Tag Archives: University of British Columbia

A jellyfish chat on November 28, 2017 at Café Scientifique Vancouver get together

Café Scientifique Vancouver sent me an announcement (via email) about their upcoming event,

We are pleased to announce our next café which will happen on TUESDAY,
NOVEMBER 28TH at 7:30PM in the back room of YAGGER'S DOWNTOWN (433 W
Pender).

JELLYFISH – FRIEND, FOE, OR FOOD?

Did you know that in addition to stinging swimmers, jellyfish also cause
extensive damage to fisheries and coastal power plants? As threats such
as overfishing, pollution, and climate change alter the marine
environment, recent media reports are proclaiming that jellyfish are
taking over the oceans. Should we hail to our new jellyfish overlords or
do we need to examine the evidence behind these claims? Join Café
Scientifique on Nov. 28, 2017 to learn everything you ever wanted to
know about jellyfish, and find out if jelly burgers are coming soon to a
menu near you.

Our speaker for the evening will be DR. LUCAS BROTZ, a Postdoctoral
Research Fellow with the Sea Around Us at UBC’s Institute for the
Oceans and Fisheries. Lucas has been studying jellyfish for more than a
decade, and has been called “Canada’s foremost jellyfish
researcher” by CBC Nature of Things host Dr. David Suzuki. Lucas has
participated in numerous international scientific collaborations, and
his research has been featured in more than 100 media outlets including
Nature News, The Washington Post, and The New York Times. He recently
received the Michael A. Bigg award for highly significant student
research as part of the Coastal Ocean Awards at the Vancouver Aquarium.

We hope to see you there!

You can find out more about Lucas Brotz here and about Sea Around Us here.

For anyone who’s curious about the jellyfish ‘issue’, there’s a November 8, 2017 Norwegian University of Science and Technology press release on AlphaGallileo or on EurekAlert, which provides insight into the problems and the possibilities,

Jellyfish could be a resource in producing microplastic filters, fertilizer or fish feed. A new 6 million euro project called GoJelly, funded by the EU and coordinated by the GEOMAR Helmholtz Centre for Ocean Research, Germany and including partners at the Norwegian University of Science and Technology (NTNNU) and SINTEF [headquartered in Trondheim, Norway, is the largest independent research organisation in Scandinavia; more about SINTEF in its Wikipedia entry], hopes to turn jellyfish from a nuisance into a useful product.

Global climate change and the human impact on marine ecosystems has led to dramatic decreases in the number of fish in the ocean. It has also had an unforseen side effect: because overfishing decreases the numbers of jellyfish competitors, their blooms are on the rise.

The GoJelly project, coordinated by the GEOMAR Helmholtz Centre for Ocean Research, Germany, would like to transform problematic jellyfish into a resource that can be used to produce microplastic filter, fertilizer or fish feed. The EU has just approved funding of EUR 6 million over 4 years to support the project through its Horizon 2020 programme.

Rising water temperatures, ocean acidification and overfishing seem to favour jellyfish blooms. More and more often, they appear in huge numbers that have already destroyed entire fish farms on European coasts and blocked cooling systems of power stations near the coast. A number of jellyfish species are poisonous, while some tropical species are even among the most toxic animals on earth.

“In Europe alone, the imported American comb jelly has a biomass of one billion tons. While we tend to ignore the jellyfish there must be other solutions,” says Jamileh Javidpour of GEOMAR, initiator and coordinator of the GoJelly project, which is a consortium of 15 scientific institutions from eight countries led by the GEOMAR Helmholtz Centre for Ocean Research in Kiel.

The project will first entail exploring the life cycle of a number of jellyfish species. A lack of knowledge about life cycles makes it is almost impossible to predict when and why a large jellyfish bloom will occur. “This is what we want to change so that large jellyfish swarms can be caught before they reach the coasts,” says Javidpour.

At the same time, the project partners will also try to answer the question of what to do with jellyfish once they have been caught. One idea is to use the jellyfish to battle another, man-made threat.

“Studies have shown that mucus of jellyfish can bind microplastic. Therefore, we want to test whether biofilters can be produced from jellyfish. These biofilters could then be used in sewage treatment plants or in factories where microplastic is produced,” the GoJelly researchers say.

Jellyfish can also be used as fertilizers for agriculture or as aquaculture feed. “Fish in fish farms are currently fed with captured wild fish, which does not reduce the problem of overfishing, but increases it. Jellyfish as feed would be much more sustainable and would protect natural fish stocks,” says the GoJelly team.

Another option is using jellyfish as food for humans. “In some cultures, jellyfish are already on the menu. As long as the end product is no longer slimy, it could also gain greater general acceptance,” said Javidpour. Finally yet importantly, jellyfish contain collagen, a substance very much sought after in the cosmetics industry.

Project partners from the Norwegian University of Science and Technology, led by Nicole Aberle-Malzahn, and SINTEF Ocean, led by Rachel Tiller, will analyse how abiotic (hydrography, temperature), biotic (abundance, biomass, ecology, reproduction) and biochemical parameters (stoichiometry, food quality) affect the initiation of jellyfish blooms.

Based on a comprehensive analysis of triggering mechanisms, origin of seed populations and ecological modelling, the researchers hope to be able to make more reliable predictions on jellyfish bloom formation of specific taxa in the GoJelly target areas. This knowledge will allow sustainable harvesting of jellyfish communities from various Northern and Southern European populations.

This harvest will provide a marine biomass of unknown potential that will be explored by researchers at SINTEF Ocean, among others, to explore the possible ways to use the material.

A team from SINTEF Ocean’s strategic program Clean Ocean will also work with European colleagues on developing a filter from the mucus of the jellyfish that will catch microplastics from household products (which have their source in fleece sweaters, breakdown of plastic products or from cosmetics, for example) and prevent these from entering the marine ecosystem.

Finally, SINTEF Ocean will examine the socio-ecological system and games, where they will explore the potentials of an emerging international management regime for a global effort to mitigate the negative effects of microplastics in the oceans.

“Jellyfish can be used for many purposes. We see this as an opportunity to use the potential of the huge biomass drifting right in front of our front door,” Javidpour said.

You can find out more about GoJelly on their Twitter account.

A cheaper way to make artificial organs

In the quest to develop artificial organs, the University of British Columbia (UBC) is the not the first research institution that comes to my mind. It seems I may need to reevaluate now that UBC (Okanagan) has announced some work on bio-inks and artificial organs in a Sept. 12, 2017 news  release (also on EurekAlert) by Patty Wellborn,,

A new bio-ink that may support a more efficient and inexpensive fabrication of human tissues and organs has been created by researchers at UBC’s Okanagan campus.

Keekyoung Kim, an assistant professor at UBC Okanagan’s School of Engineering, says this development can accelerate advances in regenerative medicine.

Using techniques like 3D printing, scientists are creating bio-material products that function alongside living cells. These products are made using a number of biomaterials including gelatin methacrylate (GelMA), a hydrogel that can serve as a building block in bio-printing. This type of bio-material—called bio-ink—are made of living cells, but can be printed and molded into specific organ or tissue shapes.

The UBC team analyzed the physical and biological properties of three different GelMA hydrogels—porcine skin, cold-water fish skin and cold-soluble gelatin. They found that hydrogel made from cold-soluble gelatin (gelatin which dissolves without heat) was by far the best performer and a strong candidate for future 3D organ printing.

“A big drawback of conventional hydrogel is its thermal instability. Even small changes in temperature cause significant changes in its viscosity or thickness,” says Kim. “This makes it problematic for many room temperature bio-fabrication systems, which are compatible with only a narrow range of hydrogel viscosities and which must generate products that are as uniform as possible if they are to function properly.”

Kim’s team created two new hydrogels—one from fish skin, and one from cold-soluble gelatin—and compared their properties to those of porcine skin GelMA. Although fish skin GelMA had some benefits, cold-soluble GelMA was the top overall performer. Not only could it form healthy tissue scaffolds, allowing cells to successfully grow and adhere to it, but it was also thermally stable at room temperature.

The UBC team also demonstrated that cold-soluble GelMA produces consistently uniform droplets at temperatures, thus making it an excellent choice for use in 3D bio-printing.

“We hope this new bio-ink will help researchers create improved artificial organs and lead to the development of better drugs, tissue engineering and regenerative therapies,” Kim says. “The next step is to investigate whether or not cold-soluble GelMA-based tissue scaffolds are can be used long-term both in the laboratory and in real-world transplants.”

Three times cheaper than porcine skin gelatin, cold-soluble gelatin is used primarily in culinary applications.

Here’s a link to and a citation for the paper,

Comparative study of gelatin methacrylate hydrogels from different sources for biofabrication applications by Zongjie Wang, Zhenlin Tian, Fredric Menard, and Keekyoung Kim. Biofabrication, Volume 9, Number 4 Special issue on Bioinks https://doi.org/10.1088/1758-5090/aa83cf Published 21 August 2017

© 2017 IOP Publishing Ltd

This paper is behind a paywall.

Art in the details: A look at the role of art in science—a Sept. 19, 2017 Café Scientifique event in Vancouver, Canada

The Sept. 19, 2017 Café Scientifique event, “Art in the Details A look at the role of art in science,” in Vancouver seems to be part of a larger neuroscience and the arts program at the University of British Columbia. First, the details about the Sept. 13, 2017 event from the eventful Vancouver webpage,

Café Scientifique – Art in the Details: A look at the role of art in science

Art in the Details: A look at the role of art in science With so much beauty in the natural world, why does the misconception that art and science are vastly different persist? Join us for discussion and dessert as we hear from artists, researchers and academic professionals about the role art has played in scientific research – from the formative work of Santiago Ramon Y Cajal to modern imaging, and beyond – and how it might help shape scientific understanding in the future. September 19th, 2017  7:00 – 9:00 pm (doors open at 6:45pm)  TELUS World of Science [also known as Science World], 1455 Quebec St., Vancouver, BC V6A 3Z7 Free Admission [emphasis mine] Experts Dr Carol-Ann Courneya Associate Professor in the Department of Cellular and Physiological Science and Assistant Dean of Student Affairs, Faculty of Medicine, University of British Columbia   Dr Jason Snyder  Assistant Professor, Department of Psychology, University of British Columbia http://snyderlab.com/   Dr Steven Barnes Instructor and Assistant Head—Undergraduate Affairs, Department of Psychology, University of British Columbia http://stevenjbarnes.com/   Moderated By   Bruce Claggett Senior Managing Editor, NEWS 1130   This evening event is presented in collaboration with the Djavad Mowafaghian Centre for Brain Health. Please note: this is a private, adult-oriented event and TELUS World of Science will be closed during this discussion.

