Tag Archives: University of British Columbia

Life in the frozen lane at Vancouver’s (Canada) Oct. 28, 2014 Café Scientifique

Vancouver’s next Café Scientifique is being held in the back room of the The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), on Oct. 28,  2014. Here’s the meeting description (from the Oct. 21, 2014 announcement),

Our next café will happen on Tuesday, October 28th, at 7:30pm at The Railway Club. Our speaker for the evening will be Dr. Katie Marshall, Killam Postdoctoral Fellow at The University of British Columbia [UBC]. The title of her talk is:

Life in the Frozen Lane

There’s a long list of animals that can survive freezing solid that includes animals as diverse as mussels, woolly caterpillars, frogs, and turtles. How and why do they do it? What can we learn from the animals that do? Surviving freezing is a surprisingly complicated process that involves a wide array of biochemical tricks that we humans are just learning how to mimic. This talk will walk through the basics of how freezing happens, how it can be manipulated, and showcase some of Canada’s best freeze-tolerant animals.

You can find out more about Katie Marshall here on her UBC Department of Zoology webpage.

The chemistry of beer at Vancouver’s (Canada) Sept. 30, 2014 Café Scientifique

Vancouver’s next Café Scientifique is being held in the back room of the The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), on Sept. 30,  2014. Here’s the meeting description (from the Sept. 23, 2014 announcement),

Our next café will happen on Tuesday September 30th, 7:30pm at The Railway Club. Our speaker for the evening will be Dr. Joel Kelly. The title of his talk and abstract for his talk is:

The Chemistry of Beer

Why does Guinness pair perfectly with a hearty stew? Why are the soft waters of the Czech Republic better for brewing lagers, while the hard waters of Burton, England ideal for brewing India Pale Ales? What do hops and marijuana share in common? The answer to all of these questions is CHEMISTRY! I will present a story in four parts (malt, yeast, hops and water) on the chemistry of beer. We will sample a variety of beers across the spectrum to highlight the wonderful variety of molecules that beer can provide.

Please note: The Railway Club have kindly agreed to have a sampler of 4 4 oz beers available for $7.50 inc. tax which will complement this talk. You are advised to arrive early so you have enough time to get your beer before 7:30 pm.

I was able to find more information about Joel Kelly who until recently was a postdoctoral research in Mark MacLachlan’s laboratory at the University of British Columbia. (MacLachlan was interviewed here prior to his Café Scientifique presentation in a March 25, 2011 posting.)

Currently a chemist at BC Research according to his LinkedIn profile, Kelly gave an interview about beer and his interests for a podcast (approximately 5 mins.) which can be found in this Nov. 7, 2013 posting on the MacLachlan Group blog.

The next megathrust earthquake at Vancouver’s (Canada) August 26, 2014 Café Scientifique

Vancouver’s next Café Scientifique is being held in the back room of the The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), on Tuesday, August 26,  2014 at 7:30 pm. Here’s the meeting description (from the August 19, 2014 announcement),

Our speaker for the evening will be Dr. Carlos Ventura,the Director of the Earthquake Engineering Research Facility (EERF) at the University of British Columbia.  The title of his talk is:

A Megathrust Earthquake in the West Coast – The clock is ticking

The theme of the talk is about the effects of megathrust earthquakes in the last ten years in the built environment, and the lessons that we have learned from them.  These are helping us understand better what would be the possible effects of the “big one” on the West Coast of BC.  Some of the research that we are doing at UBC to better understand the effects of this type of earthquake will be discussed.

From Dr. Carlos Ventura’s UBC Faculty webpage,

Dr. Carlos Ventura is currently the Director of the Earthquake Engineering Research Facility (EERF) at UBC and has more than 30 years of experience as a structural engineer.  Dr. Ventura’s areas of research are in Structural Dynamics and Earthquake Engineering. He has been conducting research on the dynamic behavior and analysis of structural systems subjected to extreme dynamic loads, including severe ground shaking for more than twenty years. His research work includes experimental studies in the field and in the laboratory of structural systems and components.   Research developments have included development and implementation of performance-based design methods for seismic retrofit of low rise school buildings, novel techniques for regional estimation of damage to structures during earthquakes, detailed studies on nonlinear dynamic analysis of structures and methods to evaluate the dynamic characteristics of large Civil Engineering structures. …

You can find out more about the Earthquake Engineering Research Facility (EERF) here.

