Tag Archives: University of British Columbia

Symbiosis (science education initiative) in British Columbia (Canada)

Is it STEM (science, technology, engineering, and mathematics) or is it STEAM (science, technology, engineering, arts, and mathematics)?

It’s STEAM as least as far as Dr. Scott Sampson is concerned. In his July 6, 2018 Creative Mornings Vancouver talk in Vancouver (British Columbia, Canada) he mentioned a major science education/outreach initiative taking place in the province of British Columbia (BC) but intended for all of Canada, Symbiosis There was some momentary confusion as Sampson’s slide deck identified it as a STEM initiative. Sampson verbally added the ‘A’ for arts and henceforth described it as a STEAM initiative. (Part of the difficulty is that many institutions have used the term STEM and only recently come to the realization they might want to add ‘art’ leading to confusion in Canada and the US, if nowhere else, as old materials require updating. Actually, I vote for adding the humanities too so that we can have SHTEAM.)

You’ll notice, should you visit the Symbiosis website, that the STEM/STEAM confusion extends further than Sampson’s slide deck.

Sampson,  “a dinosaur paleontologist, science communicator, and passionate advocate for reimagining cities as places where people and nature thrive, serves (since 2016) as president and CEO of Science World British Columbia” or as they’re known on their website:  Science World at TELUS World of Science. Unwieldy, eh?

The STEM/STEAM announcement

None of us in the Creative Mornings crowd had heard of Symbiosis or Scott Sampson for that matter (apparently, he’s a huge star among the preschool set due to his work on the PBS [US Public Broadcasting Service] children’s show ‘Dinosaur Train’). Regardless, it was good to hear  of this effort although my efforts to learn more about it have been a bit frustrated.

First, here’s what I found: a May 25, 2017 Science World media release (PDF) about Symbiosis,

Science World Introduces Symbiosis
A First-of Its-Kind [sic] Learning Ecosystem forCanada

We live in a time of unprecedented change. High-tech innovations are rapidly transforming 21st century societies and the Canadian marketplace is increasingly dominated by novel, knowledge-based jobs requiring high levels of literacy in science, technology, engineering and math (STEM). Failing to prepare the next generation to be STEM literate threatens the health of our youth, the economy and the places we live. STEM literacy needs to be integrated into the broader context of what it means to be a 21st century citizen. Also important is inclusion of an extra letter, “A,” for art and design, resulting in STEAM. The idea behind Symbiosis is to make STEAM learning accessible across Canada.

Every major Canadian city hosts dozens to hundreds of organizations that engage children and youth in STEAM learning. Yet, for the most part, these organizations operate in isolation. The result is that a huge proportion of Canadian youth, particularly in First Nations and other underserved communities, are not receiving quality STEAM learning opportunities.

In order to address this pressing need, Science World British Columbia (scienceworld.ca) is spearheading the creation of Symbiosis, a deeply collaborative STEAM learning ecosystem. Driven by a diverse network of cross-sector partners, Symbiosis will become a vibrant model for scaling the kinds of learning and careers needed in a knowledge-based economy.

Today [May 25, 2017], Science World is proud to announce that Symbiosis has been selected by STEM Learning Ecosystems, a US-based organization, to formally join a growing movement. In just two years, the STEM Learning Ecosystems  initiative has become a thriving network of hundreds of organizations and thousands of individuals, joined in regional partnerships with the objective of collaborating in new and creative ways to increase equity, quality, and STEM learning outcomes for all youth. Symbiosis will be the first member of this initiative outside the United States.

Symbiosis was selected to become part of the STEM Learning Ecosystem initiative because of a demonstrated [emphasis mine] commitment to cross-sector collaborations in schools and beyond the classroom. As STEM Ecosystems evolve, students will be able to connect what they’ve learned, in and out of school, with real-world, community-based opportunities.

I wonder how Symbiosis demonstrated their commitment. Their website doesn’t seem to have existed prior to 2018 and there’s no information there about any prior activities.

A very Canadian sigh

I checked the STEM Learning Ecosystems website for its Press Room and found a couple of illuminating press releases. Here’s how the addition of Symbiosis was described in the May 25, 2017 press release,

The 17 incoming ecosystem communities were selected because they demonstrate a commitment to cross-sector collaborations in schools and beyond the classroom—in afterschool and summer programs, at home, with local business and industry partners, and in science centers, libraries and other places both virtual and physical. As STEM Ecosystems evolve, students will be able to connect what is learned in and out of school with real-world opportunities.

“It makes complete sense to collaborate with like-minded regions and organizations,” said Matthew Felan of the Great Lakes Bay Regional Alliance STEM Initiative, one of the founding Ecosystems. “STEM Ecosystems provides technical assistance and infrastructure support so that we are able to tailor quality STEM learning opportunities to the specific needs of our region in Michigan while leveraging the experience of similar alliances across the nation.”

The following ecosystem communities were selected to become part of this [US} national STEM Learning Ecosystem:

  • Arizona: Flagstaff STEM Learning Ecosystem
  • California: Region 5 STEAM in Expanded Learning Ecosystem (San Benito, Santa Clara, Santa Cruz, Monterey Counties)
  • Louisiana: Baton Rouge STEM Learning Network
  • Massachusetts: Cape Cod Regional STEM Network
  • Michigan: Michigan STEM Partnership / Southeast Michigan STEM Alliance
  • Missouri: Louis Regional STEM Learning Ecosystem
  • New Jersey: Delran STEM Ecosystem Alliance (Burlington County)
  • New Jersey: Newark STEAM Coalition
  • New York: WNY STEM (Western New York State)
  • New York: North Country STEM Network (seven counties of Northern New York State)
  • Ohio: Upper Ohio Valley STEM Cooperative
  • Ohio: STEM Works East Central Ohio
  • Oklahoma: Mayes County STEM Alliance
  • Pennsylvania: Bucks, Chester, Delaware, Montgomery STEM Learning Ecosystem
  • Washington: The Washington STEM Network
  • Wisconsin: Greater Green Bay STEM Network
  • Canada: Symbiosis, British Columbia, Canada

Yes, somehow a Canadian initiative becomes another US regional community in their national ecosystem.

Then, they made everything better a year later in a May 29, 2018 press release,

New STEM Learning Ecosystems in the United States are:

  • California: East Bay STEM Network
  • Georgia: Atlanta STEAM Learning Ecosystem
  • Hawaii: Hawai’iloa ecosySTEM Cabinet
  • Illinois: South Suburban STEAM Network
  • Kentucky: Southeastern Kentucky STEM Ecosystem
  • Massachusetts: MetroWest STEM Education Network
  • New York: Greater Southern Tier STEM Learning Network
  • North Carolina: STEM SENC (Southeastern North Carolina)
  • North Dakota: North Dakota STEM Ecosystem
  • Texas: SA/Bexar STEM/STEAM Ecosystem

The growing global Community of Practice has added: [emphasis mine]

  • Kenya: Kenya National STEM Learning Ecosystem
  • México: Alianza Para Promover la Educación en STEM (APP STEM)

Are Americans still having fantasies about ‘manifest destiny’? For those unfamiliar with the ‘doctrine’,

In the 19th century, manifest destiny was a widely held belief in the United States that its settlers were destined to expand across North America.  …

They seem to have given up on Mexico but the dream of acquiring Canadian territory rears its head from time to time. Specifically, it happens when Quebec holds a referendum (the last one was in 1995) on whether or not it wishes to remain part of the Canadian confederation. After the last referendum, I’d hoped that was the end of ‘manifest destiny’ but it seems these 21st Century-oriented STEM Learning Ecosystems people have yet to give up a 19th century fantasy. (sigh)

What is Symbiosis?

For anyone interested in the definition of the word, from Wordnik,

symbiosis

Definitions

from The American Heritage® Dictionary of the English Language, 4th Edition

  • n. Biology A close, prolonged association between two or more different organisms of different species that may, but does not necessarily, benefit each member.
  • n. A relationship of mutual benefit or dependence.

from Wiktionary, Creative Commons Attribution/Share-Alike License

  • n. A relationship of mutual benefit.
  • n. A close, prolonged association between two or more organisms of different species, regardless of benefit to the members.
  • n. The state of people living together in community.

As for this BC-based organization, Symbiosis, which they hope will influence Canadian STEAM efforts and learning as a whole, I don’t have much. From the Symbiosis About Us webpage,

A learning ecosystem is an interconnected web of learning opportunities that encompasses formal education to community settings such as out-of-school care, summer programs, science centres and museums, and experiences at home.

​In May 2017, Symbiosis was selected by STEM Learning Ecosystems, a US-based organization, to formally join a growing movement. As the first member of this initiative outside the United States, Symbiosis has demonstrated a commitment to cross-sector collaborations in schools and beyond the classroom. As Symbiosis evolves, students will be able to connect what they’ve learned, in and out of school, with real-world, community-based opportunities.

