Tag Archives: University of Bremen

How can ballet performances become more accessible? Put a sensor suit on the dancers*

Take a look,

While this December 20, 2023 news item on phys.org is oriented to Christmas, it applies to much more,

Throughout the festive season, countless individuals delight in the enchantment of ballet spectacles such as “The Nutcracker.” Though the stories of timeless performances are widely known, general audiences often miss the subtle narratives and emotions dancers seek to convey through body movements—and they miss even more when the narratives are not based on well-known stories.

This prompts the question: how can dance performances become more accessible for people who are not specialists? [emphasis mine]

Researchers think they have the answer, which involves putting dancers in sensor suits.

Putting dancers into sensor suits would not have been my first answer to that question.

A December 20, 2023 Loughborough University (UK) press release, which originated the news item, describes the international research project, the Kinesemiotic Body, and its sensor suits Note: A link has been removed,

Loughborough University academics are working with the English National Ballet and the University of Bremen [Germany] to develop software that will allow people to understand the deeper meanings of performances by watching annotated CGI [computer-generated imagery] videos of different dances.

Leading this endeavour is former professional ballerina Dr Arianna Maiorani, an expert in ‘Kinesemiotics – the study of meaning conveyed through movement – and the creator of the ‘Functional Grammar of Dance’ (FGD), a model that deciphers meaning from dance movements.

Dr Maiorani believes the FGD – which is informed by linguistics and semiotics (the study of sign-based communication) theories – can help create visualisations of ‘projections’ happening during dance performances to help people understand what the dance means.

“Projections are like speech bubbles made by movement”, explains Dr Maiorani, “They are used by dancers to convey messages and involve extending body parts towards significant areas within the performance space.

“For example, a dancer is moving towards a lake, painted on the backdrop of a stage. They extend an arm forward towards the lake and a leg backwards towards a stage prop representing a shed. The extended arm means they are going to lake, while the leg means they are coming from shed.

“Using the Functional Grammar of Dance, we can annotate dances –filling the projection speech bubbles with meaning that people can understand without having background knowledge of dance.”

Dr Maiorani and a team of computer science and technology experts – including Loughborough’s Professor Massimiliano Zecca, Dr Russell Lock, and Dr Chun Liu – have been creating CGI videos of English National Ballet dancers to use with the FGD.

This involved getting dancers – including First Soloist Junor Souza and First Artist Rebecca Blenkinsop – to perform individual movements and phrases while wearing sensors on their head, torso, and limbs.

Using the FGD, they decoded the conveyed meanings behind different movements and annotated the CGI videos accordingly.

The researchers are now investigating how these videos can facilitate engagement for audiences with varying levels of dance familiarity, aiming to eventually transform this research into software for the general public.

Of the ultimate goal for the research, Dr Maiorani said: “We hope that our work will improve our understanding of how we all communicate with our body movement, and that this will bring more people closer to the art of ballet.”

The Loughborough team worked with experts from the University of Bremen including Professor John Bateman and Ms Dayana Markhabayeva, and experts from English National Ballet. The research was funded by the AHRC-DFG and supported by the LU Institute of Advanced Studies.

They are also looking at how the FDG can be used in performance and circus studies, as well as analysing character movements within video games to determine any gender biases.

You can find the Kinesemiotic Body here, where you’ll find this academic project description, Note: Links have been removed,

The Kinesemiotic Body is a joint research project funded by Deutsche Forschungsgemeinschaft (DFG) and  Arts & Humanities Research Council  (AHRC) in cooperation with the English National Ballet (ENB). The project brings together an interdisciplinary group of researchers with the aim of evaluating whether a description of dance discourse informed by multimodal discourse analysis and visualised through enriched videos can capture the way dance communicates through a flow of choreographed sequences in space, and whether this description can support the interpretative process of nonexpert audiences. The theoretical framework of the research project is based on an extended dynamic theory called segmented discourse representation theory (SDRT) and on the Functional Grammar of Dance Movement created by Project Investigator Maiorani. Project’s long-term goal is to develop an interdisciplinary area of research focusing on movement-based communication that can extend beyond the study of dance to other movement-based forms of communication and performance and foster the creation of partnerships between the academia and the institutions that host and promote such disciplines.

It’s been a while since I’ve had a piece that touches on multimodal discourse.