The Art in the Details event page on the Science World website provides a bit more information about the speakers (mostly in the form of links to their webpage),,

Experts

Dr Carol-Ann Courneya
Associate Professor in the Department of Cellular and Physiological Science and Assistant Dean of Student Affairs, Faculty of Medicine, University of British Columbia

Dr Jason Snyder 

Assistant Professor, Department of Psychology, University of British Columbi

Dr Steven Barnes

Instructor, Department of Psychology, University of British Columbia

Moderated By  

Bruce Claggett

Senior Managing Editor, NEWS 1130

Should you click though to obtain tickets from either the eventful Vancouver or Science World websites, you’ll find the event is sold out but perhaps the organizers will include a waitlist.

Even if you can’t get a ticket, there’s an exhibition of Santiago Ramon Y Cajal’s work (from the Djavad Mowafaghian Centre for Brain Health’s Beautiful brain’s webpage),

Drawings of Santiago Ramón y Cajal to be shown at UBC

Santiago Ramón y Cajal, injured Purkinje neurons, 1914, ink and pencil on paper. Courtesy of Instituto Cajal (CSIC).

Pictured: Santiago Ramón y Cajal, injured Purkinje neurons, 1914, ink and pencil on paper. Courtesy of Instituto Cajal (CSIC).

The Beautiful Brain is the first North American museum exhibition to present the extraordinary drawings of Santiago Ramón y Cajal (1852–1934), a Spanish pathologist, histologist and neuroscientist renowned for his discovery of neuron cells and their structure, for which he was awarded the Nobel Prize in Physiology and Medicine in 1906. Known as the father of modern neuroscience, Cajal was also an exceptional artist. He combined scientific and artistic skills to produce arresting drawings with extraordinary scientific and aesthetic qualities.

A century after their completion, Cajal’s drawings are still used in contemporary medical publications to illustrate important neuroscience principles, and continue to fascinate artists and visual art audiences. Eighty of Cajal’s drawings will be accompanied by a selection of contemporary neuroscience visualizations by international scientists. The Morris and Helen Belkin Art Gallery exhibition will also include early 20th century works that imaged consciousness, including drawings from Annie Besant’s Thought Forms (1901) and Charles Leadbeater’s The Chakras (1927), as well as abstract works by Lawren Harris that explored his interest in spirituality and mysticism.

After countless hours at the microscope, Cajal was able to perceive that the brain was made up of individual nerve cells or neurons rather than a tangled single web, which was only decisively proven by electron microscopy in the 1950s and is the basis of neuroscience today. His speculative drawings stemmed from an understanding of aesthetics in their compressed detail and lucid composition, as he laboured to clearly represent matter and processes that could not be seen.

In a special collaboration with the Morris and Helen Belkin Art Gallery and the VGH & UBC Hospital Foundation this project will encourage meaningful dialogue amongst artists, curators, scientists and scholars on concepts of neuroplasticity and perception. Public and Academic programs will address the emerging field of art and neuroscience and engage interdisciplinary research of scholars from the sciences and humanities alike.

“This is an incredible opportunity for the neuroscience and visual arts communities at the University and Vancouver,” says Dr. Brian MacVicar, who has been working diligently with Director Scott Watson at the Morris and Helen Belkin Art Gallery and with his colleagues at the University of Minnesota for the past few years to bring this exhibition to campus. “Without Cajal’s impressive body of work, our understanding of the anatomy of the brain would not be so well-formed; Cajal’s legacy has been of critical importance to neuroscience teaching and research over the past century.”

A book published by Abrams accompanies the exhibition, containing full colour reproductions of all 80 of the exhibition drawings, commentary on each of the works and essays on Cajal’s life and scientific contributions, artistic roots and achievements and contemporary neuroscience imaging techniques.

Cajal’s work will be on display at the Morris and Helen Belkin Art Gallery from September 5 to December 3, 2017.

Join the UBC arts and neuroscience communities for a free symposium and dance performance celebrating The Beautiful Brain at UBC on September 7. [link removed]

The Beautiful Brain: The Drawings of Santiago Ramón y Cajal was developed by the Frederick R. Weisman Art Museum, University of Minnesota with the Instituto Cajal. The exhibition at the Morris and Helen Belkin Art Gallery, University British Columbia is presented in partnership with the Djavad Mowafaghian Centre for Brain Health with support from the VGH & UBC Hospital Foundation. We gratefully acknowledge the generous support of the Canada Council for the Arts, the British Columbia Arts Council and Belkin Curator’s Forum members.

The Morris and Helen Belkin Art Gallery’s Beautiful Brain webpage has a listing of upcoming events associated with the exhibition as well as instructions on how to get there (if you click on About),

SEMINAR & READING GROUP: Plasticity at SFU Vancouver and 221A: Wednesdays, October 4, 18, November 1, 15 and 21 at 7 pm

CONVERSATION with Anthony Phillips and Timothy Taylor: Wednesday, October 11, 2017 at 7 pm

LECTURE with Catherine Malabou at the Liu Institute: Thursday, November 23 at 6 pm

CONCERT with UBC Contemporary Players: Friday, December 1 at 2 pm

Cajal was also an exceptional artist and studied as a teenager at the Academy of Arts in Huesca, Spain. He combined scientific and artistic skills to produce arresting drawings with extraordinary scientific and aesthetic qualities. A century after their completion, his drawings are still used in contemporary medical publications to illustrate important neuroscience principles, and continue to fascinate artists and visual art audiences. Eighty of Cajal’s drawings are accompanied by a selection of contemporary neuroscience visualizations by international scientists.

Organizationally, this seems a little higgledy piggledy with the Cafe Scientifique event found on some sites, the Belkin Gallery events found on one site, and no single listing of everything on any one site for the Beautiful Brain. Please let me know if you find something I’ve missed.

Canadian science policy news and doings (also: some US science envoy news)

I have a couple of notices from the Canadian Science Policy Centre (CSPC), a twitter feed, and an article in online magazine to thank for this bumper crop of news.

 Canadian Science Policy Centre: the conference

The 2017 Canadian Science Policy Conference to be held Nov. 1 – 3, 2017 in Ottawa, Ontario for the third year in a row has a super saver rate available until Sept. 3, 2017 according to an August 14, 2017 announcement (received via email).

Time is running out, you have until September 3rd until prices go up from the SuperSaver rate.

Savings off the regular price with the SuperSaver rate:
Up to 26% for General admission
Up to 29% for Academic/Non-Profit Organizations
Up to 40% for Students and Post-Docs

Before giving you the link to the registration page and assuming that you might want to check out what is on offer at the conference, here’s a link to the programme. They don’t seem to have any events celebrating Canada’s 150th anniversary although they do have a session titled, ‘The Next 150 years of Science in Canada: Embedding Equity, Delivering Diversity/Les 150 prochaine années de sciences au Canada:  Intégrer l’équité, promouvoir la diversité‘,

Enhancing equity, diversity, and inclusivity (EDI) in science, technology, engineering and math (STEM) has been described as being a human rights issue and an economic development issue by various individuals and organizations (e.g. OECD). Recent federal policy initiatives in Canada have focused on increasing participation of women (a designated under-represented group) in science through increased reporting, program changes, and institutional accountability. However, the Employment Equity Act requires employers to act to ensure the full representation of the three other designated groups: Aboriginal peoples, persons with disabilities and members of visible minorities. Significant structural and systemic barriers to full participation and employment in STEM for members of these groups still exist in Canadian institutions. Since data support the positive role of diversity in promoting innovation and economic development, failure to capture the full intellectual capacity of a diverse population limits provincial and national potential and progress in many areas. A diverse international panel of experts from designated groups will speak to the issue of accessibility and inclusion in STEM. In addition, the discussion will focus on evidence-based recommendations for policy initiatives that will promote full EDI in science in Canada to ensure local and national prosperity and progress for Canada over the next 150 years.

There’s also this list of speakers . Curiously, I don’t see Kirsty Duncan, Canada’s Minister of Science on the list, nor do I see any other politicians in the banner for their conference website  This divergence from the CSPC’s usual approach to promoting the conference is interesting.

Moving onto the conference, the organizers have added two panels to the programme (from the announcement received via email),

Friday, November 3, 2017
10:30AM-12:00PM
Open Science and Innovation
Organizer: Tiberius Brastaviceanu
Organization: ACES-CAKE

10:30AM- 12:00PM
The Scientific and Economic Benefits of Open Science
Organizer: Arij Al Chawaf
Organization: Structural Genomics

I think this is the first time there’s been a ‘Tiberius’ on this blog and teamed with the organization’s name, well, I just had to include it.

Finally, here’s the link to the registration page and a page that details travel deals.

Canadian Science Policy Conference: a compendium of documents and articles on Canada’s Chief Science Advisor and Ontario’s Chief Scientist and the pre-2018 budget submissions

The deadline for applications for the Chief Science Advisor position was extended to Feb. 2017 and so far, there’s no word as to whom it might be. Perhaps Minister of Science Kirsty Duncan wants to make a splash with a surprise announcement at the CSPC’s 2017 conference? As for Ontario’s Chief Scientist, this move will make province the third (?) to have a chief scientist, after Québec and Alberta. There is apparently one in Alberta but there doesn’t seem to be a government webpage and his LinkedIn profile doesn’t include this title. In any event, Dr. Fred Wrona is mentioned as the Alberta’s Chief Scientist in a May 31, 2017 Alberta government announcement. *ETA Aug. 25, 2017: I missed the Yukon, which has a Senior Science Advisor. The position is currently held by Dr. Aynslie Ogden.*

Getting back to the compendium, here’s the CSPC’s A Comprehensive Collection of Publications Regarding Canada’s Federal Chief Science Advisor and Ontario’s Chief Scientist webpage. Here’s a little background provided on the page,

On June 2nd, 2017, the House of Commons Standing Committee on Finance commenced the pre-budget consultation process for the 2018 Canadian Budget. These consultations provide Canadians the opportunity to communicate their priorities with a focus on Canadian productivity in the workplace and community in addition to entrepreneurial competitiveness. Organizations from across the country submitted their priorities on August 4th, 2017 to be selected as witness for the pre-budget hearings before the Committee in September 2017. The process will result in a report to be presented to the House of Commons in December 2017 and considered by the Minister of Finance in the 2018 Federal Budget.

NEWS & ANNOUNCEMENT

House of Commons- PRE-BUDGET CONSULTATIONS IN ADVANCE OF THE 2018 BUDGET

https://www.ourcommons.ca/Committees/en/FINA/StudyActivity?studyActivityId=9571255

CANADIANS ARE INVITED TO SHARE THEIR PRIORITIES FOR THE 2018 FEDERAL BUDGET

https://www.ourcommons.ca/DocumentViewer/en/42-1/FINA/news-release/9002784

The deadline for pre-2018 budget submissions was Aug. 4, 2017 and they haven’t yet scheduled any meetings although they are to be held in September. (People can meet with the Standing Committee on Finance in various locations across Canada to discuss their submissions.) I’m not sure where the CSPC got their list of ‘science’ submissions but it’s definitely worth checking as there are some odd omissions such as TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics)), Genome Canada, the Pan-Canadian Artificial Intelligence Strategy, CIFAR (Canadian Institute for Advanced Research), the Perimeter Institute, Canadian Light Source, etc.