We live in a time of unprecedented change. High-tech innovations are rapidly transforming 21st century societies and the Canadian marketplace is increasingly dominated by novel, knowledge-based jobs requiring high levels of literacy in science, technology, engineering and math (STEM). Failing to prepare the next generation to be STEM literate threatens the health of our youth, the economy, and the places we live. STEM literacy needs to be integrated into the broader context of what it means to be a 21st century citizen. Also important is inclusion of an extra letter, “A,” for art and design, resulting in STEAM.

In order to address this pressing need, Science World British Columbia is spearheading the creation of Symbiosis, a deeply collaborative STEAM learning ecosystem. Driven by a diverse network of cross-sector partners, Symbiosis will become a vibrant model for scaling the kinds of learning and careers needed in a knowledge-based economy.

Symbiosis:

  • Acknowledges the holistic connections among arts, science and nature
  • ​Is inclusive and equitable
  • Is learner-centered​
  • Fosters curiosity and life-long learning ​​
  • Is relevant—should reflect the community
  • Honours diverse perspectives, including Indigenous worldviews
  • Is partnerships, collaboration, and mentorship
  • ​Is a sustainable, thriving community, with resilience and flexibility
  • Is research-based, data-driven
  • Shares stories of success—stories of people/role models using STEAM and critical thinking to make a difference
  • Provides a  variety of access points that are available to all learners

I was looking for more concrete information such as:

  • what is your budget?
  • which organizations are partners?
  • where do you get your funding?
  • what have you done so far?

I did get an answer to my last question by going to the Symbiosis news webpage where I found these,

We’re hiring!

 7/3/2018 [Their deadline is July 13, 2018]

STAN conference

3/20/2018

Symbiosis on CKPG

3/12/2018

Design Studio #2 in March

2/15/2018

BC Science Outreach Workshop

2/7/2018

Make of that what you will. Also, there is a 2018 copyright notice (at the bottom of the webpages) but no copyright owner is listed.

There is some Symbiosis information

A magazine known as BC Business (!) offers some details in a May 11, 2018 opinion piece, Note: Links have been removed,

… Increasingly, the Canadian marketplace is dominated by novel, knowledge-based jobs requiring high levels of literacy in STEM (science, technology, engineering and math). Here in B.C., the tech sector now employs over 100,000 people, about 5 percent of the province’s total workforce. As the knowledge economy grows, these numbers will rise dramatically.

Yet technology-driven businesses are already struggling to fill many roles that require literacy in STEM. …

Today, STEM education in North America and elsewhere is struggling. One study found that 60 percent of students who enter high school interested in STEM fields change their minds by graduation. Lacking mentoring, students, especially girls, tend to lose interest in STEM. [emphasis mine]Today, only 22 percent of Canadian STEM jobs are held by women. Failing to prepare the next generation to be STEM-literate threatens the prospects of our youth, our economy and the places we live.

More and more, education is no longer confined to classrooms. … To kickstart this future, a “STEM learning ecosystem” movement has emerged in the United States, grounded in deeply collaborative, cross-sector networks of learning opportunities.

Symbiosis will concentrate on a trio of impacts:

1) Dramatically increasing the number of qualified STEM mentors in B.C.—from teachers and scientists to technologists and entrepreneurs;

2) Connecting this diversity of mentors with children and youth through networked opportunities, from classroom visits and on-site shadowing to volunteering and internships; and

3) Creating a digital hub that interweaves communities, hosts a library of resources and extends learning through virtual offerings. [emphases mine]

Science World British Columbia is spearheading Symbiosis, and organizations from many sectors have expressed strong interest in collaborating—among them K-12 education, higher education, industry, government and non-profits. Several of these organizations are founding members of the BC Science Charter, which formed in 2013.

Symbiosis will launch in fall of 2018 with two pilot communities: East Vancouver and Prince George. …

As for why students tend to lose interest in STEM, there’s a rather interesting longitudinal study taking place in the UK which attempts to answer at least some of that question. I first wrote about the ASPIRES study in a January 31, 2012 posting: Science attitude kicks in by 10 years old. This was based on preliminary data and it seemed to be confirmed by an unrelated US study of high school students also mentioned in that posting (scroll down about 40% of the way).

In short, both studies suggested that children are quite to open to science but when it comes time to think about careers, they tend to ‘aspire’ to what they see amongst family and friends. I don’t see that kind of thinking reflected in any of the information I’ve been able to find about Symbiosis and it was not present in Sampson’s, Creative Mornings talk.

However, I noted during Sampson’s talk that he mentioned his father, a professor of psychology at the University of British Columbia and how he had based his career expectations on his father’s career. (Sampson is from Vancouver originally.) Sampson, like his father, was at one point a professor of ‘science’ at a university.

Perhaps one day someone from Symbiosis will look into the ASPIRE studies or even read my blog 🙂

You can find the latest about what is now called the ASPIRES 2 study here. (I will try to post my own update to the ASPIRES projects in the near future).

Best hopes

I am happy to see Symbiosis arrive on the scene and I wish all the best for the initiative. I am less concerned than the BC Business folks about supplying employers with the kind of employees they want to hire and hopeful that Symbiosis will attract not just the students, educators, mentors, and scientists to whom they are appealing but will cast a wider net to include philosophers, car mechanics, hairdressers, poets, visual artists, farmers, chefs, and others in a ‘pursuit of wonder’.

Aside: I was introduced to the phrase ‘pursuit of wonder’ by a friend who sent me a link to José Teodoro’s May 29, 2018 interview with Canadian filmmaker, Peter Mettler for the Brick. Mettler discusses his film about the Northern Lights and the technical challenges he met along the way.

Wearable technology: two types of sensors one from the University of Glasgow (Scotland) and the other from the University of British Columbia (Canada)

Sometimes it’s good to try and pull things together.

University of Glasgow and monitoring chronic conditions

A February 23, 2018 news item on phys.org describes the latest wearable tech from the University of Glasgow,

A new type of flexible, wearable sensor could help people with chronic conditions like diabetes avoid the discomfort of regular pin-prick blood tests by monitoring the chemical composition of their sweat instead.

In a new paper published in the journal Biosensors and Bioelectronics, a team of scientists from the University of Glasgow’s School of Engineering outline how they have built a stretchable, wireless system which is capable of measuring the pH level of users’ sweat.

A February 22, 2018 University of Glasgow press release, which originated the news item, expands on the theme,

Ravinder Dahiya

 Courtesy: University of Glasgow

 

Sweat, like blood, contains chemicals generated in the human body, including glucose and urea. Monitoring the levels of those chemicals in sweat could help clinicians diagnose and monitor chronic conditions such as diabetes, kidney disease and some types of cancers without invasive tests which require blood to be drawn from patients.

However, non-invasive, wearable systems require consistent contact with skin to offer the highest-quality monitoring. Current systems are made from rigid materials, making it more difficult to ensure consistent contact, and other potential solutions such as adhesives can irritate skin. Wireless systems which use Bluetooth to transmit their information are also often bulky and power-hungry, requiring frequent recharging.

The University of Glasgow team’s new system is built around an inexpensively-produced sensor capable of measuring pH levels which can stretch and flex to better fit the contours of users’ bodies. Made from a graphite-polyurethane composite and measuring around a single square centimetre, it can stretch up to 53% in length without compromising performance. It will also continue to work after being subjected to flexes of 30% up to 500 times, which the researchers say will allow it to be used comfortably on human skin with minimal impact on the performance of the sensor.

The sensor can transmit its data wirelessly, and without external power, to an accompanying smartphone app called ‘SenseAble’, also developed by the team. The transmissions use near-field communication, a data transmission system found in many current smartphones which is used most often for smartphone payments like ApplePay, via a stretchable RFID antenna integrated into the system – another breakthrough innovation from the research team.

The smartphone app allows users to track pH levels in real time and was demonstrated in the lab using a chemical solution created by the researchers which mimics the composition of human sweat.

The research was led by Professor Ravinder Dahiya, head of the University of Glasgow’s School of Engineering’s Bendable Electronics and Sensing Technologies (BEST) group.

Professor Dahiya said: “Human sweat contains much of the same physiological information that blood does, and its use in diagnostic systems has the significant advantage of not needing to break the skin in order to administer tests.

“Now that we’ve demonstrated that our stretchable system can be used to monitor pH levels, we’ve already begun additional research to expand the capabilities of the sensor and make it a more complete diagnostic system. We’re planning to add sensors capable of measuring glucose, ammonia and urea, for example, and ultimately we’d like to see a system ready for market in the next few years.”

The team’s paper, titled ‘Stretchable Wireless System for Sweat pH Monitoring’, is published in Biosensors and Bioelectronics. The research was supported by funding from the European Commission and the Engineering and Physical Sciences Research Council (EPSRC).