Hummingbirds and ‘nano’ spy cameras

Hummingbird-inspired spy cameras have come a long way since the research featured in this Aug. 12, 2011 posting which includes a video of a robot camera designed to look like a hummingbird and mimic some of its extraordinary flying abilities. These days (2014) the emphasis appears to be on mimicking the abilities to a finer degree if Margaret Munro’s July 29, 2014 article for Canada.com is to be believed,

Tiny, high-end military drones are catching up with one of nature’s great engineering masterpieces.

A side-by-side comparison has found a “remarkably similar” aerodynamic performance between hummingbirds and the Black Hornet, the most sophisticated nano spycam yet.

“(The) Average Joe hummingbird” is about on par with the tiny helicopter that is so small it can fit in a pocket, says engineering professor David Lentink, at Stanford University. He led a team from Canada [University of British Columbia], the U.S. and the Netherlands [Wageningen University and Eindhoven University of Technology] that compared the birds and the machine for a study released Tuesday [July 29, 2014].

For a visual comparison with the latest nano spycam (Black Hornet), here’s the ‘hummingbird’ featured in the 2011 posting,

The  Nano Hummingbird, a drone from AeroVironment designed for the US Pentagon, would fit into any or all of those categories.

And, here’s this 2013 image of a Black Hornet Nano Helicopter inspired by hummingbirds,

Black Hornet Nano Helicopter UAVView licenseview terms Richard Watt - Photo http://www.defenceimagery.mod.uk/fotoweb/fwbin/download.dll/45153802.jpgCourtesy: Wikipedia

Black Hornet Nano Helicopter UAVView licenseview terms
Richard Watt – Photo http://www.defenceimagery.mod.uk/fotoweb/fwbin/download.dll/45153802.jpg Courtesy: Wikipedia

A July 30, 2014 Stanford University news release by Bjorn Carey provides more details about this latest research into hummingbirds and their flying ways,

More than 42 million years of natural selection have turned hummingbirds into some of the world’s most energetically efficient flyers, particularly when it comes to hovering in place.

Humans, however, are gaining ground quickly. A new study led by David Lentink, an assistant professor of mechanical engineering at Stanford, reveals that the spinning blades of micro-helicopters are about as efficient at hovering as the average hummingbird.

The experiment involved spinning hummingbird wings – sourced from a pre-existing museum collection – of 12 different species on an apparatus designed to test the aerodynamics of helicopter blades. The researchers used cameras to visualize airflow around the wings, and sensitive load cells to measure the drag and the lift force they exerted, at different speeds and angles.

Lentink and his colleagues then replicated the experiment using the blades from a ProxDynamics Black Hornet autonomous microhelicopter. The Black Hornet is the most sophisticated microcopter available – the United Kingdom’s army uses it in Afghanistan – and is itself about the size of a hummingbird.

Even spinning like a helicopter, rather than flapping, the hummingbird wings excelled: If hummingbirds were able to spin their wings to hover, it would cost them roughly half as much energy as flapping. The microcopter’s wings kept pace with the middle-of-the-pack hummingbird wings, but the topflight wings – those of Anna’s hummingbird, a species common throughout the West Coast – were still about 27 percent more efficient than engineered blades.

Hummingbirds acing the test didn’t particularly surprise Lentink – previous studies had indicated hummingbirds were incredibly efficient – but he was impressed with the helicopter.

“The technology is at the level of an average Joe hummingbird,” Lentink said. “A helicopter is really the most efficient hovering device that we can build. The best hummingbirds are still better, but I think it’s amazing that we’re getting closer. It’s not easy to match their performance, but if we build better wings with better shapes, we might approximate hummingbirds.”

Based on the measurements of Anna’s hummingbirds, Lentink said there is potential to improve microcopter rotor power by up to 27 percent.

The high-fidelity experiment also provided an opportunity to refine previous rough estimates of muscle power. Lentink’s team learned that hummingbirds’ muscles produce a surprising 130 watts of energy per kilogram; the average for other birds, and across most vertebrates, is roughly 100 watts/kg.

Although the current study revealed several details of how a hummingbird hovers in one place, the birds still hold many secrets. For instance, Lentink said, we don’t know how hummingbirds maintain their flight in a strong gust, how they navigate through branches and other clutter, or how they change direction so quickly during aerial “dogfights.”

He also thinks great strides could be made by studying wing aspect ratios, the ratio of wing length to wing width. The aspect ratios of all the hummingbirds’ wings remarkably converged around 3.9. The aspect ratios of most wings used in aviation measure much higher; the Black Hornet’s aspect ratio was 4.7.

