markets.”


The newly-funded projects are representative of the investment priorities established in the SD Business Cases™, a series of six reports published by SDTC that provide strategic insights into specific economic sectors (available in the Knowledge Centre section of the SDTC website at http://www.sdtc.ca/).

SDTC’s SD Tech Fund™ has committed $598 million to 246 clean technology projects. These figures include adjustments made to the portfolio.

Vive Crop, headquartered in Toronto, Ontario,  is a recipient for two of the four projects being funded. Here’s more about one of the projects from the Sept. 18, 2013 Vive Crop news release,

Vive Crop Protection is pleased to announce that it received an investment of $3.7 million from the Government of Canada through Sustainable Development Technology Canada (SDTC) to develop an improved pesticide application distribution method that will translate into greater efficiency and reduced wastage.

Vive’s Allosperse® particle will be used to hold pesticides and deliver them precisely where they need to go.

“Canada must nurture highly skilled individuals and new ideas that will help our businesses innovate, secure new markets and create well-paying jobs,” said Minister Oliver. “By supporting advanced research and technology, our government is investing in Canadian prosperity and a cleaner environment.”

“Canadian farmers want a more economical and effective way to protect their crops from pests,” said Keith Thomas, CEO, Vive Crop Protection. “Thanks to support from the Government of Canada through Sustainable Development Technology Canada, Vive Crop Protection will further develop the Allosperse platform, precisely targeting pesticides where they act on crops.”

The best crop protection happens when pesticides stay where they are intended to protect the crop, for example on a crop’s leaves or at its roots. Vive has developed Allosperse®, a tiny particle that has unique properties: it has a hydrophilic (water-loving) exterior and an oleophillic (oil-loving) interior. Pesticides, which are also oleophillic, are loaded into the particle before application to crops. The next generation of Allosperse particles will have increased stickiness to leaves, avoiding run-off during the rain, and will penetrate leaves and seeds to offer systemic plant protection. Finally, the specially-designed particles will control the movement of the particle through the soil, allowing it to target pests at the plant’s roots. Less product, and therefore less cost, would be required to achieve equivalent results, and growers can get better protection with less accidental surface water run-off and soil contamination.

I have written about Vive Crop previously (most recently in an Aug. 7, 2013 posting when they received approval from the US Environmental Protection Agency for an insecticide) and my curiosity about Allosperse particles has not yet been satisfied. What are the chemical constituents? In lieu of an answer to that question (it’s nowhere on the company website), I found more information about Vive Crop and its SDTC-funded projects in this latest round of funding. As I noted previously, Vive Crop is involved in two of the funded projects as per the Sept. 9, 2013 SDTC backgrounder,

2. Lead organization: Macrotek

Project Title: Novel MVI Acid Gas Scrubbing Technology Project

Environmental Benefits: Climate Change/Clean Air/Clean Water/Clean Soil

Economic Sector: Waste management

SDTC Investment: $2 million

Consortium Members:

Macrotek

Vive Crop Protection [emphasis mine]

Plasco Energy Group

Project Description:

To avoid injecting contaminants into the atmosphere, industries use chemical reactions to “scrub” exhaust before it is emitted from smokestacks. However, current scrubbing techniques use caustic and oxidizing reagents (materials used to produce a chemical reaction). Macrotek has developed a groundbreaking suite of technologies that scrub in a novel, cost-effective and efficient way. The technology is developed initially to eliminate hydrogen sulfide (H2S), which is a major component of acid rain, from industrial gas streams. The technology uses a regenerative reagent, drastically reducing reagent consumption. It also converts H2S into its elemental form of sulphur, eliminating the current need to treat sulphate byproduct in wastewater streams. When full life-cycle costs are considered, this technology could cost less than 50 percent of the operating costs of traditional scrubber technologies, while maintaining or improving contaminant removal efficiency. This technology has the potential to address a multitude of other pollutants, such as nitrogen oxides, simultaneously.

3. Lead organization: Vive Crop Protection

Project Title: Targeted Delivery for Crop Protection

Environmental Benefits: Clean water/clean soil

Economic Sector: Agriculture

SDTC Investment: $3.7 million

Consortium Members:

Vive Crop Protection

Dow AgroSciences LLC

Loveland Products Inc. (a division of crop production services)

Makhteshim Agan of North America Inc.

Halltech Inc.

University of Alberta – Office of Environmental NanoSafety

University of Toronto – Institute for Optical Sciences

McGill University

Project Description:

The best crop protection happens when pesticides stay where they are intended to protect the crop, for example on a crop’s leaves or at its roots. Vive has developed Allosperse®, a tiny particle that has unique properties: it has a hydrophilic (water-loving) exterior and an oleophilic (oil-loving) interior. Pesticides, which are also oleophilic, are loaded into the particle before application to crops. The next generation of Allosperse particles will have increased stickiness to leaves, avoiding run-off during the rain, and will penetrate leaves and seeds to offer systemic plant protection. Finally, the specially designed particles will control the movement of the particle through the soil, allowing it to target pests at the plant’s roots. Less product, and therefore less cost, would be required to achieve equivalent results, and growers can get better protection with less accidental surface water run-off and soil contamination.