Twitter and the Naylor Report under a microscope

This news came from University of British Columbia President Santa Ono’s twitter feed,

 I will join Jon [sic] Borrows and Janet Rossant on Sept 19 in Ottawa at a Mindshare event to discuss the importance of the Naylor Report

The Mindshare event Ono is referring to is being organized by Universities Canada (formerly the Association of Universities and Colleges of Canada) and the Institute for Research on Public Policy. It is titled, ‘The Naylor report under the microscope’. Here’s more from the event webpage,

Join Universities Canada and Policy Options for a lively discussion moderated by editor-in-chief Jennifer Ditchburn on the report from the Fundamental Science Review Panel and why research matters to Canadians.

Moderator

Jennifer Ditchburn, editor, Policy Options.

Jennifer Ditchburn

Editor-in-chief, Policy Options

Jennifer Ditchburn is the editor-in-chief of Policy Options, the online policy forum of the Institute for Research on Public Policy.  An award-winning parliamentary correspondent, Jennifer began her journalism career at the Canadian Press in Montreal as a reporter-editor during the lead-up to the 1995 referendum.  From 2001 and 2006 she was a national reporter with CBC TV on Parliament Hill, and in 2006 she returned to the Canadian Press.  She is a three-time winner of a National Newspaper Award:  twice in the politics category, and once in the breaking news category. In 2015 she was awarded the prestigious Charles Lynch Award for outstanding coverage of national issues. Jennifer has been a frequent contributor to television and radio public affairs programs, including CBC’s Power and Politics, the “At Issue” panel, and The Current. She holds a bachelor of arts from Concordia University, and a master of journalism from Carleton University.

@jenditchburn

Tuesday, September 19, 2017

 12-2 pm

Fairmont Château Laurier,  Laurier  Room
 1 Rideau Street, Ottawa

 rsvp@univcan.ca

I can’t tell if they’re offering lunch or if there is a cost associated with this event so you may want to contact the organizers.

As for the Naylor report, I posted a three-part series on June 8, 2017, which features my comments and the other comments I was able to find on the report:

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 1 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 2 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 3 of 3

One piece not mentioned in my three-part series is Paul Wells’ provocatively titled June 29, 2017 article for MacLean’s magazine, Why Canadian scientists aren’t happy (Note: Links have been removed),

Much hubbub this morning over two interviews Kirsty Duncan, the science minister, has given the papers. The subject is Canada’s Fundamental Science Review, commonly called the Naylor Report after David Naylor, the former University of Toronto president who was its main author.

Other authors include BlackBerry founder Mike Lazaridis, who has bankrolled much of the Waterloo renaissance, and Canadian Nobel physicist Arthur McDonald. It’s as blue-chip as a blue-chip panel could be.

Duncan appointed the panel a year ago. It’s her panel, delivered by her experts. Why does it not seem to be… getting anywhere? Why does it seem to have no champion in government? Therein lies a tale.

Note, first, that Duncan’s interviews—her first substantive comment on the report’s recommendations!—come nearly three months after its April release, which in turn came four months after Duncan asked Naylor to deliver his report, last December. (By March I had started to make fun of the Trudeau government in print for dragging its heels on the report’s release. That column was not widely appreciated in the government, I’m told.)

Anyway, the report was released, at an event attended by no representative of the Canadian government. Here’s the gist of what I wrote at the time:

 

Naylor’s “single most important recommendation” is a “rapid increase” in federal spending on “independent investigator-led research” instead of the “priority-driven targeted research” that two successive federal governments, Trudeau’s and Stephen Harper’s, have preferred in the last 8 or 10 federal budgets.

In English: Trudeau has imitated Harper in favouring high-profile, highly targeted research projects, on areas of study selected by political staffers in Ottawa, that are designed to attract star researchers from outside Canada so they can bolster the image of Canada as a research destination.

That’d be great if it wasn’t achieved by pruning budgets for the less spectacular research that most scientists do.

Naylor has numbers. “Between 2007-08 and 2015-16, the inflation-adjusted budgetary envelope for investigator-led research fell by 3 per cent while that for priority-driven research rose by 35 per cent,” he and his colleagues write. “As the number of researchers grew during this period, the real resources available per active researcher to do investigator-led research declined by about 35 per cent.”

And that’s not even taking into account the way two new programs—the $10-million-per-recipient Canada Excellence Research Chairs and the $1.5 billion Canada First Research Excellence Fund—are “further concentrating resources in the hands of smaller numbers of individuals and institutions.”

That’s the context for Duncan’s remarks. In the Globe, she says she agrees with Naylor on “the need for a research system that promotes equity and diversity, provides a better entry for early career researchers and is nimble in response to new scientific opportunities.” But she also “disagreed” with the call for a national advisory council that would give expert advice on the government’s entire science, research and innovation policy.

This is an asinine statement. When taking three months to read a report, it’s a good idea to read it. There is not a single line in Naylor’s overlong report that calls for the new body to make funding decisions. Its proposed name is NACRI, for National Advisory Council on Research and Innovation. A for Advisory. Its responsibilities, listed on Page 19 if you’re reading along at home, are restricted to “advice… evaluation… public reporting… advice… advice.”

Duncan also didn’t promise to meet Naylor’s requested funding levels: $386 million for research in the first year, growing to $1.3 billion in new money in the fourth year. That’s a big concern for researchers, who have been warning for a decade that two successive government’s—Harper’s and Trudeau’s—have been more interested in building new labs than in ensuring there’s money to do research in them.

The minister has talking points. She gave the same answer to both reporters about whether Naylor’s recommendations will be implemented in time for the next federal budget. “It takes time to turn the Queen Mary around,” she said. Twice. I’ll say it does: She’s reacting three days before Canada Day to a report that was written before Christmas. Which makes me worry when she says elected officials should be in charge of being nimble.

Here’s what’s going on.

The Naylor report represents Canadian research scientists’ side of a power struggle. The struggle has been continuing since Jean Chrétien left office. After early cuts, he presided for years over very large increases to the budgets of the main science granting councils. But since 2003, governments have preferred to put new funding dollars to targeted projects in applied sciences. …

Naylor wants that trend reversed, quickly. He is supported in that call by a frankly astonishingly broad coalition of university administrators and working researchers, who until his report were more often at odds. So you have the group representing Canada’s 15 largest research universities and the group representing all universities and a new group representing early-career researchers and, as far as I can tell, every Canadian scientist on Twitter. All backing Naylor. All fundamentally concerned that new money for research is of no particular interest if it does not back the best science as chosen by scientists, through peer review.

The competing model, the one preferred by governments of all stripes, might best be called superclusters. Very large investments into very large projects with loosely defined scientific objectives, whose real goal is to retain decorated veteran scientists and to improve the Canadian high-tech industry. Vast and sprawling labs and tech incubators, cabinet ministers nodding gravely as world leaders in sexy trendy fields sketch the golden path to Jobs of Tomorrow.

You see the imbalance. On one side, ribbons to cut. On the other, nerds experimenting on tapeworms. Kirsty Duncan, a shaky political performer, transparently a junior minister to the supercluster guy, with no deputy minister or department reporting to her, is in a structurally weak position: her title suggests she’s science’s emissary to the government, but she is not equipped to be anything more than government’s emissary to science.

A government that consistently buys into the market for intellectual capital at the very top of the price curve is a factory for producing white elephants. But don’t take my word for it. Ask Geoffrey Hinton [University of Toronto’s Geoffrey Hinton, a Canadian leader in machine learning].

“There is a lot of pressure to make things more applied; I think it’s a big mistake,” he said in 2015. “In the long run, curiosity-driven research just works better… Real breakthroughs come from people focusing on what they’re excited about.”

I keep saying this, like a broken record. If you want the science that changes the world, ask the scientists who’ve changed it how it gets made. This government claims to be interested in what scientists think. We’ll see.

Incisive and acerbic,  you may want to make time to read this article in its entirety.

Getting back to the ‘The Naylor report under the microscope’ event, I wonder if anyone will be as tough and direct as Wells. Going back even further, I wonder if this is why there’s no mention of Duncan as a speaker at the conference. It could go either way: surprise announcement of a Chief Science Advisor, as I first suggested, or avoidance of a potentially angry audience.

For anyone curious about Geoffrey Hinton, there’s more here in my March 31, 2017 post (scroll down about 20% of the way) and for more about the 2017 budget and allocations for targeted science projects there’s my March 24, 2017 post.

US science envoy quits

An Aug. 23, 2017article by Matthew Rosza for salon.com notes the resignation of one of the US science envoys,

President Donald Trump’s infamous response to the Charlottesville riots — namely, saying that both sides were to blame and that there were “very fine people” marching as white supremacists — has prompted yet another high profile resignation from his administration.

Daniel M. Kammen, who served as a science envoy for the State Department and focused on renewable energy development in the Middle East and Northern Africa, submitted a letter of resignation on Wednesday. Notably, he began the first letter of each paragraph with letters that spelled out I-M-P-E-A-C-H. That followed a letter earlier this month by writer Jhumpa Lahiri and actor Kal Penn to similarly spell R-E-S-I-S-T in their joint letter of resignation from the President’s Committee on Arts and Humanities.

Jeremy Berke’s Aug. 23, 2017 article for BusinessInsider.com provides a little more detail (Note: Links have been removed),

A State Department climate science envoy resigned Wednesday in a public letter posted on Twitter over what he says is President Donald Trump’s “attacks on the core values” of the United States with his response to violence in Charlottesville, Virginia.

“My decision to resign is in response to your attacks on the core values of the United States,” wrote Daniel Kammen, a professor of energy at the University of California, Berkeley, who was appointed as one five science envoys in 2016. “Your failure to condemn white supremacists and neo-Nazis has domestic and international ramifications.”

“Your actions to date have, sadly, harmed the quality of life in the United States, our standing abroad, and the sustainability of the planet,” Kammen writes.

Science envoys work with the State Department to establish and develop energy programs in countries around the world. Kammen specifically focused on renewable energy development in the Middle East and North Africa.

That’s it.

Bill Nye saving science ?; a Blackout Night Sky Festival; and Eclipse: Total Alignment (science events in Vancouver Canada)

During August (2017), science in Vancouver (Canada) seems to be mostly about the night sky. The one exception is an event featuring American science communicator, Bill Nye. Here, in the order in which they occur, are the three science events mentioned in the head (scroll down to the third event [Eclipse: Total Alignment] if you are interested in Early Bird tickets, which are available until Aug. 4, 2017).