“I want to understand if aspect ratio is special, and whether the amount of variation has an effect on performance,” Lentink said. Understanding and replicating these abilities and characteristics could be a boon for robotics and will be the focus of future experiments.

“Those are the things we don’t know right now, and they could be incredibly useful. But I don’t mind it, actually,” Lentink said. “I think it’s nice that there are still a few things about hummingbirds that we don’t know.”

Agreed, it’s nice to know there are still a few mysteries left. You can watch the ‘mysterious’ hummingbird in this video courtesy of the Rivers Ingersoll Lentink Lab at Stanford University,

High speed video of Anna’s hummingbird at Stanford Arizona Cactus Garden.

Here’s a link to and a citation for the paper, H/T to Nancy Owano’s article on phys.org for alerting me to this story.

Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors by Jan W. Kruyt, Elsa M. Quicazán-Rubio, GertJan F. van Heijst, Douglas L. Altshuler, and David Lentink.  J. R. Soc. Interface 6 October 2014 vol. 11 no. 99 20140585 doi: 10.1098/​rsif.2014.0585 Published [online] 30 July 2014

This is an open access paper.

Despite Munro’s reference to the Black Hornet as a ‘nano’ spycam, the ‘microhelicopter’ description in the news release places the device at the microscale (/1,000,000,000). Still, I don’t understand what makes it microscale since it’s visible to the naked eye. In any case, it is small.

The world’s smallest machines at Vancouver’s (Canada) May 27, 2014 Café Scientifique

Vancouver’s next Café Scientifique is being held in the back room of the The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), on Tuesday, May 27,  2014 at 7:30 pm. Here’s the meeting description (from the May 21, 2014 announcement),

Our speaker is Dr. Nicholas White from UBC Chemistry. The title and abstract of his talk is:

The world’s smallest machines

In the last 50 years, chemists have developed the ability to produce increasingly intricate and complex molecules. One example of this is the synthesis of “interlocked molecules”: two or more separate molecules that are mechanically threaded through one another (like links of a chain). These interlocked molecules offer potential use for a range of different applications. In particular they have been developed for use as molecular machines: devices that are only a few nanometers in size, but can perform physical work in response to a stimulus (e.g. light, heat). This talk will describe the development of interlocked molecules, and explore their potential applications as nano-devices.

Nicholas (Nick) White is a member of the MacLachlan Group. The group’s leader, Mark MacLachlan was mentioned here in a March 25, 2011 post regarding his Café Scientifique talk on beetles, biomimcry, and nanocrystalline cellulose (aka, cellulose nanocrystals). As well, MacLachlan was mentioned in a May 21, 2014 post about the $!.65M grant he received for his NanoMAT: NSERC CREATE Training Program in Nanomaterials Science & Technology.

As for Nick White, there’s this on the MacLachlan Group homepage, (scroll down about 25% of the way),

Nick completed his undergraduate degree at the University of Otago in his home town of Dunedin, New Zealand (working on transition metal complexes with Prof. Sally Brooker). After a short break working and then travelling, he completed his DPhil at the University of Oxford, working with Prof. Paul Beer making rotaxanes and catenanes for anion recognition applications. He is now a Killam Postdoctoral Fellow in the MacLachlan group working on supramolecular materials based on triptycene and silsesquioxanes (although he has difficulty convincing people he’s old enough to be a post-doc). Outside of chemistry, Nick is a keen rock climber, and is enjoying being close to the world-class rock at Squamish. He also enjoys running, playing guitar, listening to music, and drinking good coffee.

I wonder if a Café Scientifique presentation is going to be considered as partial fulfillment for the professional skills-building requirement of the MacLachlan’s NanoMAT: NSERC CREATE Training Program in Nanomaterials Science & Technology.

CREATE ISOSIM (isotopes for science and medicine) and NanoMat (nanomaterials) program at the University of British Columbia (Canada)

It seems the Natural Sciences and Engineering Research Council (NSERC; one of Canada’s ‘big three’ science national funding agencies) has a new funding program, CREATE (Collaborative Research and Training Experience) and two local (Vancouver, Canada) institutions, the University of British Columbia (UBC) and TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics) are beneficiaries to the tune of $3.3M.

Before getting the happy news, here’s a little information about this new NSERC program (from the CREATE page),

The Collaborative Research and Training Experience (CREATE) Program supports the training of teams of highly qualified students and postdoctoral fellows from Canada and abroad through the development of innovative training programs that:

  • encourage collaborative and integrative approaches, and address significant scientific challenges associated with Canada’s research priorities; and
  • facilitate the transition of new researchers from trainees to productive employees in the Canadian workforce.