Here’s a link to and a citation for the paper,

Stretchable wireless system for sweat pH monitoring by Wenting Dang, Libu Manjakkal, William Taube Navaraj, Leandro Lorenzelli, Vincenzo Vinciguerra. Biosensors and Bioelectronics Volume 107, 1 June 2018, Pages 192–202 [Available online February 2018] https://doi.org/10.1016/j.bios.2018.02.025

This paper is behind a paywall.

University of British Columbia (UBC; Okanagan) and monitor bio-signals

This is a completely other type of wearable tech monitor, from a February 22, 2018 UBC news release (also on EurekAlert) by Patty Wellborn (A link has been removed),

Creating the perfect wearable device to monitor muscle movement, heart rate and other tiny bio-signals without breaking the bank has inspired scientists to look for a simpler and more affordable tool.

Now, a team of researchers at UBC’s Okanagan campus have developed a practical way to monitor and interpret human motion, in what may be the missing piece of the puzzle when it comes to wearable technology.

What started as research to create an ultra-stretchable sensor transformed into a sophisticated inter-disciplinary project resulting in a smart wearable device that is capable of sensing and understanding complex human motion, explains School of Engineering Professor Homayoun Najjaran.

The sensor is made by infusing graphene nano-flakes (GNF) into a rubber-like adhesive pad. Najjaran says they then tested the durability of the tiny sensor by stretching it to see if it can maintain accuracy under strains of up to 350 per cent of its original state. The device went through more than 10,000 cycles of stretching and relaxing while maintaining its electrical stability.

“We tested this sensor vigorously,” says Najjaran. “Not only did it maintain its form but more importantly it retained its sensory functionality. We have further demonstrated the efficacy of GNF-Pad as a haptic technology in real-time applications by precisely replicating the human finger gestures using a three-joint robotic finger.”

The goal was to make something that could stretch, be flexible and a reasonable size, and have the required sensitivity, performance, production cost, and robustness. Unlike an inertial measurement unit—an electronic unit that measures force and movement and is used in most step-based wearable technologies—Najjaran says the sensors need to be sensitive enough to respond to different and complex body motions. That includes infinitesimal movements like a heartbeat or a twitch of a finger, to large muscle movements from walking and running.

School of Engineering Professor and study co-author Mina Hoorfar says their results may help manufacturers create the next level of health monitoring and biomedical devices.

“We have introduced an easy and highly repeatable fabrication method to create a highly sensitive sensor with outstanding mechanical and electrical properties at a very low cost,” says Hoorfar.

To demonstrate its practicality, researchers built three wearable devices including a knee band, a wristband and a glove. The wristband monitored heartbeats by sensing the pulse of the artery. In an entirely different range of motion, the finger and knee bands monitored finger gestures and larger scale muscle movements during walking, running, sitting down and standing up. The results, says Hoorfar, indicate an inexpensive device that has a high-level of sensitivity, selectivity and durability.

Hoorfar and Najjaran are both members of the Okanagan node of UBC’s STITCH (SmarT Innovations for Technology Connected Health) Institute that creates and investigates advanced wearable devices.

The research, partially funded by the Natural Sciences and Engineering Research Council, was recently published in the Journal of Sensors and Actuators A: Physical.

Here’s a link to and a citation for the paper,

Low-cost ultra-stretchable strain sensors for monitoring human motion and bio-signals by Seyed Reza Larimi, Hojatollah Rezaei Nejad, Michael Oyatsi, Allen O’Brien, Mina Hoorfar, Homayoun Najjaran. Sensors and Actuators A: Physical Volume 271, 1 March 2018, Pages 182-191 [Published online February 2018] https://doi.org/10.1016/j.sna.2018.01.028

This paper is behind a paywall.

Final comments

The term ‘wearable tech’ covers a lot of ground. In addition to sensors, there are materials that harvest energy, detect poisons, etc.  making for a diverse field.

June 4, 2018 talk in Vancouver (Canada): Genetically-Engineered Food: Facts, Ethical Considerations and World Hunger

ARPICO (Society of Italian Researchers and Professionals in Western Canada) is hosting a talk on the topic of genetically modified food. Here’s more from their May 20, 2018 announcement (received via email),

Our third speaking event of the year has been scheduled for Monday, June 4th, 2018 at the Italian Cultural Centre – Museum & Art Gallery. Marie-Claude Fortin’s talk will discuss food systems derived from biotechnology (often referred to as GMO) and their comparison with traditional farming processes, both technical and ethical. You can read a summary of Marie-Claude Fortin’s lecture as well as her short professional biography at the bottom of this message.

Ahead of the speaking event, ARPICO will be holding its 2018 Annual General Meeting in the same location. We encourage everyone to participate in the AGM, have their say on ARPICO’s matters and possibly volunteer for the Board of Directors.

We look forward to seeing everyone there.

Please register for the event by visiting the EventBrite link or RSVPing to info@arpico.ca.

The evening agenda is as follows:

6:00pm to 6:45pm – Annual General Meeting
7:00 pm – Lecture by Marie-Claude Fortin
~8:00 pm – Q & A Period
Mingling & Refreshments until about 9:45 pm

If you have not yet RSVP’d, please do so on our EventBrite page.

Further details are also available at arpico.ca, our facebook page, and Eventbrite.

Genetically-Engineered Food: Facts, Ethical Considerations and World Hunger

In this lecture we will explore a part of our food system, which has received much press, but which consumers still misunderstand: food derived from biotechnology often referred to as genetically modified organisms. We will be learning about the types of plants and animals which are genetically engineered and part of our everyday food system and the reasons for which they have been transformed genetically. We will be looking at the issue from several different angles. You are encouraged to approach the topic with an open mind, and learn how the technology is being used. We will start by understanding the differences between traditional plant breeding, conventional plant breeding, transgenic technology and genome editing. The latter two processes are considered genetic engineering technologies but all of them constitute a continuum of techniques employed to improve domestic plants and animals. We will then go over the ethical paradigms related to genetically engineered food represented by the European and North American points of view. Finally, we will discuss the strengths and weaknesses associated with genetic engineering as a tool to solve world hunger.

Marie-Claude Fortin is a former Research Scientist with Agriculture and Agri-Food Canada, Associate Editor with Crop Science Society of America, Board Member of the Soil and Water Conservation Society and Adjunct Professor at the University of British Columbia (UBC) and currently responsible for the shared research infrastructure portfolio at the UBC Vice-President Research & Innovation Office. Her main areas of research expertise are crop and soil sciences with special interests in measuring and modeling crop development and various processes on agricultural land: water and nitrogen fertilizer flow through the soil profile, emissions of greenhouse gases and soil physical properties. Her research shows that sustainable crop management practices result in soil environments, which are conducive to resilient crop production and organic matter buildup, which is the process of storing carbon in soils, a most important process in this era of climate change. For the past 18 years, Marie-Claude has been teaching food systems courses at UBC [University of British Columbia], emphasizing impacts of decisions made at the corporate, national and local levels on the economic, environmental and social sustainability of the food system, including impacts of organic and industrial agriculture and adoption of genetically engineered crops and animals, on farmers and consumers.

WHEN (AGM): Monday, June 4th, 2018 at 6:00pm (doors open at 5:50pm)

WHEN (EVENT): Monday, June 4th, 2018 at 7:00pm (doors open at 6:45pm)

WHERE: Italian Cultural Centre – Museum & Art Gallery – 3075 Slocan St, Vancouver, BC, V5M 3E4

RSVP: Please RSVP at EventBrite (https://gmofoods.eventbrite.ca/) or email info@arpico.ca

Tickets are Needed

Tickets are FREE, but all individuals are requested to obtain “free-admission” tickets on EventBrite site due to limited seating at the venue. Organizers need accurate registration numbers to manage wait lists and prepare name tags.

All ARPICO events are 100% staffed by volunteer organizers and helpers, however, room rental, stationery, and guest refreshments are costs incurred and underwritten by members of ARPICO. Therefore to be fair, all audience participants are asked to donate to the best of their ability at the door or via EventBrite to “help” defray costs of the event.

FAQs

Where can I contact the organizer with any questions? info@arpico.ca

Do I have to bring my printed ticket to the event? No, you do not. Your name will be on our Registration List at the Check-in Desk.

Is my registration/ticket transferrable? If you are unable to attend, another person may use your ticket. Please send us an email at info@arpico.ca of this substitution to correct our audience Registration List and to prepare guest name tags.

Can I update my registration information? Yes. If you have any questions, contact us at info@arpico.ca

I am having trouble using EventBrite and cannot reserve my ticket(s). Can someone at ARPICO help me with my ticket reservation? Of course, simply send your ticket request to us at info@arpico.ca so we help you.

We look forward to seeing you there.
www.arpico.ca

I wonder if they’re going to be discussing AquAdvantage salmon, which was first mentioned here in a Dec. 4, 2015 post (scroll down about 40% of the way), again, in a May 20, 2016 posting (AquAdvantage salmon (genetically modified) approved for consumption in Canada), and, most recently, in a Sept. 13, 2017 posting where I was critiquing a couple of books (scroll down to the ‘Fish’ subtitle). Allegedly the fish were allegedly sold in the Canadian market,

Since the 2016 approval, AquAdvantage salmon, 4.5M tonnes has been sold in Canada according to an Aug. 8, 2017 article by Sima Shakeri for Huffington Post (Note: Links have been removed),

After decades of trying to get approval by in North America, genetically modified Atlantic salmon has been sold to consumers in Canada.