Bill Nye speaks

Billed as ‘An Evening With Bill Nye & George Stroumboulopoulos’, the event takes place at the Orpheum Theatre on Friday, August 11, 2017. Here’s more from the event page on brownpapertickets.com,

An Evening With Bill Nye & George Stroumboulopoulos
presented by Pangburn Philosophy

Friday, August 11, 2017
Doors: 7pm
Show: 8pm Sharp!

Bill Nye is one of the worlds most eminent promoters of science. He is a scientist, engineer, comedian, author, and inventor. His mission: to help foster a scientifically literate society, to help people everywhere understand and appreciate the science that makes our world work. Making science entertaining and accessible is something Bill has been doing most of his life. He will grace the stage on August 11th at the Orpheum Theatre in Vancouver to exchange dialogue with one of Canada’s most beloved public figures and tv personalities. George Stroumboulopoulos is a six-time Gemini Award and Canadian Screen Award winner for best host in a talk series, George Stroumboulopoulos has interviewed a who’s who of entertainment icons, world leaders and respected thinkers. George has also taken an active role in global initiatives and is a strong advocate for social issues.Special Note:

All PREMIUM ticket purchases grant you a copy of Bill Nye’s new book “Everything All at Once” plus fast-pass access to Bill’s book signing, taking place directly after the event.

All STUDENT discounted tickets are Will Call only at the Box Office, on the evening of the event. Student & Photo ID must be shown. No exceptions.

Service Charges Disclaimer
Note that all tickets are subject to an additional $3.50 for the Facility Fee and $5.00 for the Ticketing Fee.
Friday Aug 11, 2017 8:00 PM – Friday Aug 11, 2017 11:00 PM | CA$60.00 – CA$150.00

I got a message saying ‘sales are ended’, which suggests the event is sold out but organizers usually trumpet that detail right away so I don’t know. It might be an idea to try the Buy Tickets button on this page for yourself.

For anyone unfamiliar with the event organizers, Pangburn Philosophy, there’s their home page and this video,

While I’m quite interested in science and art, singly and together, the discussion about science, religion, and/or god, discussed in the video, leaves me cold. I notice the Pangburn Philosophy organization has a series of events titled ‘Science and Reason’ and all of them feature Richard Dawkins who (as I understand it) has been very involved in the debate about science/reason and religion/god. The debate gets more attention in the UK than it has here in Canada.

Getting back to Bill Nye, there was a provocative essay about Nye, his new television programme, and the debate regarding science/reason and anti-science/alternative facts (which can also touch on religion/god). From an April 25, 2017 essay (titled: Can Bill Nye – or any other science show – really save the world?) by Heather Akin, Bruce W. Hardy, Dietram A. Scheufele, and Dominique Brossard for The Conversation.com (h/t May 1, 2017 republication on salon.com; Note: Links have been removed)

Netflix’s new talk show, “Bill Nye Saves the World,” debuted the night before people around the world joined together to demonstrate and March for Science. Many have lauded the timing and relevance of the show, featuring the famous “Science Guy” as its host, because it aims to myth-bust and debunk anti-scientific claims in an alternative-fact era.

But are more facts really the kryptonite that will rein in what some suggest is a rapidly spreading “anti-science” sentiment in the U.S.?

“With the right science and good writing,” Nye hopes, “we’ll do our best to enlighten and entertain our audience. And, perhaps we’ll change the world a little.” In an ideal world, a show like this might attract a broad and diverse audience with varying levels of science interest and background. By entertaining a wide range of viewers, the thinking goes, the show could effectively dismantle enduring beliefs that are at odds with scientific evidence. Significant parts of the public still aren’t on board with the scientific consensus on climate change and the safety of vaccines and genetically modified foods, for instance.

But what deserves to be successful isn’t always what ends up winning hearts and minds in the real world. In fact, empirical data we collected suggest that the viewership of such shows – even heavily publicized and celebrity-endorsed ones – is small and made up of people who are already highly educated, knowledgeable about science and receptive to scientific evidence.

Engaging scientific programming could still be an antidote to waning public interest in science, especially where formal science education is falling short. But it is revealing that “Cosmos” – a heavily marketed, big-budget show backed by Fox Networks and “Family Guy” creator Seth McFarlane – did not reach the audience who need quality science information the most. “Bill Nye Saves the World” might not either. Its streaming numbers are not yet available.

Today’s fragmented and partisan media environment fosters selective exposure and motivated reasoning – that is, viewers typically tune in to programming that confirms their existing worldview. There are few opportunities or incentives for audiences to engage with scientific evidence in the media. All of this can propagate misleading claims and deter audiences from accepting the conclusions of sound science. And adoption of misinformation and alternative facts is not a partisan problem. Policy debates questioning or ignoring scientific consensus on vaccines, climate change and GMOs have cut across different political camps.

None of this is meant to downplay the huge potential of entertainment media to reach diverse audiences beyond the proverbial choir. We know from decades of research that our mental images of science and its impact on society are shaped heavily by (sometimes stereotypical) portrayals of science and scientists in shows like “The Big Bang Theory” or “Orphan Black.”

But successful scientific entertainment programming needs to accomplish two goals: First, draw in a diverse audience well beyond those already interested in science; second, present scientific issues in a way that unites audiences around shared values rather than further polarizing by presenting science in ways that seems at odds with specific political or religious worldviews.

And social science research suggests that complex information can reach audiences via the most unlikely of places, including the satirical fake news program “The Colbert Report.” In fact, a University of Pennsylvania study showed that a series of “Colbert Report” episodes about Super PACs and 501(c)(4) groups during the 2012 presidential election did a better job educating viewers than did mainstream programming in traditional news formats.

Social science can help us learn from our mistakes and better understand how to connect with hard-to-reach audiences via new formats and outlets. None of these shows by themselves will save the world. But if done right, they each might get us closer, one empirical step at a time.

I encourage you to read the essay in its entirety and, in particular, to read the comments.

The tickets for the Aug. 11, 2017 event seem a bit expensive but as they appear to be sold out, it proves I know very little about marketing science celebrities. I guess Stroumboulopoulos’ name recognition due to his CBC (Canadian Broadcasting Corporation) experience was part of the sales strategy since he doesn’t seem to have any science background. That said, good interviewers take the time to research and often unearth questions that someone with more expertise might not think to ask. I’ve been favourably impressed the few times I’ve caught one of Stroumboulopoulos’ interviews.

Blackout: Night Sky Festival

The day after Bill Nye, on Saturday, August 12, 2017, there’s a special event at the Museum of Anthropology on the University of British Columbia grounds in Vancouver. Cecilia Lu in a July 24, 2017 posting on The Daily Hive (Vancouver edition) writes up the event,

With the Perseid meteor shower returning next month, the Museum of Anthropology is putting on a unique stargazing festival for the occasion.

On Saturday, August 12 [2017], at the peak of meteor shower viewing season, Blackout: Night Sky Festival will see the MOA transform into an all-ages arts and astronomy celebration.

The museum will remain open until midnight, as stargazers enjoy the night sky amidst Indigenous storytelling, special musical performances, and lantern making.

The Museum of Anthropology’s Blackout event page provides more information,

Saturday, August 12 [2017] | 5 pm – Midnight | All-Ages + Licensed |
Adults $10 | Youth + Students Free | Tickets available at the door

Join the event on Facebook
Explore our connection to the stars during an evening of arts and astronomy.
Inspired by the global dark sky movement, Blackout brings together storytellers, musicians, artists and astronomers to share their relationships to the skies. Join us to witness the peak of the Perseid meteor shower and explore the museum until midnight during this all-ages event.
You’ll have the chance to peer into telescopes, make your own star lantern and experience an experimental art installation that reimagines the constellations. Bring a chair or blanket and enjoy stargazing to a soundtrack of downtempo and ambient beats, punctuated by live music and throat singing.
Co-hosted with the UBC Astronomy Club, in association with Hfour and the Secret Lantern Society. Performers include Bronson Charles, Jerry DesVoignes, You’re Me, Andrew Kim the musical scientist and the Secret Lantern Society musicians.


Blackout Night Sky Festival Schedule

Indigenous Sky Stories | 5–6 pm
Join us in the Great Hall for celestial storytelling by Margaret Grenier and learn about what you’ll see in the skies that night from the UBC Astronomy Club.
Planets and Pulsations: The New Keplerian Revolution | 6–7 pm
Does Earth harbour the only life in the universe? Astrophysicist Don Kurtz examines how the Kepler Space Mission has revolutionized our view in an animated multimedia performance.
Late Night Gallery Viewing | 5 pm – midnight
Explore MOA all night long — including our brand new Gallery of Northwest Coast Masterworks.
Bar + BBQ + Music | 7 pm – midnight
Grab a bite to eat or drink from our licensed bar and enjoy the music that runs all night. Vegetarian and non-alcoholic options available.
Lantern Making Workshop | 7–9 pm
Make your own pinhole lantern inspired by constellations from around the world in this drop-in workshop hosted by the Secret Lantern Society.
Reclaiming the Night Skies | 8:30 pm – midnight
Experimental artists Hfour and the MOA’s Native Youth Program present an immersive, projected art installation that brings to life a series of new constellations, featuring soundscapes by Adham Shaikh.
Lantern Procession | 9 pm
Join the procession of freshly built lanterns and roving musicians as we make our way across the Museum Grounds and up the hill for a night of stargazing!
Stargazing + Meteor Shower | 9:30 pm – midnight
How many meteors can you find? Expand your knowledge of the night sky with the telescopes and expertise of the UBC Astronomy Club and HR MacMillan Space Centre, set to a background of live and electronic music. On view that night: Moon, Saturn, Jupiter, M13, M15, Ring Nebula, Lagoon Nebula, Dumbbell Nebula and the Perseid meteor shower.

There are two eclipses during August 2017 (Aug. 7, 2017 and Aug. 21, 2017) and I find it odd that neither are mentioned in this astronomy-focused event at the Museum of Anthropology.  The Aug. 21, 2017 astronomical event is a total eclipse of the sun.. There’s more about it on this NASA (US National Aeronautics Space Administration) eclipse website.