These innovative programs must include the acquisition and development of important professional skills among students and postdoctoral fellows that complement their qualifications and technical skills.

In addition, these programs should encourage the following as appropriate:

  • student mobility, nationally or internationally, between individual universities and between universities and other sectors;
  • interdisciplinary research within the natural sciences and engineering (NSE), or at the interface between the NSE and health, or the social sciences and humanities. However, the main focus of the training must still lie within the NSE;
  • increased collaboration between industry and academia; and
  • for the industrial stream, an additional objective is to support improved job-readiness within the industrial sector by exposing participants to the specific challenges of this sector and training people with the skills identified by industry.

I wonder what they mean by “professional skills?” They use the phrase again in the Description,

The CREATE Program is designed to improve the mentoring and training environment for the Canadian researchers of tomorrow by improving areas such as professional skills, communication and collaboration, as well as providing experience relevant to both academic and non-academic research environments.

This program is intended for graduate students and has two streams, Industrial and International Collaboration. At this point, they have two international collaboration partners, one each in Germany and in Brazil.

There’s a subsection on the CREATE page titled Merit of the proposed training program (in my world that’s ‘criteria for assessment’),

Applicable to all applications:

  • the extent to which the program is associated with a research area of high priority to Canada and will provide a higher quality of training;
  • how the research area proposed relates to the current scientific or technical developments in the field, with references to the current literature;
  • the extent to which the research training program will facilitate the transition of the trainees to the Canadian workforce and will promote interaction of the trainees with non-academic sectors, such as private companies, industry associations, not-for-profit organizations, government departments, etc., as appropriate;
  • the description of the potential employers and a qualitative assessment of the job prospects for trainees;
  • the extent to which the program will provide opportunities for the trainees to develop professional skills;
  • the extent to which the program uses novel and interesting approaches to graduate student training in an integrated manner to provide an enriched experience for all participants;
  • the research training program’s focus and clarity of objectives, both short- and long-term; and
  • the added value that trainees will receive through their participation.

Clearly, this program is about training tomorrow’s workers and I expect CREATE is welcome in many corners. We (in Canada and elsewhere internationally) have a plethora of PhDs and nowhere for them to go. I have, of course, two provisos. First, I hope this program is not a precursor to a wholesale change in funding to a indulge a form of short-term thinking. Not every single course of study has to lead to a clearly defined job as defined by industry. Sometimes, industry doesn’t know what it needs until there’s a shortage. Second, I hope the administrators for this program support it. You (the government) can formulate all sorts of great policies but it’s the civil service that will implement your policies and if they don’t support them, you (the government) are likely to experience failure.

Here’s the CREATE funding announcement in a May 19, 2014 news item on Azonano,

Researchers studying nanomaterials and isotopes at the University of British Columbia received a $3.3 million boost in funding from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Two UBC teams, led respectively by Chemistry Prof. Mark MacLachlan and Physics Prof. Reiner Kruecken, received $1.65 million each from NSERC’s Collaborative Research and Training Experience (CREATE) grants. The funding extends over a six-year period. The investment will help MacLachlan and Kruecken mentor and train graduate students and postdoctoral fellows.

A May 16, 2014 UBC news release, which originated the news item, provides more information including some background for the two project leaders,

Mark MacLachlan, Professor, UBC Department of Chemistry
NanoMAT: NSERC CREATE Training Program in Nanomaterials Science & Technology

Nanomaterials have dimensions about 1/1000th the width of a human hair. Though invisible to our eyes, these materials are already used for diagnosing and treating diseases, environmental remediation, developing solar cells and batteries, as well as other applications. Nanomaterials form a multi-billion dollar industry that is expanding rapidly. To address the growing need for highly qualified trainees in Canada, UBC researchers have spearheaded the NanoMat program. Through a unique interdisciplinary training program, science and engineering students will undertake innovative research projects, receive hands-on training, and undertake internships at companies in Canada and across the world.

Reiner Kruecken, Professor, UBC Department of Physics and Astronomy
ISOSIM, ISOtopes for Science and Medicine

The ISOSIM program is designed to provide students with enriched training experiences in the production and preparation of nuclear isotopes for innovative applications that range from medical research and environmental science to investigations of the foundations of the universe. This will prepare students for positions in a number of Canadian industrial sectors including medical diagnostics and treatment, pharmaceutical sciences, development of next-generation electronic devices, environmental sciences, and isotope production. This project builds on the existing cooperation between UBC and TRIUMF, Canada’s national laboratory for particle and nuclear phsyics, [sic] on isotopes science.