AquaBounty Technologies, an American company that produces the Atlantic salmon, confirmed it had sold 4.5 tonnes of the modified fish on August 4 [2017], the Scientific American reported.

The fish have been engineered with a growth hormone gene from Chinook salmon to grow faster than regular salmon and require less food. They take about 18 months to reach market size, which is much quicker than the 30 months or so for conventional salmon.

The Washington Post wrote AquaBounty’s salmon also contains a gene from the ocean pout that makes the salmon produce the growth hormone gene all-year-round.

The company produces the eggs in a facility in P.E.I., which is currently being expanded, and then they’re shipped to Panama where the fish are raised.

Health Canada assessed the AquAdvantage salmon and concluded it “did not pose a greater risk to human health than salmon currently available on the Canadian market,” and that it would have no impact on allergies nor a difference in nutritional value compared to other farmed salmon.

Because of that, the AquAdvantage product is not required to be specially labelled as genetically modified, and is up to the discretion of retailers.

As for gene editing, I don’t follow everything in that area of endeavour but I have (more or less) kept track of CRISPR ((clustered regularly interspaced short palindromic repeat). Just use CRISPR as the search term for the blog search function to find what’s here.

This looks to be a very interesting talk and good for ARPICO for tackling a ‘difficult’ topic. I hope they have a lively, convivial, and open discussion.

Café Scientifique Vancouver (Canada) talk on May 29th, 2018: Insects in the City: Shrinking Beetles and Disappearing Bees. How Bugs Help Us Learn About the Ecological Effects of Urbanization and Climate Change

I received this Café Scientifique April 30, 2018 notice (received via email),

Our next café will happen on TUESDAY, MAY 29TH at 7:30PM in the back
room at YAGGER'S DOWNTOWN (433 W Pender). Our speaker for the
evening will be DR. MICHELLE TSENG, Assistant Professor in the Zoology
department at UBC. Her topic will be:

INSECTS IN THE CITY: SHRINKING BEETLES AND DISAPPEARING BEES. HOW BUGS
HELP US LEARN ABOUT THE ECOLOGICAL EFFECTS OF URBANIZATION AND CLIMATE
CHANGE

Living in the city, we don’t always see the good bugs amongst the
pesky ones. In this presentation, I’ll take you on a trip down insect
lane and share with you the incredible diversity of insects that have
lived in Vancouver over the last 100 years. Many of these bugs have been
collected and preserved in museums and these collections provide us with
a historical snapshot of insect communities from the past. My students
and I have made some remarkable discoveries using museum insect
collections, and these findings help us understand how these fascinating
creatures are changing in response to warming climates and increased
development.

Michelle Tseng is a professor of insect ecology at the UBC Biodiversity
Research Centre. She and her students study the impacts of habitat and
climate change on plankton and insects. Her group’s work has been
featured in national and international media, and on CBC’s Quirks and
Quarks. Michelle is also the zoologist on the award-winning CBC kids
show Scout and the Gumboot Kids.

We hope to see you there!

It says Dr. Tseng is in the zoology department but I also found a profile page for her in the botany department and that one had a little more information,

The Tseng lab investigates ecological and evolutionary responses of populations and communities to novel environments.  We test and refine theory related to predator-prey dynamics, body size variation, intra- and interspecific competition, and the maintenance of genetic variation, using laboratory and field experiments with freshwater plant and animal communities.  We also use museum collections to investigate long term patterns in organism phenotype.

Enjoy!

Ingenuity Lab (a nanotechnology initiative), the University of Alberta, and Carlo Montemagno—what is happening in Canadian universities? (2 of 2)

You can find Part 1 of the latest installment in this sad story here.

Who says Carlo Montemagno is a star nanotechnology researcher?

Unusually and despite his eminent stature, Dr. Montemagno does not rate a Wikipedia entry. Luckily, his CV (curriculum vitae) is online (placed there by SIU) so we can get to know a bit more (the CV is a 63 pp. document) about the man’s accomplishments (Note: There are some formatting differences), Note: Unusually, I will put my comments into the excerpted CV using [] i.e., square brackets to signify my input,

Carlo Montemagno, PhD
University of Alberta
Department of Chemical and Materials Engineering
and
NRC/CNRC National Institute for Nanotechnology
Edmonton, AB T6G 2V4
Canada

 

Educational Background

1995, Ph.D., Department of Civil Engineering and Geological Sciences, College of Earth and Mineral Sciences University of Notre Dame

1990, M.S., Petroleum and Natural Gas Engineering, College of Earth and Mineral Sciences, Pennsylvania State University

1980, B.S., Agricultural and Biological Engineering, College of Engineering, Cornell University

Supplemental Education

1986, Practical Environmental Law, Federal Publications, Washington, DC

1985, Effective Executive Training Program, Wharton Business School, University of Pennsylvannia, Philadelphia, PA

1980, Civil Engineer Corp Officer Project, CECOS & General Management School, Port Hueneme, CA

[He doesn’t seem to have taken any courses in the last 30 years.]

Professional Experience

(Select Achievements)

Over three decades of experience in shepherding complex organizations both inside and outside academia. Working as a builder, I have led organizations in government, industry and higher education during periods of change and challenge to achieved goals that many perceived to be unattainable.

University of Alberta, Edmonton AB 9/12 to present

9/12 to present, Founding Director, Ingenuity Lab [largely defunct as of April 18, 2018], Province of Alberta

8/13 to present, Director Biomaterials Program, NRC/CNRC National Institute for Nanotechnology [It’s not clear if this position still exists.]

10/13 to present, Canada Research Chair, Government of Canada in Intelligent Nanosystems [Canadian universities receive up to $200,000 for an individual Canada research chair. The money can be used to fund the chair in its entirety or it can be added to other monies., e.g., faculty salary. There are two tiers, one for established researchers and one for new researchers. Montemagno would have been a Tier 1 Canada Research Chair. At McGill University {a major Canadian educational institution} for example, total compensation including salary, academic stipend, benefits, X-coded research funds would be a maximum of $200,000 at Montemagno’s Tier 1 level. See: here scroll down about 90% of the way).

3/13 to present, AITF iCORE Strategic Chair, Province of Alberta in BioNanotechnology and Biomimetic Systems [I cannot find this position in the current list of the University of Alberta Faculty of Science’s research chairs.]

9/12 to present, Professor, Faculty of Engineering, Chemical and Materials Engineering

Crafted and currently lead an Institute that bridges multiple organizations named Ingenuity Lab (www.ingenuitylab.ca). This Institute is a truly integrated multidisciplinary organization comprised of dedicated researchers from STEM, medicine, and the social sciences. Ingenuity Lab leverages Alberta’s strengths in medicine, engineering, science and, agriculture that are present in multiple academic enterprises across the province to solve grand challenges in the areas of energy, environment, and health and rapidly translate the solutions to the economy.

The exciting and relevant feature of Ingenuity Lab is that support comes from resources outside the normal academic funding streams. Core funding of approximately $8.6M/yr emerged by working and communicating a compelling vision directly with the Provincial Executive and Legislative branches of government. [In the material I’ve read, the money for the research was part of how Dr. Montemagno was wooed by the University of Alberta. My understanding is that he himself did not obtain the funding, which in CAD was $100M over 10 years. Perhaps the university was able to attract the funding based on Dr. Montemagno’s reputation and it was contingent on his acceptance?] I significantly augmented these base resources by developing Federal Government, and Industry partnership agreements with a suite of multinational corporations and SME’s across varied industry sectors.

Collectively, this effort is generating enhanced resource streams that support innovative academic programming, builds new research infrastructure, and enables high risk/high reward research. Just as important, it established new pathways to interact meaningfully with local and global communities.

Strategic Leadership

•Created the Ingenuity Lab organization including a governing board representing multiple academic institutions, government and industry sectors.

•Developed and executed a strategic plan to achieve near and long-term strategic objectives.

•Recruited~100 researchers representing a wide range disciplnes.[sic] [How hard can it be to attract researchers in this job climate?]

•Built out ~36,000 S.F. of laboratory and administrative space.

•Crafted operational policy and procedures.

•Developed and implemented a unique stakeholder inclusive management strategy focused on the rapid translation of solutions to the economy.

Innovation and Economic Engagement

•Member of the Expert Panel on innovation, commissioned by the Government of Alberta, to assess opportunities, challenges and design and implementation options for Alberta’s multi-billion dollar investment to drive long-term economic growth and diversification. The developed strategy is currently being implemented. [Details?]

•Served as a representive [sic] on multiple Canadian national trade missions to Asia, United States and the Middle East. [Sounds like he got to enjoy some nice trips.]