Curiosity Collider and the Eclipse

[downloaded from http://www.curiositycollider.org/events/]

Vancouver’s art/sci organization (they have a wordier description here). Curiosity Collider is holding an event that celebrates the upcoming eclipse. From a July 28, 2017 notice (received via email),

Join Curiosity Collider and H.R. MacMillan Centre for this one night
only event

ART & SCIENCE EXPLORE THE MOMENTARY DARKNESS
ON AUGUST 17TH [2017], FOR ONE NIGHT ONLY, CURIOSITY COLLIDER AND THE H.R.
MACMILLAN SPACE CENTRE WILL HOST ECLIPSE: TOTAL ALIGNMENT where artists
and scientists interpret the rare alignment of the sun, earth, and moon
during a total solar eclipse. The event includes a performance show in
the planetarium theatre, and interactive multi and mixed media art
installations on the main level Cosmic Courtyard. Highlights include:

* a soundtrack of the solar system created by data sonification
* a dance piece that plays with alignment, light, and shadow
* scientific narration about the of the upcoming total solar eclipse
(on August 21st) and the phases of the moon
* spectacular custom planetarium dome visuals
* meeting the artists and scientists behind one-of-a-kind interactive
and multimedia art projects

This event is 19+ only. Beer and wine available for purchase, light
snacks included.

WHEN: 6:30pm on Thursday, August 17th 2017.
WHERE: H. R. MacMillan Space Centre (1100 Chestnut Street, Vancouver, BC

COST: $25-30. Each ticket includes entrance to the Space Centre and one
planetarium show (7:30pm or 9pm). LIMITED EARLY BIRD TICKETS AVAILABLE
BEFORE AUGUST 4 [2017].

Interested in observing the partial solar eclipse in Vancouver on
Monday, August 21st [2017]? Check out the two observation events hosted by H.R.
MacMillan Space Centre [5] and UBC Department of Physics & Astronomy
[6].

You can find information about the H.R. MacMillan Space Centre’s eclipse viewing event here and the UBC Department of Physics & Astronomy’s eclipse viewing event here. Both event will have eclipse viewers for safety purposes. For instructions on how to view an eclipse safely, there’s NASA.

Curiosity Collider’s event page (it’s a scrolling page so there are other events there as well) provides details about participants,

This show is curated by Curiosity Collider’s Creative Director Char Hoyt, and developed in collaboration with the H.R. MacMillan Space Centre. Participating artists and scientists:

I have not tried all of the links but at least one (Maren Lisac’s) is for a Twitter feed and it’s not particularly informative.

You can find the Eclipse event’s Facebook page here and information about tickets here.

Ian Wallace show: the frame/box within the frame/box within the frame/box (at the Rennie Gallery in Vancouver, Canada until Sept. 30, 2017)

The opening reception for the Ian Wallace exhibition (Ian Wallace: Collected Works, May 27 to Sept. 30, 2017) at the Rennie Collection was a celebration of both Ian Wallace and Bob Rennie’s donation of 197 art works to the National Gallery of Canada in Ottawa marking Canada’s 150th anniversary. Here’s more about the gift from a May 9, 2017 Rennie Collection notice (received via email),

In celebration of Canada’s 150th birthday, we are donating 197 paintings, sculptures and mixed-media pieces made by some of the most well-known and established Canadian and international artists working today to the National Gallery of Canada!

This is the largest gift of contemporary art ever received by the National Gallery, with major pieces created by internationally renowned artists, such as Colombian Doris Salcedo, as well as important Vancouver based artists Brian Jungen, Damian Moppett, Rodney Graham, Ian Wallace [emphasis mine], and Geoffrey Farmer, who is Canada’s selection for the 57th International Art Exhibition, La Biennale di Venezia.

Getting back to the Ian Wallace exhibition,

“The Idea of the University” (1990)  Courtesy: Rennie Collection

The commentary that follows are my impressions of the show, your mileage may vary.

What I found most intriguing was the ‘squareness’ of it all with its prevalence of frames/boxes. For example the image above is framed with red and white (paint on plywood) at the sides and within the image, there’s the window, the calendar, the photograph, a markedly squarish electric typewriter, a box on the desk, the cabinet behind the typist, and the books on the cabinet. One image could be a coincidence but when you’re surrounded by room after room  with these framed/boxed images of more frames and boxes, well, happenstance has to be rejected.

Wallace is a photographer-artist, one of the individuals in Vancouver, Canada, who founded  photoconceptualism (I sometimes mistakenly refer to this as photorealism). As you may have guessed from my parenthesized comment, I’m not a big fan of this movement or school. However, I’ve found that enjoyment or fandom isn’t necessarily the point where contemporary art is concerned. My experience is that contemporary art is largely intellectual rather than sensual. Sculptures, paintings, textiles, etc. are more sensual by nature where many contemporary pieces begin their existence in a machinist’s shop or via a piece of equipment such as a camera or as an algorithm.

To attend an exhibition of contemporary art, explanation is needed and thankfully the Rennie provides a tour guide providing insight into the artist and their work. In Wallace’s case (kudos, by the way, to Sydney who led the tour I attended), he’s a professor of art history whose main means of expression is photography and much of his focus is on the production of art.

For me though, it was all about square edges, frames, and boxes—an obvious association given that you frame your subject (inadvertently or not) when taking a photograph. There are images and pieces that don’t fit into my ‘square’ obsession but the number in this exhibition that did is amazing and dizzying. I got to the point where I was giddy enough to think of each room as yet another box/frame and we were the subjects leading to these questions: who is seeing, who is being seen, and what is being seen?

The fourth question: how we were seeing the images came up in the context of the show, more specifically, when viewing Wallace’s ‘Poverty 1980 – 1984’ series. It’s considered one of Wallace’s earlier works and like many of his pieces is a series of images. According to Sydney, Wallace is critiquing how we view poverty. In his view, poverty and images of poverty are often glamourized and to draw attention to that he had friends dress up as bohemians from an earlier period and pose in some of Vancouver’s dicier streets and alleyways. It’s not easy to see the images as they are indistinct and washed over in one colour or another.

Before commenting on this piece, I’ve got an excerpt from the Rennie Collection’s undated [?} press release,

Rennie Museum is pleased to announce a solo exhibition featuring rarely and never–before seen historic works of renowned Vancouver artist Ian Wallace. Highlighting Wallace’s perennial exploration of social issues, the works presented will also examine the crux of his artistic process: the intersectionality between public and private, personal and universal, process and production, abstraction and representation. The exhibition runs May 27 to September 30, 2017.

Included in the exhibition will be Poverty 1980 – 1984, a multimedia installation comprising of film, painting, and photography. Initially enacted in 1980 as a 16mm film commenting on the tradition of documentary film–making, the Poverty project offers variations on a single theme. By employing friends and colleagues to act out scenes of bohemian scarcity in Vancouver, Wallace creates fictionalized simulacra—an aestheticized model of poverty derived from our collective, often over–embellished, social conscious. [emphasis mine] The film stills are then abstracted through repetition and presented amidst monochromatic colour fields, prompting viewers to review their own cognitive processes.

I think I understand what is being described in the news release and I agree that poverty can be ‘aestheticized’ or made glamourous. In fact, there’s a term for it ‘poverty porn’. I first heard the term in relation to a series of images taken by Lincoln Clarkes and his series, Heroines (from his Wikipedia entry; Note: Links have been removed),

Heroines (Anvil Press) [3] is an epic photographic documentary of 400 addicted women of Vancouver’s Downtown Eastside, which won the 2003 Vancouver Book Award (in a tie with Stan Douglas), and was the subject of numerous philosophical essays (by Leigh Butler, Margot Leigh Butler, and Paul Ugor, among them). The London Observer said Clarkes’ book offered “beauty in a beastly place.” Globe and Mail called it “intimate, compelling and undeniably unsettling,” while The Toronto Star called it “incredibly powerful.”

Clarkes, who’d been a high end fashion photographer, took photographs of female addicts (hence heroin/heroine) living in Vancouver’s Downtown Eastside, an area which by then was and still is a national and international disgrace. Within the Downtown Eastside community there was a great deal of controversy over Clarke’s work hence the whispers about ‘poverty porn’.

I gather Clarkes’ initial impulse was to treat the women with respect and kindness and to try framing ‘addicts’ in the same way as he would a high fashion model rather than as one of the ‘wretched of the earth’. Unfortunately as the work evolved, it appeared to become a career stepping stone for him and any other concerns seemed to drop out of view. In the end, I couldn’t escape the impression that these women had been used again as unintentional as it may have been.

Getting back to Wallace, I see his point but I don’t understand how his hard-to-see images of fake bohemians in streets and alleyways that are unrecognizable even to a local make his point about glamourizing poverty. Presumably, Wallace’s images were taken in the Downtown Eastside, which in the 1980s was not nearly in the straits it is today. The social safety net cuts that came in the mid to later 1980s and the diminishment of the federal transfer funds to the provinces weren’t yet the stuff of nightmares for social activists.

In retrospect, Wallace’s images seem weirdly prescient, a kind of ‘fiddling while Rome burns ‘view of the future which is now our present day but, for me, they don’t exactly deglamourize poverty or give us a view of an “… over–embellished, social conscious.” In fact, there’s something a bit odd about seeing this piece in a gallery that is housed in the same building as Rennie’s real estate marketing business in a rapidly gentrifying area just a block or two away from where those ‘poverty images’ were taken. Add in the fact that the tour was made up of a relatively middle class group of people staring at poverty when the reality is block away the whole thing becomes head-spinning as these questions whirl who is seeing, who is being seen, and what is being seen?

The last piece I’m going to mention is the multi-panel “The Idea of the University” (1990). The piece brought back memories as I once worked at the University of British Columbia where Wallace took his images. It was a walk down the lane of ‘old technology’ with microfiche readers, electric typewriters, card catalogues, etc. Sydney Marshall (tour guide Sydney) has written a July 25, 2017 essay about the piece on the Rennie Collection’s website,

Without contest, my favourite artwork by Ian Wallace is The Idea of the University (1990). Installed in Rennie Museum’s monumental four-storey high exhibition space, the sprawling canvasses are almost as immense as their depicted subject: the University of British Columbia. It’s likely that I appreciate it so much because like Wallace, I also studied at U.B.C., sitting in the same lecture hall that he used to teach in. This sentimentality seems to be shared; local visitors will often stop to point out former professors, or remember old buildings that have since been demolished. The piece is an exercise in collective memory. Functioning like a time capsule, it allows viewers to reflect on developments from the past to present. This is, however, just one aspect of a multi-faceted piece. By using the competing technical modes of painting and photography to depict university spaces, Wallace challenges the notion that painting is the only valid form of artistic production within academia. Historically, art production has operated within a technical hierarchy, with painting as the most revered medium due to the artistic labour it necessitates. The 20th century’s shifting social climate ultimately sees a redistribution of this hierarchical power. In response to the increasing corporatization of the university space, anti-institutional dissent permeated universities across the North American continent – U.B.C. included. For Ian Wallace and his contemporaries, this manifested as a desire to dispute traditional designations of painting as the most inherently valuable way to produce art. With his work, Wallace recontextualizes the medium, placing it in direct conversation with its subsidiaries: photography, writing, and thinking. In doing so, he subverts the idea that a technical hierarchy needs exist at all, equating multiple forms of production across a broad spectrum of intellectual and artistic interests.