Congratulations to Vive Crop and all of the other funding recipients!

Responsible innovation at the Center for Nanotechnology in Society’s (Arizona State University) Virtual Institute

The US National Science Foundation (NSF) has a funding program called Science Across Virtual Institutes (SAVI) which facilitates global communication for scientists, engineers, and educators. From the SAVI home page,

Science Across Virtual Institutes (SAVI) is a mechanism to foster and strengthen interaction among scientists, engineers and educators around the globe. It is based on the knowledge that excellence in STEM (science, technology, engineering and mathematics) research and education exists in many parts of the world, and that scientific advances can be accelerated by scientists and engineers working together across international borders.

According to a Sept. 24, 2013 news item on Nanowerk, the NSF’s SAVI program has funded a new virtual institute at Arizona State University’s (ASU)  Center for Nanotechnology in Societ6y (CNS), Note: Links have been removed,

The National Science Foundation recently announced a grant of nearly $500,000 to establish a new Virtual Institute for Responsible Innovation (VIRI) at the Center for Nanotechnology in Society at ASU (CNS-ASU). In a global marketplace that thrives on technological innovation, incorporating ethics, responsibility and sustainability into research and development is a critical priority.

VIRI’s goal is to enable an international community of students and scholars who can help establish a common understanding of responsible innovation in research, training and outreach. By doing so, VIRI aims to contribute to the governance of emerging technologies that are dominated by market uncertainty and difficult questions of how well they reflect societal values.

VIRI founding institutional partners are University of Exeter (UK), Durham University (UK), University of Sussex (UK), Maastricht University (Netherlands), University of Copenhagen (Denmark), Karlsruhe Institute of Technology (Germany), University of Waterloo (Canada), Oslo and Akershus University College of Applied Sciences (Norway), and State University of Campinas (Brazil).

VIRI founding institutional affiliates are the US National Academy of Engineering’s Center for Engineering, Ethics and Society, IEEE Spectrum Online and Fondazione Giannino Bassetti.

Interesting cast of characters.

The Sept. 23, 2013 ASU news release, which originated the news item, offers some insight into the time required to create this new virtual institute,

Led by ASU faculty members David Guston and Erik Fisher, VIRI will bring a social and ethical lens to research and development practices that do not always focus on the broader implications of their research and products. Guston, director of CNS-ASU, co-director of the Consortium of Science, Policy and Outcomes, and professor in the School of Politics and Global Studies, has been pushing for the establishment of academic units that focus on responsible innovation for years.

“We are thrilled that NSF has chosen to advance responsible innovation through this unique, international collaboration,” Guston said. “It will give ASU the opportunity to help focus the field and ensure that people start thinking about the broader implications of knowledge-based innovation.”

Fisher, assistant professor in the School for Politics and Global Studies, has long been involved in integrating social considerations into science research laboratories through his NSF-funded Socio-Technical Integration Research (STIR) project, an affiliated project of CNS-ASU.

“Using the insights we’ve gained in the labs that have participated in the STIR project, we expect to be able to get VIRI off the ground and make progress very quickly,” Fisher said.

The VIRI appears to be an invite-only affair and it’s early days yet so there’s not much information on the website but the VIRI home page looks promising,

“Responsible innovation” (RI) is an emerging term in science and innovation policy fields across the globe. Its precise definition has been at the center of numerous meetings, research council decisions, and other activities in recent years. But today there is neither a clear, unified vision of what responsible innovation is, what it requires in order to be effective, nor what it can accomplish.
The Virtual Institute for Responsible Innovation (VIRI)

The Virtual Institute for Responsible Innovation (VIRI) was created to accelerate the formation of a community of scholars and practitioners who, despite divides in geography and political culture, will create a common concept of responsible innovation for research, training and outreach – and in doing so contribute to the governance of emerging technologies under conditions dominated by high uncertainty, high stakes, and challenging questions of novelty.
Mission

VIRI’s mission in pursuit of this vision is to develop and disseminate a sophisticated conceptual and operational understanding of RI by facilitating collaborative research, training and outreach activities among a broad partnership of academic and non-academic institutions.
Activities

VIRI will:

  • perform interlinked empirical, reflexive and normative research in a collaborative and comparative mode to explore and develop key concepts in RI;
  • develop curricular material and support educational exchanges of graduate students, post-doctoral fellows, and faculty;
  •  create a dynamic online community to represent the breadth of the institute and its multi-lateral activities;
  •  disseminate outputs from across the institute through its own and partner channels and will encourage broad sharing of its research and educational findings.

VIRI will pursue these activities with founding academic partners in the US, the UK, the Netherlands, Germany, Denmark, Norway, Brazil and Canada.

The site does offer links to  relevant blogs here.

I was a bit surprised to see Canada’s University of Waterloo rather than the University of Alberta (home of Canada’s National Institute of Nanotechnology)  as one of the partners.