•Instituted formal development partnerships with several multi-national corporations including Johnson & Johnson, Cenovus and Sabuto Inc. [Details?]

•Launched multiple for-profit joint ventures founded on technologies collaboratively developed with industry with funding from both private and public sources. [Details?]

Branding

•Developed and implement a communication program focused on branding of Ingenuity Lab’s unique mission, both regionally and globally, to the lay public, academia, government, and industry. [Why didn’t the communication specialist do this? ]

This effort employs traditional paper, online, and social media outlets to effectively reach different demographics.

•Awarded “Best Nanotechnology Research Organization–2014” by The New Economy. [What is the New Economy? The Economist, yes. New Economy, no.]

Global Development

•Executed formal research and education partnerships with the Yonsei Institute of Convergence Technology and the Yonsei Bio-IT MicroFab Center in Korea, Mahatma Gandhi University in India. and the Italian Institute of Technology. [{1}The Yonsei Institute of Convergence Technology doesn’t have any news items prior to 2015 or after 2016. The Ingenuity Lab and/or Carlo Montemagno did not feature in them. {2} There are six Mahatma Ghandi Universities in India. {3} The Italian Institute of Technology does not have any news listings on the English language version of its site.]

•Opened Ingenuity Lab, India in May 2015. Focused on translating 21st-century technology to enable solutions appropriate for developing nations in the Energy, Agriculture, and Health economic sectors. [Found this May 9, 2016 notice on the Asia Pacific Foundation of Canada website, noting this: “… opening of the Ingenuity Lab Research Hub at Mahatma Gandhi University in Kottayam, in the Indian state of Kerala.” There’s also this May 6, 2016 news release. I can’t find anything on the Mahatma Ghandi University Kerala website.]

•Established partnership research and development agreements with SME’s in both Israel and India.

•Developed active research collaborations with medical and educational institutions in Nepal, Qatar, India, Israel, India and the United States.

Community Outreach

•Created Young Innovators research experience program to educate, support and nurture tyro undergraduate researchers and entrepreneurs.

•Developed an educational game, “Scopey’s Nano Adventure” for iOS and Android platforms to educate 6yr to 10yr olds about Nanotechnology. [What did the children learn? Was this really part of the mandate?]

•Delivered educational science programs to the lay public at multiple, high profile events. [Which events? The ones on the trade junkets?]

University of Cincinnati, Cincinnati OH 7/06 to 8/12

7/10 to 8/12 Founding Dean, College of Engineering and Applied Science

7/09 to 6/10 Dean, College of Applied Science

7/06 to 6/10 Dean, College of Engineering

7/06 to 8/12 Geier Professor of College of Engineering Engineering Education

7/06 to 8/12, Professor of Bioengineering, College of Engineering & College of Medicine

University of California, Los Angeles 7/01 to 6/06

5/03 to 6/06, Associate Director California Nanosystems Institute

7/02 to 6/06, Co-Director NASA Center for Cell Mimetic Space Exploration

7/02 to 6/06, Founding Department Chair, Department of Bioengineering

7/02 to 6/06, Chair Biomedical Engineering IDP

7/01 to 6/02, Chair of Academic Biomedical Engineering IDP Affairs

7/01 to 6/06, Carol and Roy College of Engineering and Applied Doumani Professor of Sciences Biomedical Engineering

7/01 to 6/06, Professor Mechanical and Aerospace Engineering

Recommending Montemagno

Presumably the folks at Southern Illinois University asked for recommendations from Montemagno’s previous employers. So, how did he get a recommendation from the folks in Alberta when according to Spoerre’s April 10, 2018 article the Ingenuity Lab was undergoing a review as of June 2017 by the province of Alberta’s Alberta Innovates programme? I find it hard to believe that the folks at the University of Alberta were unaware of the review.

When you’re trying to get rid of someone, it’s pretty much standard practice that once they’ve gotten the message, you give a good recommendation to their prospective employer. The question begs to be asked, how many times have employers done this for Montemagno?

Stars in their eyes

Every one exaggerates a bit on their résumé or CV. One of my difficulties with this whole affair lies in how Montemagno can be described as a ‘nanotechnology star’. The accomplishments foregrounded on Montemagno’s CV are administrative and if memory serves, the University of Cincinnati too. Given the situation with the Ingenuity Lab, I’m wondering about these accomplishments.

Was due diligence performed by SIU, the University of the Alberta, or anywhere else that Montemagno worked? I realize that you’re not likely to get much information from calling up the universities where he worked previously, especially if there was a problem and they wanted to get rid of him. Still, did someone check out his degrees, his start-ups,  dig a little deeper into some of his claims?

His credentials and stated accomplishments are quite impressive and I, too,  would have been dazzled. (He also lists positions at the Argonne National Laboratory and at Cornell University.) I’ve picked at some bits but one thing that stands out to me is the move from UCLA to the University of Cincinnati. It’s all big names: UCLA, Cornell, NASA, Argonne and then, not: University of Cincinnati, University of Alberta, Southern Illinois University—what happened?

(If anyone better versed in the world of academe and career has answers, please do add them to the comments.)

It’s tempting to think the Peter Principle (one of them) was at work here. In brief, this principle states that as you keep getting better jobs on based on past performance you reach a point where you can’t manage the new challenges having risen to your level of incompetence.In accepting the offer from the University of Alberta had Dr. Montemagno risen to his level of incompetence? Or, perhaps it was just one big failure. Unfortunately, any excuses don’t hold up under the weight of a series of misjudgments and ethical failures. Still, I’m guessing that Dr. Montemagno was hoping for a big win on a project such as this (from an Oct. 19, 2016 news release on MarketWired),

Ingenuity Lab Carbon Solutions announced today that it has been named as one of the 27 teams advancing in the $20M NRG COSIA Carbon XPRIZE. The competition sees scientists develop technologies to convert carbon dioxide emissions into products with high net value.

The Ingenuity Lab Carbon Solutions team – headquartered in Edmonton of Alberta, Canada – has made it to the second round of competition. Its team of 14 has proposed to convert CO2 waste emitted from a natural gas power plant into usable chemical products.

Ingenuity Lab Carbon Solutions is comprised of a multidisciplinary group of scientists and engineers, and was formed in the winter of 2012 to develop new approaches for the chemical industry. Ingenuity Lab Carbon Solutions is sponsored by CCEMC, and has also partnered with Ensovi for access to intellectual property and know how.

I can’t identify CCEMC with any certainty but Ensovi is one of Montemagno’s six start-up companies, as listed in his CV,

Founder and Chief Technical Officer, Ensovi, LLC., Focused on the production of low-cost bioenergy and high-value added products from sunlight using bionanotechnology, Total Funding; ~$10M, November 2010-present.

Sadly the April 9,2018 NRG COSIA Carbon XPRIZE news release  announcing the finalists in round 3 of the competition includes an Alberta track of five teams from which the Ingenuity Lab is notably absent.

The Montemagno affair seems to be a story of hubris, greed, and good intentions. Finally, the issues associated with Dr. Montemagno give rise to another, broader question.

Is something rotten in Canada’s higher education establishment?

Starting with the University of Alberta:

it would seem pretty obvious that if you’re hiring family member(s) as part of the deal to secure a new member of faculty that you place and follow very stringent rules. No rewriting of the job descriptions, no direct role in hiring or supervising, no extra benefits, no inflated salaries in other words, no special treatment for your family as they know at the University of Alberta since they have policies for this very situation.

Yes, universities do hire spouses (although a daughter, a nephew, and a son-in-law seems truly excessive) and even when the university follows all of the rules, there’s resentment from staff (I know because I worked in a university). There is a caveat to the rule, there’s resentment unless that spouse is a ‘star’ in his or her own right or an exceptionally pleasant person. It’s also very helpful if the spouse is both.

I have to say I loved Fraser Forbes that crazy University of Alberta engineer who thought he’d make things better by telling us that the family’s salaries had been paid out of federal and provincial funds rather than university funds. (sigh) Forbes was the new dean of engineering at the time of his interview in the CBC’s April 10, 2018 online article but that no longer seems to be the case as of April 19, 2018.

Given Montemagno’s misjudgments, it seems cruel that Forbes was removed after one foolish interview. But, perhaps he didn’t want the job after all. Regardless, those people who were afraid to speak out about Dr. Montemagno cannot feel reassured by Forbes’ apparent removal.

Money, money, money

Anyone who has visited a university in Canada (and presumably the US too) has to have noticed the number of ‘sponsored’ buildings and rooms. The hunger for money seems insatiable and any sensible person knows it’s unsupportable over the long term.

The scramble for students

Mel Broitman in a Sept. 22, 2016 article for Higher Education lays out some harsh truths,

Make no mistake. It is a stunning condemnation and a “wakeup call to higher education worldwide”. The recent UNESCO report states that academic institutions are rife with corruption and turning a blind eye to malpractice right under their noses. When UNESCO, a United Nations organization created after the chaos of World War II to focus on moral and intellectual solidarity, makes such an alarming allegation, it’s sobering and not to be dismissed.