Ian Wallace
The Idea of the University I-XVI, 1990

 

Conceived for a special exhibition at the U.B.C. Fine Arts Gallery in 1990, the work features sixteen photographs of university spaces and personnel in various states of candidness, each flanked with bars of white and multicoloured monochrome. In its entirety, the work looks cinematic – as if it were a filmstrip of image stills pulled from a promotional clip. This is not to say the images are typically beautiful because, by all accounts, they’re not. The depicted spaces are not inherently exciting. Some photographs are oddly cropped, others slightly out of focus; these formal details are irrelevant to the medium’s intended purpose: its subject. Photography, as a medium, offers to art that which painting cannot. The photograph is able to capture the totality of ‘the everyday’ as it exists in a moment, bringing banality into focus and calling the viewer to engage with it further. Visible beauty no longer designates whether a work is ‘art’ or ‘not art’; instead, it is the depth of concept that provides this justification. The valorization of these images as ‘art’ is additionally supported by their proximity to monochrome painting. The white monochrome acts as grounding, a symbolic representation of the white-walled gallery space typically designating a work of art. The multicoloured inclusions operate similarly. Different on each canvas, the monochrome bars provide an aesthetic and historical reference to modernism that further situates the opposing photographs within an established artistic context. By referencing this history, Wallace is able to push the limit of acceptable artistic production, using the predetermined power of modernism to elevate the comparatively new medium of photography.

It should be noted that a key component of The Idea of the University is missing from its visual representation: Wallace’s catalogue essay. The writing has become a near immovable companion to the work, as it explains precisely why the artist has chosen to explore the subject of the university. In it, Wallace identifies the contemporary university as an abstracted space, caught between its founding principles and modern-day realities. The university is supposed to be a universalizing space, providing equal opportunity to acquire ‘truth’ and knowledge to everyone that passes through its metaphorical gates. Wallace almost immediately invalidates this idea by identifying the discrepancy between this ideal image and its actuality*. Instead of a collective organization united in the unhindered production of knowledge, the contemporary university exists as an ideology-producing institution that services a number of specific political and socioeconomic interests*. For Wallace, the same designation could be given to the discourse of art – a supposedly universal field that relies almost entirely on individual notions of taste and arbitrary economic determinations. The Idea of the University works as an evaluation of both the university and the discourse of art, but Wallace very intentionally leaves the canvasses open-ended. Instead, he presents the failures (or at least, potential failures) of these systems in his writing, using its visual counterpart as a stimulus by which the viewer can judge the validity of his propositions for themselves.


Ian Wallace
The Idea of the University I-XVI, 1990

 

Just as Wallace succeeds in neutrally depicting the university space, so too does he succeed in avoiding a singular narrative of exactly how knowledge is produced. He chooses not to privilege one form of ‘work’ over another, but does show immense regard for practice in general. Some empty and others full, most of the photographed spaces feature a single figure engaging in various forms of intellectual labour: reading, searching the web, or completing administrative tasks. All of these engagements are qualified as ‘work’ that contributes to the ultimate output of the university. This is paralleled by Wallace’s own technical expansions of artistic labour. He challenges traditional perceptions of painting and photography by combining the two, then supplementing the combination with writing. In this sense, it is neither the visual nor the written work that takes precedence, but the idea that all of these productive forms are equally valid. In essence, Wallace’s presentation of simultaneous forms of labour democratizes realms of production within art, decentralizing painting as the foundation upon which art must be based. Not only does artwork not need to be painted, it doesn’t even have to be visual. To Ian Wallace, a radical thought is as legitimate an artistic gesture as a visible brushstroke.

* Wallace, Ian. “The Idea of the University.” UBC Fine Arts Gallery, 1990. Page 23. Print.

The production of art and the production of knowledge would seem to be the dominant themes of this Ian Wallace exhibition and, I suspect, his life.

Anyone interested in seeing the show for themselves, can go here to save a space on one of the tours (for this show they are on Wednesdays, Thursdays, and Saturdays). It is also possible to book separate tours for groups of eight or more here.

Time traveling at the University of British Columbia

Anyone who dreams of timetraveling is going to have to wait a bit longer as this form of timetraveling is theoretical. From an April 27, 2017 news item on ScienceDaily,

After some serious number crunching, a UBC [University of British Columbia] researcher has come up with a mathematical model for a viable time machine.

Ben Tippett, a mathematics and physics instructor at UBC’s Okanagan campus, recently published a study about the feasibility of time travel. Tippett, whose field of expertise is Einstein’s theory of general relativity, studies black holes and science fiction when he’s not teaching. Using math and physics, he has created a formula that describes a method for time travel.

An April 27, 2017 UBC at Okanagan news release (also on EurekAlert), which originated the news item, elaborates on the work.

“People think of time travel as something fictional,” says Tippett. “And we tend to think it’s not possible because we don’t actually do it. But, mathematically, it is possible.”

Ever since H.G. Wells published his book Time Machine in 1885, people have been curious about time travel—and scientists have worked to solve or disprove the theory. In 1915 Albert Einstein announced his theory of general relativity, stating that gravitational fields are caused by distortions in the fabric of space and time. More than 100 years later, the LIGO Scientific Collaboration—an international team of physics institutes and research groups—announced the detection of gravitational waves generated by colliding black holes billions of light years away, confirming Einstein’s theory.

The division of space into three dimensions, with time in a separate dimension by itself, is incorrect, says Tippett. The four dimensions should be imagined simultaneously, where different directions are connected, as a space-time continuum. Using Einstein’s theory, Tippett explains that the curvature of space-time accounts for the curved orbits of the planets.

In “flat” or uncurved space-time, planets and stars would move in straight lines. In the vicinity of a massive star, space-time geometry becomes curved and the straight trajectories of nearby planets will follow the curvature and bend around the star.

“The time direction of the space-time surface also shows curvature. There is evidence showing the closer to a black hole we get, time moves slower,” says Tippett. “My model of a time machine uses the curved space-time—to bend time into a circle for the passengers, not in a straight line. That circle takes us back in time.”

While it is possible to describe this type of time travel using a mathematical equation, Tippett doubts that anyone will ever build a machine to make it work.

“H.G. Wells popularized the term ‘time machine’ and he left people with the thought that an explorer would need a ‘machine or special box’ to actually accomplish time travel,” Tippett says. “While is it mathematically feasible, it is not yet possible to build a space-time machine because we need materials—which we call exotic matter—to bend space-time in these impossible ways, but they have yet to be discovered.”

For his research, Tippett created a mathematical model of a Traversable Acausal Retrograde Domain in Space-time (TARDIS). He describes it as a bubble of space-time geometry which carries its contents backward and forward through space and time as it tours a large circular path. The bubble moves through space-time at speeds greater than the speed of light at times, allowing it to move backward in time.

“Studying space-time is both fascinating and problematic. And it’s also a fun way to use math and physics,” says Tippett. “Experts in my field have been exploring the possibility of mathematical time machines since 1949. And my research presents a new method for doing it.”

Here’s a link to and a citation for the paper,

Traversable acausal retrograde domains in spacetime by Benjamin K Tippett and David Tsang. Classical and Quantum Gravity, Volume 34, Number 9 DOI: https://doi.org/10.1088/1361-6382/aa6549 Published 31 March 2017

© 2017 IOP Publishing Ltd

This paper is behind a paywall.

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 1 of 3

This sucker (INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research, also known as, Canada’s Fundamental Science Review 2017 or the Naylor report) is a 280 pp. (PDF) and was released on Monday, April 10, 2017. I didn’t intend that this commentary should stretch out into three parts (sigh). Them’s the breaks. This first part provides an introduction to the panel and the report as well as some ‘first thoughts’. Part 2 offers more detailed thoughts and Part 3 offers ‘special cases’ and sums up some of the ideas first introduced in part 1.

I first wrote about this review in a June 15, 2017 posting where amongst other comments I made this one,

Getting back to the review and more specifically, the panel, it’s good to see that four of the nine participants are women but other than that there doesn’t seem to be much diversity, i.e.,the majority (five) spring from the Ontario/Québec nexus of power and all the Canadians are from the southern part of country. Back to diversity, there is one business man, Mike Laziridis known primarily as the founder of Research in Motion (RIM or more popularly as the Blackberry company) making the panel not a wholly ivory tower affair. Still, I hope one day these panels will have members from the Canadian North and international members who come from somewhere other than the US, Great Britain, and/or if they’re having a particularly wild day, Germany. Here are some candidate countries for other places to look for panel members: Japan, Israel, China, South Korea, and India. Other possibilities include one of the South American countries, African countries, and/or the Middle Eastern countries.

Take the continent of Africa for example, where many countries seem to have successfully tackled one of the issues as we face. Specifically, the problem of encouraging young researchers. …

Here’s a quick summary about the newly released report from the April 10, 2017 federal government news release on Canada’s Public Policy Forum,

Today [April 10, 2017], the Government of Canada published the final report of the expert panel on Canada’s Fundamental Science Review. Commissioned by the Honourable Kirsty Duncan, Minister of Science, the report by the blue-ribbon panel offers a comprehensive review of the mechanisms for federal funding that supports research undertaken at academic institutions and research institutes across Canada, as well as the levels of that funding. It provides a multi-year blueprint for improving the oversight and governance of what the panelists call the “research ecosystem.” The report also recommends making major new investments to restore support for front-line research and strengthen the foundations of Canadian science and research at this pivotal point in global history.

The review is the first of its type in more than 40 years. While it focused most closely on the four major federal agencies that support science and scholarly inquiry across all disciplines, the report also takes a wide-angle view of governance mechanisms ranging from smaller agencies to big science facilities. Another issue closely examined by the panel was the effect of the current configuration of funding on the prospects of early career researchers—a group that includes a higher proportion of women and is more diverse than previous generations of scientists and scholars.

The panel’s deliberations were informed by a broad consultative process. The panel received 1,275 written submissions [emphasis mine] from individuals, associations and organizations. It also held a dozen round tables in five cities, engaging some 230 researchers [emphasis mine] at different career stages.