Not mentioned in the UBC news release is that ISOSIM is a program that is jointly run with TRIUMF, Canada’s National Laboratory for Particle and Nuclear Physics. Here’s how TRIUMF views their CREATE grant, from a May 16, 2014 TRIUMF news release,

The ISOSIM program will train undergraduate students, graduate students, and postdoctoral researchers at UBC and TRIUMF from fields associated with isotope sciences in an individually tailored, interdisciplinary curriculum that will build on and complement the education in their specialty field. Unique in Canada, this program offers a combination of interdisciplinary isotope-related training ranging from pure to applied sciences, industrial internships, and mobility with German research institutions with unique large-scale equipment and scientific infrastructures.

It seems this particular grant was awarded as part of the international collaboration stream. (I wonder if TRIUMF or TRIUMF-friendly individuals had a role in developing that particular aspect of the CREATE program. Following on that thought, is there a large Canadian science organization with ties to Brazil?)

Getting back to TRIUMF’s current CREATE grant, the news release emphasizes an industrial focus,

“ISOSIM represents a timely and nationally important training initiative and is built on a world-class collaborative research environment,” says Dr. Reiner Kruecken, TRIUMF’s Science Division Head and Professor at UBC Department of Physics and Astronomy. Kruecken is leading the ISOSIM initiative and is joined by over twenty collaborators from UBC, TRIUMF, and several research institutes in Germany.

ISOSIM is poised to create the next generation of leaders for isotope-related industries and markets, including commercial, public health, environmental, and governmental sectors, as well as academia. The combination of research institutions like UBC, TRIUMF, and the BC Cancer Agency with Canadian companies like Nordion Inc., and Advanced Cyclotron Solutions Inc., have transformed Vancouver into a hub for isotope-related research and industries, emerging as “Isotope Valley”.

The inspiration for the ISOSIM program came from an interdisciplinary TRIUMF-led team who, in response to the isotope crisis, demonstrated non-reactor methods for producing the critical medical isotope Tc-99m. This required a coordinated approach of physicists, chemists, biologists, and engineers.

Similar interdisciplinary efforts are needed for expanding the use and application of isotopes in key areas. While their medical use is widely known, isotopes enjoy growing importance in many fields. Isotopes are used as tracers to examine the trace flow of nutrients and pollutants in the environment. Isotopes are also used to characterize newly designed materials and the behaviour of nanostructured materials that play a key role in modern electronics devices. The production and investigation of very short-lived radioactive isotopes, also known as rare-isotopes, is a central approach in nuclear physics research to understand the nuclear force and how the chemical elements heavier than iron were formed in stars and stellar explosions.

I really wish they (marketing/communications and/or business people) would stop trying to reference ‘silicon valley’ as per this news release’s ‘isotope valley’. Why not ‘isotope galaxy’? It fits better with the isotope and star theme.

Getting back to the “professional skills” mentioned in the CREATE grant description, I don’t see any mention of etiquette, good manners, listening skills, or the quality of humility, all of which are handy in the workplace and having had my share of experience dealing with fresh out-of-graduate-school employees, I’d say they’re sorely needed.

Regardless, I wish both MacLachlan and Krueken the best as they and their students pioneer what I believe is a new NSERC program.

Musical Acoustics at Vancouver’s (Canada) April 29, 2014 Café Scientifique

Vancouver’s next Café Scientifique is being held in the back room of the The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), on Tuesday, April 29,  2014 at 7:30 pm. Here’s the meeting description (from the April 23, 2014 announcement),

Our next café will happen on Tuesday, April 29, 7:30pm at The Railway Club. Our speaker is Dr. Chris Waltham from UBC Physics and Astronomy. The title and abstract of his talk is:

Musical Acoustics: What do soundboxes do and how do they work? 
 

Nearly all string instruments have soundboxes to radiate the vibrational energy of the strings. These wooden boxes tend to be objects of beauty and of iconic shapes (think of a violin or guitar), but seldom is any thought given to how they work. A large part of the field of musical acoustics is the analysis of sound boxes, and although the question of “quality” remains elusive, much progress has been made. For example, pretty much every feature of a violin’s morphology can be understood in terms of vibroacoustics and ergonomics, rather than visual aesthetics (with the possible exception of the scroll, of course). Although Andrea Amati would not have used the language and methods of mechanical engineering, the form he perfected most definitely follows its function.