So although Canadians typically think of their society and themselves as among the more honest and transparent found anywhere, how many Canadian institutions are engaging in activities that border on dishonest and are not entirely transparent around the world?

It is overwhelmingly evident that in the last two decades we have witnessed first-hand a remarkable and callous disregard for academic ethics and standards in a scramble by Canadian universities and colleges to sign up foreign students, who represent tens of millions of dollars to their bottom lines.

We have been in a school auditorium in China and listened to the school owner tell prospective parents that the Grade 12 marks from the Canadian provincial school board program can be manipulated to secure admission for their children into Canadian universities. This, while the Canadian teachers sat oblivious to the presentation in Chinese.

In hundreds of our own interaction with students who completed the Canadian provincial school board’s curriculum in China and who achieved grades of 70% and higher in their English class have been unable to achieve even a basic level of English literacy in the written tests we have administered.   But when the largest country of origin for incoming international students and revenue is China – the Canadian universities admitting these students salivate over the dollars and focus less on due diligence.

We were once asked by a university on Canada’s west coast to review 200 applications from Saudi Arabia, in order to identify the two or three Saudi students who were actually eligible for conditional admission to that university’s undergraduate engineering program. But the proposal was scuttled by the university’s ESL department that wanted all 200 to enroll in its language courses. It insisted on and managed conditional admissions for all 200. It’s common at Canadian universities for the ESL program “tail” to wag the campus “dog” when it comes to admissions. In fact, recent Canadian government regulations have been proposed to crack down on this practice as it is an affront to academic integrity.

If you have time, do read the rest as it’s eye-opening. As for the report Broitman cites, I was not able to find it. Broitman gives a link to the report in response to one of the later comments and there’s a link in Tony Bates’s July 31, 2016 posting but you will get a “too bad, so sad” message should you follow either link.The closed I can get to it is this Advisory Statement for Effective International Practice; Combatting Corruption and Enhancing Integrity: A Contemporary Challenge for the Quality and Credibility of Higher Education (PDF). The ‘note’ was jointly published by the (US) Council for Higher Education (CHEA) and UNESCO.

What about the professors?

As they scramble for students, the universities appear to be cutting their ‘teaching costs’, from an April 18, 2018 article by Charles Menzies (professor of anthropology and an elected member of the UBC [University of British Columbia] Board)  for THE UBYSSEY (UBC) student newspaper,

For the first time ever at UBC the contributions of student tuition fees exceeded provincial government contributions to UBC’s core budget. This startling fact was the backdrop to a strenuous grilling of UBC’s VP Finance and Provost Peter Smailes by governors at the Friday the 13 meeting of UBC’s Board of Governors’ standing committee for finance.

Given the fact students contribute more to UBC’s budget than the provincial government, governors asked why more wasn’t being done to enhance the student experience. By way of explanation the provost reiterated UBC’s commitment to the student experience. In a back-and-forth with a governor the provost outlined a range of programs that focus on enhancing the student experience. At several points the chair of the Board would intervene and press the provost for more explanations and elaboration. For his part the provost responded in a measured and deliberate tone outlining the programs in play, conceding more could be done, and affirming the importance of students in the overall process.

As a faculty member listening to this, I wondered about the background discourse undergirding the discussion. How is focussing on a student’s experience at UBC related to our core mission: education and research? What is actually being meant by experience? Why is no one questioning the inadequacy of the government’s core contribution? What about our contingent colleagues? Our part-time precarious colleagues pick up a great deal of the teaching responsibilities across our campuses. Is there not something we can do to improve their working conditions? Remember, faculty working conditions are student learning conditions. From my perspective all these questions received short shrift.

I did take the opportunity to ask the provost, given how financially sound our university is, why more funds couldn’t be directed toward improving the living and working conditions of contingent faculty. However, this was never elaborated upon after the fact.

There is much about the university as a total institution that seems driven to cultivate experiences. A lot of Board discussion circles around ideas of reputation and brand. Who pays and how much they pay (be they governments, donors, or students) is also a big deal. Cultivating a good experience for students is central to many of these discussions.

What is this experience that everyone is talking about? I hear about classroom experience, residence experience, and student experience writ large. Very little of it seems to be specifically tied to learning (unless it’s about more engaging, entertaining, learning with technology). While I’m sure some Board colleagues will disagree with this conclusion, it does seem to me that the experience being touted is really the experience of a customer seeking fulfilment through the purchase of a service. What is seen as important is not what is learned, but the grade; not the productive struggle of learning but the validation of self in a great experience as a member of an imagined community. A good student experience very likely leads to a productive alumni relationship — one where the alumni feels good about giving money.

Inside UBC’s Board of Governors

Should anyone be under illusions as to what goes on at the highest levels of university governance, there is the telling description from Professor Jennifer Berdahl about her experience on a ‘search committee for a new university president’ of the shameful treatment of previous president, Arvind Gupta (from Berdahl’s April 25, 2018 posting on her eponymous blog),

If Prof. Chaudhry’s [Canada Research Chair and Professor Ayesha Chaudhry’s resignation was announced in an April 25, 2018 UBYSSEY article by Alex Nguyen and Zak Vescera] experience was anything like mine on the UBC Presidential Search Committee, she quickly realized how alienating it is to be one of only three faculty members on a 21-person corporate-controlled Board. It was likely even worse for Chaudhry as a woman of color. Combining this with the Board’s shenanigans that are designed to manipulate information and process to achieve desired decisions and minimize academic voices, a sense of helpless futility can set in. [emphasis mine]

These shenanigans include [emphasis mine] strategic seating arrangements, sudden breaks during meetings when conversation veers from the desired direction, hand-written notes from the secretary to speaking members, hundreds of pages of documents sent the night before a meeting, private tête-à-têtes arranged between a powerful board member and a junior or more vulnerable one, portals for community input vetted before sharing, and planning op-eds to promote preferred perspectives. These are a few of many tricks employed to sideline unpopular voices, mostly academic ones.

It’s impossible to believe that UBC’s BoG is the site for these shenanigans take place. The question I have is how many BoGs and how much damage are they inflicting?

Finally getting back to my point, simultaneous with cutting back on teaching and other associated costs and manipulative, childish behaviour at BoG meetings, large amounts of money are being spent to attract ‘stars’ such as Dr. Montemagno. The idea is to attract students (and their money) to the institution where they can network with the ‘stars’. What the student actually learns does not seem to be the primary interest.

So, what kind of deals are the universities making with the ‘stars’?

The Montemagno affair provides a few hints but, in the end,I don’t know and I don’t think anyone outside the ‘sacred circle’ does either. UBC, for example,is quite secretive and, seemingly, quite liberal in its use of nondisclosure agreements (NDA). There was the scandal a few years ago when president Arvind Gupta abruptly resigned after one year in his position. As far as I know, no one has ever gotten to the bottom of this mystery although there certainly seems to have been a fair degree skullduggery involved.

After a previous president, Martha Cook Piper took over the reigns in an interim arrangement, Dr. Santa J. Ono (his Wikipedia entry) was hired.  Interestingly, he was previously at the University of Cincinnati, one of Montemagno’s previous employers. That university’s apparent eagerness to treat Montemagno’s extras seems to have led to the University of Alberta’s excesses.  So, what deal did UBC make with Dr. Ono? I’m pretty sure both he and the university are covered by an NDA but there is this about his tenure as president at the University of Cincinnati (from a June 14, 2016 article by Jack Hauen for THE UBYSSEY),

… in exchange for UC not raising undergraduate tuition, he didn’t accept a salary increase or bonus for two years. And once those two years were up, he kept going: his $200,000 bonus in 2015 went to “14 different organizations and scholarships, including a campus LGBTQ centre, a local science and technology-focused high school and a program for first-generation college students,” according to the Vancouver Sun.

In 2013 he toured around the States promoting UC with a hashtag of his own creation — #HottestCollegeInAmerica — while answering anything and everything asked of him during fireside chats.

He describes himself as a “servant leader,” which is a follower of a philosophy of leadership focused primarily on “the growth and well-being of people and the communities to which they belong.”

“I see my job as working on behalf of the entire UBC community. I am working to serve you, and not vice-versa,” he said in his announcement speech this morning.

Thank goodness it’s possible to end this piece on a more or less upbeat note. Ono seems to be what my father would have called ‘a decent human being’. It’s nice to be able to include a ‘happyish’ note.

Plea

There is huge money at stake where these ‘mega’ science and technology projects are concerned. The Ingenuity Lab was $100M investment to be paid out over 10 years and some basic questions don’t seem to have been asked. How does this person manage money? Leaving aside any issues with an individual’s ethics and moral compass, scientists don’t usually take any courses in business and yet they are expected to manage huge budgets. Had Montemagno handled a large budget or any budget? It’s certainly not foregrounded (and I’d like to see dollar amounts) in his CV.