*March 20, 2024 1630: Head changed from “How can ballet performances become more accessible? Put on a sensor suit on the dancers*” to “How can ballet performances become more accessible? Put a sensor suit on the dancers”

Water wears away stone at Rice University (Texas, US) and at the University of Bremen (Germany)

I am fascinated by research that focuses on boundaries as does this work from Rice University (Texas, US) and the University of Bremen (Germany) but first a general description of the research from a Dec. 6, 2013 news item on Nanowerk (Note: A link has been removed),

Scientists from Rice University and the University of Bremen’s Center for Marine Environmental Sciences (MARUM) in Germany have combined cutting-edge experimental techniques and computer simulations to find a new way of predicting how water dissolves crystalline structures like those found in natural stone and cement.

In a new study featured on the cover of the Nov. 28 issue of the Journal of Physical Chemistry C (“Kinetic Monte Carlo Simulations of Silicate Dissolution: Model Complexity and Parametrization”), the team found their method was more efficient at predicting the dissolution rates of crystalline structures in water than previous methods. The research could have wide-ranging impacts in diverse areas, including water quality and planning, environmental sustainability, corrosion resistance and cement construction.

The Dec. 5, 2013 Rice University news release, which originated the news item, explains the reasons for the research and delves into the subject of boundaries,

“We need to gain a better understanding of dissolution mechanisms to better predict the fate of certain materials, both in nature and in man-made systems,” said lead investigator Andreas Lüttge, a professor of mineralogy at MARUM and professor emeritus and research professor in Earth science at Rice. His team specializes in studying the thin boundary layer that forms between minerals and fluids.

Boundary layers are ubiquitous in nature; they occur when raindrops fall on stone, water seeps through soil and the ocean meets the sea floor. Scientists and engineers have long been interested in accurately explaining how crystalline materials, including many minerals and stones, interact with and are dissolved by water. Calculations about the rate of these dissolution processes are critical in many fields of science and engineering.

In the new study, Lüttge and lead author Inna Kurganskaya, a research associate in Earth science at Rice, studied dissolution processes using quartz, one of the most common minerals found in nature. Quartz, or silicon dioxide, is a type of silicate, the most abundant group of minerals in Earth’s crust.

At the boundary layer where quartz and water meet, multiple chemical reactions occur. Some of these happen simultaneously and others take place in succession. In the new study, the researchers sought to create a computerized model that could accurately simulate the complex chemistry at the boundary layer.

“The new model simulates the dissolution kinetics at the boundary layer with greater precision than earlier stochastic models operating at the same scale,” Kurganskaya said. “Existing simulations rely on rate constants assigned to a wide range of possible reactions, and as a result, the total material flux from the surface have an inherent variance range — a plus or minus factor that is always there.”

The team used new equipment to achieve increased imaging precision (from the news release),

One reason the team’s simulations more accurately represent real processes is that its models incorporate actual measurements from cutting-edge instruments and from high-tech materials, including glass ceramics and nanomaterials. With a special imaging technique called “vertical scanning interferometry,” which the group at MARUM and Rice helped to develop, the team scanned the crystal surfaces of both minerals and manufactured materials to generate topographic maps with a resolution of a just a few nanometers, or billionths of a meter.

“We found that dissolution rates that were predicted using rate constants were sometimes off by as much as two orders of magnitude,” Lüttge said.

The new method for more precisely predicting dissolution processes could revolutionize the way engineers and scientists make many calculations related to a myriad of things, including the stability of building materials, the longevity of materials used for radioactive waste storage and more, he said.

“Further work is needed to prove the broad utility of the method,” he said. “In the next phase of research, we plan to test our simulations on larger systems and over longer periods.”

One often sees funding information at the end of these types of news releases, which I don’t usually include here but I found this one a bit surprising (this is the first time I’ve seen research supported by a university that has no researchers involved in the work),

The research was supported by the Global Climate and Energy Project at Stanford University

The researchers offered this image to illustrate their work,

The dissolution process of a crystalline structure in water is shown: two bonded SiO4 -- molecules dissolve (top left), a quartz crystal (top right) and the computer-simulated surface of a dissolving crystalline structure (below). CREDIT: MARUM & Rice University

The dissolution process of a crystalline structure in water is shown: two bonded SiO4 — molecules dissolve (top left), a quartz crystal (top right) and the computer-simulated surface of a dissolving crystalline structure (below). CREDIT: MARUM & Rice University

For those who just can’t get enough information, here’s a link to and a citation for the paper,

Kinetic Monte Carlo Simulations of Silicate Dissolution: Model Complexity and Parametrization by Inna Kurganskaya and Andreas Luttge. J. Phys. Chem. C, 2013, 117 (47), pp 24894–24906 DOI: 10.1021/jp408845m Publication Date (Web): October 10, 2013
Copyright © 2013 American Chemical Society

This paper is behind a paywall.