Among the findings:

  • Basic research worldwide has led to most of the technological, medical and social advances that make our quality of life today so much better than a century ago. Canadian scientists and scholars have contributed meaningfully to these advances through the decades; however, by various measures, Canada’s research competitiveness has eroded in recent years.
  • This trend emerged during a period when there was a drop of more than 30 percent in real per capita funding for independent or investigator-led research by front-line scientists and scholars in universities, colleges, institutes and research hospitals. This drop occurred as a result of caps on federal funding to the granting councils and a dramatic change in the balance of funding toward priority-driven and partnership-oriented research.
  • Canada is an international outlier in that funding from federal government sources accounts for less than 25 percent of total spending on research and development in the higher education sector. While governments sometimes highlight that, relative to GDP, Canada leads the G7 in total spending by this sector, institutions themselves now underwrite 50 percent of these costs—with adverse effects on both research and education.
  • Coordination and collaboration among the four key federal research agencies [Canada Foundation for Innovation {CFI}; Social Sciences and Humanities Research Council {SSHRC}; Natural Sciences and Engineering Research Council {NSERC}; Canadian Institutes of Health Research {CIHR}] is suboptimal, with poor alignment of supports for different aspects of research such as infrastructure, operating costs and personnel awards. Governance and administrative practices vary inexplicably, and support for areas such as international partnerships or multidisciplinary research is uneven.
  • Early career researchers are struggling in some disciplines, and Canada lacks a career-spanning strategy for supporting both research operations and staff.
  • Flagship personnel programs such as the Canada Research Chairs have had the same value since 2000. Levels of funding and numbers of awards for students and post-doctoral fellows have not kept pace with inflation, peer nations or the size of applicant pools.

The report also outlines a comprehensive agenda to strengthen the foundations of Canadian extramural research. Recommended improvements in oversight include:

  • legislation to create an independent National Advisory Council on Research and Innovation (NACRI) that would work closely with Canada’s new Chief Science Advisor (CSA) to raise the bar in terms of ongoing evaluations of all research programming;
  • wide-ranging improvements to oversight and governance of the four agencies, including the appointment of a coordinating board chaired by the CSA; and
  • lifecycle governance of national-scale research facilities as well as improved methods for overseeing and containing the growth in ad-hoc funding of smaller non-profit research entities.

With regard to funding, the panel recommends a major multi-year reinvestment in front-line research, targeting several areas of identified need. Each recommendation is benchmarked and is focused on making long-term improvements in Canada’s research capacity. The panel’s recommendations, to be phased in over four years, would raise annual spending across the four major federal agencies and other key entities from approximately $3.5 billion today to $4.8 billion in 2022. The goal is to ensure that Canada benefits from an outsized concentration of world-leading scientists and scholars who can make exciting discoveries and generate novel insights while educating and inspiring the next generation of researchers, innovators and leaders.

Given global competition, the current conditions in the ecosystem, the role of research in underpinning innovation and educating innovators, and the need for research to inform evidence-based policy-making, the panel concludes that this is among the highest-yield investments in Canada’s future that any government could make.

The full report is posted on www.sciencereview.ca.

Quotes

“In response to the request from Prime Minister Trudeau and Minister Duncan, the Science Review panel has put together a comprehensive roadmap for Canadian pre-eminence in science and innovation far into the future. The report provides creative pathways for optimizing Canada’s investments in fundamental research in the physical, life and social sciences as well as the humanities in a cost effective way. Implementation of the panel’s recommendations will make Canada the destination of choice for the world’s best talent. It will also guarantee that young Canadian researchers can fulfill their dreams in their own country, bringing both Nobel Prizes and a thriving economy to Canada. American scientists will look north with envy.”

– Robert J. Birgeneau, Silverman Professor of Physics and Public Policy, University of California, Berkeley

“We have paid close attention not only to hard data on performance and funding but also to the many issues raised by the science community in our consultations. I sincerely hope the report will serve as a useful guide to policy-makers for years to come.”

– Martha Crago, Vice-President, Research and Professor of Human Communication Disorders, Dalhousie University

“Science is the bedrock of modern civilization. Our report’s recommendations to increase and optimize government investments in fundamental scientific research will help ensure that Canada’s world-class researchers can continue to make their critically important contributions to science, industry and society in Canada while educating and inspiring future generations. At the same time, such investments will enable Canada to attract top researchers from around the world. Canada must strategically build critical density in our researcher communities to elevate its global competitiveness. This is the path to new technologies, new businesses, new jobs and new value creation for Canada.”

– Mike Lazaridis, Founder and Managing Partner, Quantum Valley Investments

“This was a very comprehensive review. We heard from a wide range of researchers—from the newest to those with ambitious, established and far-reaching research careers. At all these levels, researchers spoke of their gratitude for federal funding, but they also described enormous barriers to their success. These ranged from personal career issues like gaps in parental leave to a failure to take gender, age, geographic location and ethnicity into account. They also included mechanical and economic issues like gaps between provincial and federal granting timelines and priorities, as well as a lack of money for operating and maintaining critical equipment.”

– Claudia Malacrida, Associate Vice-President, Research and Professor of Sociology, University of Lethbridge

“We would like to thank the community for its extensive participation in this review. We reflect that community perspective in recommending improvements to funding and governance for fundamental science programs to restore the balance with recent industry-oriented programs and improve both science and innovation in Canada.”

– Arthur B. McDonald, Professor Emeritus, Queen’s University

“This report sets out a multi-year agenda that, if implemented, could transform Canadian research capacity and have enormous long-term impacts across the nation. It proffers a legacy-building opportunity for a new government that has boldly nailed its colours to the mast of science and evidence-informed policy-making. I urge the Prime Minister to act decisively on our recommendations.”

– C. David Naylor, Professor of Medicine, University of Toronto (Chair)

“This report outlines all the necessary ingredients to advance basic research, thereby positioning Canada as a leading ‘knowledge’ nation. Rarely does a country have such a unique opportunity to transform the research landscape and lay the foundation for a future of innovation, prosperity and well-being.”

– Martha C. Piper, President Emeritus, University of British Columbia

“Our report shows a clear path forward. Now it is up to the government to make sure that Canada truly becomes a world leader in how it both organizes and financially supports fundamental research.”

– Rémi Quirion, Le scientifique en chef du Québec

“The government’s decision to initiate this review reflected a welcome commitment to fundamental research. I am hopeful that the release of our report will energize the government and research community to take the next steps needed to strengthen Canada’s capacity for discovery and research excellence. A research ecosystem that supports a diversity of scholars at every career stage conducting research in every discipline will best serve Canada and the next generation of students and citizens as we move forward to meet social, technological, economic and ecological challenges.”

– Anne Wilson, Professor of Psychology, Wilfrid Laurier University

Quick facts

  • The Fundamental Science Review Advisory Panel is an independent and non-partisan body whose mandate was to provide advice and recommendations to the Minister of Science on how to improve federal science programs and initiatives.
  • The panel was asked to consider whether there are gaps in the federal system of support for fundamental research and recommend how to address them.
  • The scope of the review included the federal granting councils along with some federally funded organizations such as the Canada Foundation for Innovation.

First thoughts

Getting to the report itself, I have quickly skimmed through it  but before getting to that and for full disclosure purposes, please note, I made a submission to the panel. That said, I’m a little disappointed. I would have liked to have seen a little more imagination in the recommendations which set forth future directions. Albeit the questions themselves would not seem to encourage any creativity,

Our mandate was summarized in two broad questions:

1. Are there any overall program gaps in Canada’s fundamental research funding ecosystem that need to be addressed?

2. Are there elements or programming features in other countries that could provide a useful example for the Government of Canada in addressing these gaps? (p. 1 print; p. 35 PDF)

A new agency to replace the STIC (Science, Technology and Innovation Council)

There are no big surprises. Of course they’ve recommended another organization, NACRI [National Advisory Council on Research and Innovation], most likely to replace the Conservative government’s advisory group, the Science, Technology and Innovation Council (STIC) which seems to have died as of Nov. 2015, one month after the Liberals won. There was no Chief Science Advisor under the Conservatives. As I recall, the STIC replaced a previous Liberal government’s advisory group and Chief Science Advisor (Arthur Carty, now the executive director of the Waterloo [as in University of Waterloo] Institute of Nanotechnology).

Describing the NACRI as peopled by volunteers doesn’t exactly describe the situation. This is the sort of ‘volunteer opportunity’ a dedicated careerist salivates over because it’s a career builder where you rub shoulders with movers and shakers in other academic institutions, in government, and in business. BTW, flights to meetings will be paid for along with per diems (accommodations and meals). These volunteers will also have a staff. Admittedly, it will be unpaid extra time for the ‘volunteer’ but the payoff promises to be considerable.

Canada’s eroding science position

There is considerable concern evinced over Canada’s eroding position although we still have bragging rights in some areas (regenerative medicine, artificial intelligence for two areas). As for erosion, the OECD (Organization for Economic Cooperation and Development) dates the erosion back to 2001 (from my June 2, 2014 posting),

Interestingly, the OECD (Organization for Economic Cooperation and Development) Science, Technology and Industry Scoreboard 2013 dates the decline to 2001. From my Oct. 30, 2013 posting (excerpted from the scorecard),

Canada is among the few OECD countries where R&D expenditure declined between 2000 and 2011 (Figure 1). This decline was mainly due to reduced business spending on R&D. It occurred despite relatively generous public support for business R&D, primarily through tax incentives. In 2011, Canada was amongst the OECD countries with the most generous tax support for R&D and the country with the largest share of government funding for business R&D being accounted for by tax credits (Figure 2). …

It should be noted, the Liberals have introduced another budget with flat funding for science (if you want to see a scathing review see Nassif Ghoussoub’s (professor of mathematics at the University of British Columbia April 10, 2017 posting) on his Piece of Mind blog). Although the funding isn’t quite so flat as it might seem at first glance (see my March 24, 2017 posting about the 2017 budget). The government explained that the science funding agencies didn’t receive increased funding as the government was waiting on this report which was released only weeks later (couldn’t they have a sneak preview?). In any event, it seems it will be at least a year before the funding issues described in the report can be addressed through another budget unless there’s some ‘surprise’ funding ahead.

Again, here’s a link to the other parts:

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report) Commentaries

Part 2

Part 3

Inaugural Italian Scientists and Scholars of North America Foundation (ISSNAF) annual meeting

Thanks to a May 17, 2017 announcement I received via email from the ArtSci Salon, I’ve learned of a rather intriguing annual meeting to be held May 19-20, 2017 in Toronto, Ontario,

We are pleased to invite you to attend the Italian Scientists and
Scholars of North America Foundation (ISSNAF) inaugural annual
conference in Canada, which will be held on May 19-20th, 2017 at the
Istituto Italiano di Cultura, Toronto, Ontario.

During the event, the Italian scientific community will meet the
institutions, the industry, academia to discuss breakthrough ideas, to
network, and to award projects of young Italians through the ISSNAF
Young Investigators Awards.

The event is organized under the auspices of H.E. Ambassador CLAUDIO
TAFFURI, Consul General of Italy in Toronto, GIUSEPPE PASTORELLI,
Director of the Istituto Italiano di Cultura in Toronto, ALESSANDRO
RUGGERA and Scientific Attaché of the Italian Embassy in Ottawa, ANNA
GALLUCCIO. This year’s exciting conference will focus on innovation,
exploring innovation as invention and transformation, as well as its
impact on how we live and think.