As well, the Ingenuity Lab was funded as a 10 year project. Had Montemagno ever stayed in one job for 10 years? Not according to his CV. His longest stint was approximately eight years when he was in the US Navy in the 1980s. Otherwise, it was five to six years, including the Ingenuity Lab stint.

Meanwhile, our universities don’t appear to be applying the rules and protocols we have in place to ensure fairness. This unseemly rush for money seems to have infected how Canadian universities attract (local, interprovincial, and, especially, international) students to pay for their education. The infection also seems to have spread into the ways ‘star’ researchers and faculty members are recruited to Canadian universities while the bulk of the teaching staff are ‘starved’ under one pretext or another while a BoG may or may not be indulging in shenanigans designed to drive decision-making to a preordained outcome. And, for the most part, this is occurring under terms of secrecy that our intelligence agencies must envy.

In the end, I can’t be the only person wondering how all this affects our science.

Café Scientifique Vancouver (Canada) talk on April 24th, 2018: Medical Myths You Need to Learn about Before It’s Too Late

From an April 6, 2018 Café Scientifique notice (received via email),

Our next café will happen on TUESDAY, APRIL 24TH at 7:30PM in the back
room at YAGGER’;S DOWNTOWN (433 W Pender). Our speaker for the
evening will be DR. JAMES MCCORMACK, Professor from the Faculty of
Pharmaceutical Services at UBC [University of British Columbia].

James received his undergraduate pharmacy degree at the University of
British Columbia in 1982 and received his doctorate in pharmacy
(Pharm.D.) in 1986 from the Medical University of South Carolina in
Charleston, South Carolina. He has had extensive experience, both
locally and internationally, talking to health professionals and
consumers about the rational use of medication, and has presented over
500 seminars on drug therapy over the last 30 years. He focuses on
shared decision-making using evidence based information and rational
therapeutic principles. He is also the co-host of one of the world’s
top medical podcasts – the Best Science (BS) Medicine podcast.

MEDICAL MYTHS YOU NEED TO LEARN ABOUT BEFORE IT’S TOO LATE

What if much of what you thought about medications was wrong? In this
talk you’ll learn that the following are myths:

1) You should finish the full course of an antibiotic prescription –
THE TRUTH – for most infections you should stop after you have had no
symptoms for 2-3 days

2) Most people benefit from blood pressure/diabetes treatment – THE
TRUTH – less then 30% benefit over a lifetime of treatment

3) The recommended doses of medications are what you should be on –
THE TRUTH – you should likely start with a 1/4 or an 1/8th of the
recommended dose for most medications

4) And much, much, more

You can find Dr. James McCormack’s University of British Columbia’s faculty page here but you might find the webpage listing the iTunes episodes for the Best Science Medicine Podcast – BS without the BS by Dr James McCormack and Dr Michael Allan (University of Alberta) of more interest.

Curiosity collides with the quantum and with the Science Writers and Communicators of Canada in Vancouver (Canada)

There are a couple of events coming up in April and an opportunity to submit your work for inclusion in a Curiosity Collider event or two. There’s also a Science Writers and Communicators conference being held from April 12 – 15, 2018. All of this is happening in Vancouver, Canada.

Curiosity Collider events, etc.

Colliding with the Quantum

From a March 23, 2018 announcement (received via email) from CuriosityCollider.org,

MOA [Museum of Anthropology] Night Shift: Quantum Futures

In the quantum realm, what is observable and what is not? What happens when we mix art and science? 

Join us at UBC Museum of Anthropology on the evening of April 5 [2018] and immerse yourself in quantum physics through dance, spoken word, projection sculpture, virtual reality, and hands-on activities.

This event is curated by Curiosity Collider Art-Science Foundation with collaborations from UBC Physics & Astronomy and Stewart Blusson Quantum Matter Institute.

Let us know you are coming on Facebook | See list of participating artists/scientists

For anyone who needs directions, clicking on this UBC Museum of Anthropology link for Getting Here should help.

I wanted a few more details about the event and found them on Curiosity Collider’s Night Shift webpage,

Doors/Bar/Art & Science Activities 6 pm | Live Show 7:30 pm | Entry with museum admission ($10; free for UBC students & staff, Indigenous peoples, children under 6, and MOA Members)| Family Friendly

This event is curated by Curiosity Collider Creative Managing Director Char Hoyt.

The artwork gathered together for this event is a delightful blending of some of the most famous theories in Quantum Mechanics with both traditional and new artistic practices. When science is filtered through a creative expression it can both inspire and reveal new ways of seeing and understanding the concepts within. Our performers have crafted thoughtful experiences through dance, spoken word, sound, and light, that express the weirdness of the quantum realm and how it is reflected in our daily lives. We have also worked closely with scientists to develop hands-on activities that embody the same principles to create experiences that engage your creativity in understanding the quantum world. We encourage you to interact with the artists and scientists and let their work guide you through the quantum realm.

Participating artists and scientists

Most of these folks are associated with the Quantum Matter Institute.

Call for submissions

From a March 23, 2018 announcement (received via email) from CuriosityCollider.org,

Call for Submissions:
Women in STEM Exhibition

Interstitial: Science Innovations by Canadian Women is a two-week exhibition (June 1-14) and events showcasing work by female artists featuring women in STEM. We are looking for one more 2D artist/illustrator to join the exhibition and will accept existing work. Deadline April 6. To submit, visit our website.

This exhibition is funded by the Westcoast Women in Engineering, Science and Technology (WWEST) and eng-cite.

#Sciart & #Scicomm at Science World on April 12, 2018 (a Science Writers and Communicators of Canada [SWCC] reception)

From a March 23, 2018 announcement (received via email) from CuriosityCollider.org,

#Sciart & #Scicomm at Science World

On April 12, Curiosity Collider is bringing art+science to the Science Writers and Communications of Canada Annual Conference here in Vancouver. The public evening event will include performances and activities by Curiosity Collider, Science Slam, Beaker Head (Alberta) [sic], and SFU (Simon Fraser University) Faculty of Applied Science. We will also be hosting a silent auction to showcase local #sciart and support future art+science project, including our annual exhibition SPARK!

Get your tickets now! | Let us know you are coming on Facebook

I found more information about this event at something called allevents.in/vancouver,

SciComm Social with SWCC and STAN

Science Writers and Communicators of Canada (SWCC) and Science Technology Awareness Network (STAN) are hosting their annual conferences in Vancouver in April. This joint reception event featuring #scicomm and #sciart is free for conference delegates and also open to the public … . [emphasis mine]

Friends, family, and fans of science communication & communicators welcome!

This evening event will include performances and activities from:
* Beakerhead – Power Point Karaoke, hosted by Banff SciComm/Beakerhead alumni: A deck of slides is provided. Brave participants, who have never seen the slides before, improvise the talk. Hilarity ensues, egged on by an enthusiastic audience.
* Curiosity Collider – #sciart silent auction, stage performances, and art installation
* SFU Applied Sciences – interactive technology exhibits
* Science Slam Canada – Whether it’s a talk, a poem, a song, a dance, or something completely unexpected, the possibilities are endless. Our only two rules? Five minute slams, and no slideshows allowed!

Get your tickets – available until April 10! This is a 19+ event. Performances starting at 7:30, doors at 7 pm.

Weirdly, no mention is made of the cost. Tickets are $25. for anyone who’s not attending the conference and you can register for and purchase your ticket here. As for location, this event is being held at Science World at Telus World of Science (known locally as Science World), here’s where you find directions for how to get to Science World.

Science Writers and Communicators Conference in Vancouver from April 12 – 15, 2018

Before getting to the costs here a couple of peeks at the programme. First, there’s a March 25, 2018 posting on the SWCC blog by Ashley EM Miller about one of the conference sessions,

Art can be a way to engage the public with science through the the simple fact that novelty sparks curiosity. Artists in the emerging field of sci-art utilize science concepts, methods, principles and information within their practice. Their art, along with the work of science illustrators, can facilitate a deeper emotional connection to science, particularly in those who don’t regularly pay attention or feel welcome.

However, using artwork in science communication is not as simple as inserting a picture into a body of text and referencing the artist in MLA style.

For those coming from the sciences, citing your sources, as laborious as that may be, is a given. While that is fine for incorporating  information, that isn’t always adequate for artwork. In the art world, artists know how to ask other artists to use their work. If a scientist or science communicator does not have an “in” with the art community, they may not know where to find legal information about using art.


Anyone interested in using artwork in their science communication practice, should attend the upcoming SWCC conference’s professional development session “On Copyright, Ethics and Attribution: Interdisciplinary Collaborations Between Artists and Scientists”. The panel discussion will be moderated by Theresa Liao of Curiosity Collider and Sarah Louadi of Voirelia, both of whom are intimately familiar with combining art and science in their respective organizations. Sarah and Theresa will lead a much-needed conversation about the benefits and best practices of partnerships between artists and science communicators.


The session boasts a well-rounded panel. Attendees will gain insights on aspects of the art world with panelists Kate Campbell, a science illustrator, and Steven J. Barnes, a psychologist and artist. Legal and ethical considerations will be provided by Lawrence Chan, an intellectual property lawyer, and April Britski, the National Executive Director of Canadian Artists’ Representation/Le Front des artistes canadiens (CARFAC). For those unfamiliar, CARFAC is a federal organization that acts as a voice for visual artists in Canada and outlines minimum fee guidelines among other things.

Science communicators and bloggers will certainly benefit from the session, particularly early-career freelancers. When working independently, there are no organizational policies and procedures in place for you to follow. It means that you have to check everything yourself, and this session will give you a crash course of what to look for in artist collaborations, what to ask and how to ask it. Even researchers will benefit from the discussion, by learning about the opportunities for working with science illustrators and about what to expect.


On Copyright, Ethics and Attribution: Interdisciplinary Collaborations Between Artists and Scientists”. will take place at 3:15 pm on Saturday April 14th as part of the conference’s concurrent Professional Development sessions. …

There’s a programme schedule for the 2018 conference here and it includes both an “At a glance’ version and a more fulsome description of the various sessions such as these,

THURSDAY APRIL 12

Act your Science – Interactive Improvisation Training

10:00 am – 12:00 pm Innovation Lab

Come and share a taste of a communication program developed by Jeff Dunn, in collaboration with SWCC, the Loose Moose Theatre in Calgary and the University of Calgary. The goal of this presentation is to provide a taste of how improvisation can be used to improve communication skills in science fields. This hands-on exercise will help participants build capacity to communicate science to various audiences by learning how to fail gracefully in public (to help reduce presentation anxiety), how to connect with your audience and how to recognize and use status in personal interactions.

The full program is 10hrs of training, in this shorter session, we will sample the program in a fun interactive environment. Be prepared to release your inner thespian. Space is limited to 20 people

Jeff Dunn has been a research scientist in brain and imaging for over 30 years. He has a strong interest in mentoring science trainees to broaden their career skills and has recently been developing programs to improve science communication. One class, gaining traction, is “Act your Science”, a custom designed course using improvisation to improving science communication skills for science trainees. He is an alumni of the Banff Science Communication program where he first experienced improvisation training for science. He has held a Canada Research Chair and has Directed the Experimental Imaging Centre at the University of Calgary since 2004. He has over 150 science publications in diverse journals ranging from Polar Biology to the Journal of Neurotrauma. He has supervised scores of graduate students and taught on subjects including MRI, optical imaging and brain physiology at altitude. His imaging research currently includes multiple sclerosis, brain cancer and concussion.

Video Booth: How I SciComm – go ahead and tell all, we want to know! 

 Available 10:am – 2:30pm: Exploration Lab

A camera team will be on hand to help you record and upload your 1 minute video about who you are, and how you do your science communications. Here are some questions for you to think about:

1. Who are you?

2. How do you do your science communications?

3. What’s your favourite science trivia? What’s something cool you learned when researching a storyWhat’s your favourite jargon? What’s a word you had to memorizing pronunciation or spelling for a story

A Community of Innovators: 50 Years of TRIUMF

2:30 -3:30 pm  Science Theatre

 

Ask TRIUMF’s spirited founders and emeriti about the humble beginnings of Canada’s particle accelerator centre and you will invariably hear: “This used to be just a big pile of dirt.” You could imagine TRIUMF’s founding members five decades ago standing at the edge of the empty lot nestled between the forest and the sea, contemplating possibilities. But not even TRIUMF’s founders could have imagined the twists and turns of the lab’s 50-year journey, nor the impact that the lab would have on the people of Canada and the world.

Today, on that same 12.8-acre plot of land, TRIUMF houses world-leading research and technology, and fuels Canada’s collective imagination for the future of particle and nuclear physics and accelerator science. Join TRIUMF’s Director Jonathan Bagger and colleagues for an exploration of TRIUMF’s origins, impacts, and possibilities – a story of collaboration that over five decades celebrates a multifaceted community and growing family of 20 Canadian member universities and partners from around the world. www.triumf50.com  @TRIUMFlab

FRIDAY, APRIL 13 

Frontiers in SciComm Policy & Practice

Canada 2067 – Building a national vision for STEM learning

10:30 Room 1900

Canada 2067 is an ambitious initiative to develop a national vision and goals for youth learning in science, technology, engineering and math (STEM). Significant and scalable changes in education can be achieved by aligning efforts towards shared goals that support all children and youth in Canada.  A draft framework has been developed that builds on research into global policy, broad-based public input, five youth summits, consultation with millennials and a national leadership conference. It calls for action by diverse stakeholders including students, educators, parents, community organizations, industry and all levels of governments.  In this workshop, participants will learn about the initiative and discuss the inherent challenges of catalyzing education change in Canada. Participants will also review the framework and provide feedback that will be incorporated into the final version of the Canada 2067 framework. Input into the design of phase 2 will also be encouraged.

Bonnie Schmidt, C.M., Ph.D.

Founder and President, Let’s Talk Science

Dr. Bonnie Schmidt is the founder and president of Let’s Talk Science, a national charitable organization that helps Canadian youth prepare for future careers and citizenship roles by supporting their engagement in science, technology, engineering and math (STEM). Annually, Let’s Talk Science is accessed by more than 40% of schools in over 1,700 communities, impacting nearly 1 million youth. More than 3,500 volunteers at 45 post-secondary sites form our world-class outreach network. Bonnie currently serves as Chair of the National Leadership Taskforce on Education & Skills for the Information and Communications Technology Council (ICTC) and is on the Board of Governors of the University of Ontario Institute of Technology (UOIT). She was named a Member of the Order of Canada in 2015 and has received an Honorary Doctorate (Ryerson University), the Purvis Memorial Award (Chemical Institute of Canada), Community Service Award (Life Sciences Ontario), and a Queen’s Diamond Jubilee Award. @BMSchmidt

Infographics: Worth a Thousand Words with Kate Broadly and Sonya Odsen

1:15 Room 1520

Infographics have become a popular way to present results to non-specialist audiences, and they are a very effective tool for sharing science on social platforms. Infographics are more likely to be shared online, where they increase engagement with scientific content on platforms like Twitter.

No art skills? No problem! This session will guide you through the process of creating your own infographic, from crafting your story to telling that story visually, and will include strategies to design effective visuals without having to draw (unless you want to!). Topics will include developing your key messages, making your visuals functional rather than decorative, tips for giving your visuals a professional edge, and the best software options for each artistic skill level. Our goal is to empower you to create a visually-pleasing infographic regardless of your art or drawing experience. At the end of this active session, you will have a draft of your own unique infographic ready to be made digital.

The skills you develop during this session will be readily transferable to other visual media, such as talks, posters, or even creating visuals for blog posts.

Kate Broadley

Sonya Odsen

Kate Broadley and Sonya Odsen are Science Communicators with Fuse Consulting. Located in Edmonton, Alberta, Fuse is dedicated to communicating cutting-edge research to different audiences in creative and innovative ways. Their ultimate goal is to bring knowledge to life and empower audiences to apply that knowledge in policy, conservation, research, and their day-to-day lives. Every day, Kate and Sonya tackle complex topics and transform them for specific audiences through writing and design. Infographics are one of their favourite tools for conveying information in fun and accessible ways. Their past and current design projects include interpretive signage for Nature Conservancy Canada, twitter-optimized visual abstracts for the Applied Conservation Ecology lab at the University of Alberta, and a series of science-inspired holiday cards. You can see examples of their work at http://www.fuseconsulting.ca/see-our-work/. Kate and Sonya are also ecologists by training, each holding an M.Sc. from the University of Alberta.

Should this excite your interest,  get going as registration ends March 29, 2018. Here are the rates and the registration link is at the end,

Everyone is Welcome

RATES

Early Bird Registration

SWCC Members: $300

Non-members: $400

Regular Registration 

SWCC Members: $400

  Non-members: $500

Student Rates

SWCC student members: $150

Non-member students: $200

Beakerhead Course: $500

(includes day rate + course fee)

Day Rate: $150

Victoria Half Day Rate: $75

Snorkel Safari: snorkeler $120

Snorkel Safari: ride along $90

Social Evening, April 12

  TELUS Science World, 7:00-10:00pm additional single event tickets: $25.00 (limited)

DATES

EARLY BIRD REGISTRATION OPENS: MONDAY, FEBRUARY 5, 2018

EARLY BIRD REGISTRATION CLOSES: FRIDAY MARCH 9, 2018

REGISTRATION FINAL DEADLINE: THURSDAY MARCH 29, 2018

Conference Dates

April 12, TELUS Science World with STAN

April 13 & 14, SFU Harbour Centre

April 15, Vancouver tours & Victoria day Royal BC Museum

Travel and Accommodation information is available here

Register Here

Have fun!