After an introduction by H.E. Ambassador of Italy, CLAUDIO TAFFURI,
and other representatives of Italian institutions, the event will open
with two prominent speakers: PAOLO MACCARIO, Chief Operating Officer
and General Manager at Silfab Ontario Inc. and FRANCO VACCARINO,
President and Vice-Chancellor of Guelph University, who will discuss
current and future strategies in academia and industry required for
students and workers to deal with the disruptive technologies and the
exponential increase in knowledge.

The later part of the day will feature speakers from different
institutions from all over Canada. CORRADO PAINA, President of the
Italian Chamber of Commerce, will address the importance of innovation
and research from the industry prospective. UMBERTO BERARDI, Associate
Professor, Faculty of Engineering and Architecture, Ryerson
University, will bring his experience as winner of the Franco
Strazzabosco Award for Engineers. Nicola Fameli, Research Associate of
Anesthesiology, Pharmacology and Therapeutics, U. of British Columbia
and Franco Mammarella, Group leader [TRIUMF] Canada’s National Laboratory for
Particle and Nuclear Physics, president and vice-president of ARPICO
(Society of Italian Researchers & Professionals in Western Canada),
will explain the importance of developing a global network amongst
researchers. The day will be closed by GABRIELLA GOBBI, Associate
Professor, Dept. Psychiatry, McGill University on the current status
of the Italian Scientific Community in Quebec.

Day One of ISSNAF’s Annual event will conclude with a reception at the
Istituto. Day Two of the event is dedicated to young Italian
researchers and scientists who will present their work and will
receive the ISSNAF Certificate for Young Investigators. The day will
end with a round table and a discussion directed by the ISSNAF Ontario
chapter Chairs, BARBARA CIFRA, VITO MENNELLA AND LEONARDO SALMENA on
how to build a successful academic network and how ISSNAF can
contribute to the process.

The event is limited to 50 people only [emphasis mine]. Please confirm your presence
by May 17th [2017] by sending an email to: iictoronto@esteri.it

Sorry to be posting this so late in the day (fingers crossed it’s not too late).

I did do some searching and found this description of the event on the ARPICO website,

On May 19-20th SIRO (Society of Italian researcher in Ontario) official Chapter of the Italian Scientists and Scholars of North America Foundation (ISSNAF) will host in cooperation with the Embassy of Italy in Ottawa the inaugural Canadian Annual ISSNAF meeting.

The event is organized under the auspices of H.E. Ambassador Claudio Taffuri, Consul General of Italy in Toronto, Giuseppe Pastorelli, and Director of the Istituto Italiano di Cultura in Toronto, Alessandro Ruggera and Scientific Attache’ of the Italian Embassy in Ottawa, Anna Galluccio. This year’s exciting conference will focus on innovation, exploring innovation as invention and transformation and its impact on how we live and think.

During the event, the italian scientific community meets the institutions, the industry, academia to discuss breakthrough ideas, to network, and to award projects of young Italians through the ISSNAF Young Investigators Awards.

For this year the event will be attended by 60 selected researchers and scholars working in Canada. [emphasis mine]

For more information email issnafontario@gmail.com

Good luck at getting to attend the event whether there are 50 or 60 participants.

3D bioprinting: a conference about the latest trends (May 3 – 5, 2017 at the University of British Columbia, Vancouver)

The University of British Columbia’s (UBC) Peter Wall Institute for Advanced Studies (PWIAS) is hosting along with local biotech firm, Aspect Biosystems, a May 3 -5, 2017 international research roundtable known as ‘Printing the Future of Therapeutics in 3D‘.

A May 1, 2017 UBC news release (received via email) offers some insight into the field of bioprinting from one of the roundtable organizers,

This week, global experts will gather [4] at the University of British
Columbia to discuss the latest trends in 3D bioprinting—a technology
used to create living tissues and organs.

In this Q&A, UBC chemical and biological engineering professor
Vikramaditya Yadav [5], who is also with the Regenerative Medicine
Cluster Initiative in B.C., explains how bioprinting could potentially
transform healthcare and drug development, and highlights Canadian
innovations in this field.

WHY IS 3D BIOPRINTING SIGNIFICANT?

Bioprinted tissues or organs could allow scientists to predict
beforehand how a drug will interact within the body. For every
life-saving therapeutic drug that makes its way into our medicine
cabinets, Health Canada blocks the entry of nine drugs because they are
proven unsafe or ineffective. Eliminating poor-quality drug candidates
to reduce development costs—and therefore the cost to consumers—has
never been more urgent.

In Canada alone, nearly 4,500 individuals are waiting to be matched with
organ donors. If and when bioprinters evolve to the point where they can
manufacture implantable organs, the concept of an organ transplant
waiting list would cease to exist. And bioprinted tissues and organs
from a patient’s own healthy cells could potentially reduce the risk
of transplant rejection and related challenges.

HOW IS THIS TECHNOLOGY CURRENTLY BEING USED?

Skin, cartilage and bone, and blood vessels are some of the tissue types
that have been successfully constructed using bioprinting. Two of the
most active players are the Wake Forest Institute for Regenerative
Medicine in North Carolina, which reports that its bioprinters can make
enough replacement skin to cover a burn with 10 times less healthy
tissue than is usually needed, and California-based Organovo, which
makes its kidney and liver tissue commercially available to
pharmaceutical companies for drug testing.

Beyond medicine, bioprinting has already been commercialized to print
meat and artificial leather. It’s been estimated that the global
bioprinting market will hit $2 billion by 2021.

HOW IS CANADA INVOLVED IN THIS FIELD?

Canada is home to some of the most innovative research clusters and
start-up companies in the field. The UBC spin-off Aspect Biosystems [6]
has pioneered a bioprinting paradigm that rapidly prints on-demand
tissues. It has successfully generated tissues found in human lungs.

Many initiatives at Canadian universities are laying strong foundations
for the translation of bioprinting and tissue engineering into
mainstream medical technologies. These include the Regenerative Medicine
Cluster Initiative in B.C., which is headed by UBC, and the University
of Toronto’s Institute of Biomaterials and Biomedical Engineering.

WHAT ETHICAL ISSUES DOES BIOPRINTING CREATE?

There are concerns about the quality of the printed tissues. It’s
important to note that the U.S. Food and Drug Administration and Health
Canada are dedicating entire divisions to regulation of biomanufactured
products and biomedical devices, and the FDA also has a special division
that focuses on regulation of additive manufacturing – another name
for 3D printing.

These regulatory bodies have an impressive track record that should
assuage concerns about the marketing of substandard tissue. But cost and
pricing are arguably much more complex issues.

Some ethicists have also raised questions about whether society is not
too far away from creating Replicants, à la _Blade Runner_. The idea is
fascinating, scary and ethically grey. In theory, if one could replace
the extracellular matrix of bones and muscles with a stronger substitute
and use cells that are viable for longer, it is not too far-fetched to
create bones or muscles that are stronger and more durable than their
natural counterparts.

WILL DOCTORS BE PRINTING REPLACEMENT BODY PARTS IN 20 YEARS’ TIME?

This is still some way off. Optimistically, patients could see the
technology in certain clinical environments within the next decade.
However, some technical challenges must be addressed in order for this
to occur, beginning with faithful replication of the correct 3D
architecture and vascularity of tissues and organs. The bioprinters
themselves need to be improved in order to increase cell viability after
printing.

These developments are happening as we speak. Regulation, though, will
be the biggest challenge for the field in the coming years.

There are some events open to the public (from the international research roundtable homepage),

OPEN EVENTS

You’re invited to attend the open events associated with Printing the Future of Therapeutics in 3D.

Café Scientifique

Thursday, May 4, 2017
Telus World of Science
5:30 – 8:00pm [all tickets have been claimed as of May 2, 2017 at 3:15 pm PT]

3D Bioprinting: Shaping the Future of Health

Imagine a world where drugs are developed without the use of animals, where doctors know how a patient will react to a drug before prescribing it and where patients can have a replacement organ 3D-printed using their own cells, without dealing with long donor waiting lists or organ rejection. 3D bioprinting could enable this world. Join us for lively discussion and dessert as experts in the field discuss the exciting potential of 3D bioprinting and the ethical issues raised when you can print human tissues on demand. This is also a rare opportunity to see a bioprinter live in action!

Open Session

Friday, May 5, 2017
Peter Wall Institute for Advanced Studies
2:00 – 7:00pm

A Scientific Discussion on the Promise of 3D Bioprinting

The medical industry is struggling to keep our ageing population healthy. Developing effective and safe drugs is too expensive and time-consuming to continue unchanged. We cannot meet the current demand for transplant organs, and people are dying on the donor waiting list every day.  We invite you to join an open session where four of the most influential academic and industry professionals in the field discuss how 3D bioprinting is being used to shape the future of health and what ethical challenges may be involved if you are able to print your own organs.

ROUNDTABLE INFORMATION

The University of British Columbia and the award-winning bioprinting company Aspect Biosystems, are proud to be co-organizing the first “Printing the Future of Therapeutics in 3D” International Research Roundtable. This event will congregate global leaders in tissue engineering research and pharmaceutical industry experts to discuss the rapidly emerging and potentially game-changing technology of 3D-printing living human tissues (bioprinting). The goals are to:

Highlight the state-of-the-art in 3D bioprinting research
Ideate on disruptive innovations that will transform bioprinting from a novel research tool to a broadly adopted systematic practice
Formulate an actionable strategy for industry engagement, clinical translation and societal impact
Present in a public forum, key messages to educate and stimulate discussion on the promises of bioprinting technology

The Roundtable will bring together a unique collection of industry experts and academic leaders to define a guiding vision to efficiently deploy bioprinting technology for the discovery and development of new therapeutics. As the novel technology of 3D bioprinting is more broadly adopted, we envision this Roundtable will become a key annual meeting to help guide the development of the technology both in Canada and globally.

We thank you for your involvement in this ground-breaking event and look forward to you all joining us in Vancouver for this unique research roundtable.

Kind Regards,
The Organizing Committee
Christian Naus, Professor, Cellular & Physiological Sciences, UBC
Vikram Yadav, Assistant Professor, Chemical & Biological Engineering, UBC
Tamer Mohamed, CEO, Aspect Biosystems
Sam Wadsworth, CSO, Aspect Biosystems
Natalie Korenic, Business Coordinator, Aspect Biosystems

I’m glad to see this event is taking place—and with public events too! (Wish I’d seen the Café Scientifique announcement earlier when I first checked for tickets  yesterday. I was hoping there’d been some cancellations today.) Finally, for the interested, you can find Aspect Biosystems here.