I like to talk about acoustics and violins. Also harps, guitars, guqins and guzhengs.

For anyone curious about Andrea Amati, there’s this from his Wikipedia entry (Note: Links have been removed),

Andrea Amati was a luthier, from Cremona, Italy.[1][2] Amati is credited with making the first instruments of the violin family that are in the form we use today.[3] According to the National Music Museum in Vermillion, South Dakota:

It was in the workshop of Andrea Amati (ca. 1505-1577) in Cremona, Italy, in the middle of the 16th century that the form of the instruments of the violin family as we know them today first crystallized.

Several of his instruments survive to the present day, and some of them can still be played.[3][4] Many of the surviving instruments were among a consignment of 38 instruments delivered to Charles IX of France in 1564.

As for guqins and guzhengs, they are both Chinese stringed instruments of 7 strings and 18 or more strings, respectively.

Vancouver (Canada) and a city conversation about science that could have been better

Institutional insularity is a problem one finds everywhere. Interestingly, very few people see it that way due in large part to self-reinforcing loopbacks. Take universities for example and more specifically, Simon Fraser University’s April 17, 2014 City Conversation (in Vancouver, Canada) featuring Dr. Arvind Gupta (as of July 2014, president of the University of British Columbia) in a presentation titled: Creativity! Connection! Innovation!

Contrary to the hope I expressed in my April 14, 2014 post about the then upcoming event, this was largely an exercise in self-reference. Predictably with the flyer they used to advertise the event (the text was reproduced in its entirety in my April 14, 2014 posting), over 90% in the audiences (Vancouver, Burnaby, and Surrey campuses) were associated with one university or another.  Adding to the overwhelmingly ‘insider’ feel of this event, the speaker brought with him two students who had benefited from the organization he currently leads, Mitacs (a Canadian not-for-profit organization that offers funding for internships and fellowships at Canadian universities and formerly a mathematics NCE (Networks of Centres of Excellence of Canada program; a Canadian federal government program).

Despite the fact that this was billed as a ‘city conversation’ the talk focused largely on universities and their role in efforts to make Canada more productive and the wonderfulness of Mitacs. Unfortunately, what I wanted to hear and talk about was how Gupta, the students, and audience members saw the role of universities in cities, with a special reference to science.

It was less ‘city’ conversation and more ‘let’s focus on ourselves and our issues’ conversation. Mitacs, Canada’s productivity, and discussion about universities and innovation is of little inherent interest to anyone outside a select group of policy wonks (i.e., government and academe).

The conversation was self-referential until the very end. In the last minutes Gupta mentioned cities and science in the context of how cities in other parts of the world are actively supporting science. (For more about this interest elsewhere, you might find this Oct. 21, 2010 posting which features an article by Richard Van Noorden titled, Cities: Building the best cities for science; Which urban regions produce the best research — and can their success be replicated? as illuminating as I did.)

i wish Gupta had started with the last topic he introduced because Vancouverites have a lot of interest in science. In the last two years, TRIUMF, Canada’s national laboratory for particle and nuclear physics, has held a number of events at Science World and elsewhere which have been fully booked with waiting lists. The Peter Wall Institute for Advanced Studies has also held numerous science-themed events which routinely have waiting lists despite being held in one of Vancouver’s largest theatre venues.

If universities really want to invite outsiders into their environs and have city conversations, they need to follow through on the promise (e.g. talking about cities and science in a series titled “City Conversations”), as well as, do a better job of publicizing their events, encouraging people to enter their sacred portals, and addressing their ‘outsider’ audiences.

By the way, I have a few hints for the student speakers,

  • don’t scold your audience (you may find Canadians’ use of space shocking but please keep your indignation and sense of superiority to yourself)
  • before you start lecturing (at length) about the importance of interdisciplinary work, you might want to assess your audience’s understanding, otherwise you may find yourself preaching to the choir and/or losing your audience’s attention
  • before you start complaining that there’s no longer a mandatory retirement age and suggesting that this is the reason you can’t get a university job you may want to consider a few things: (1) your audience’s average age, in this case, I’d estimate that it was at least 50 and consequently not likely to be as sympathetic as you might like (2) the people who work past mandatory retirement may need the money or are you suggesting your needs are inherently more important? (3) whether or not a few people stay on past their ‘retirement’ age has less to do with your university job prospects than demographics and that’s a numbers game (not sure why I’d have to point that out to someone who’s associated with a mathematics organization such as Mitacs)

I expect no one has spoken or will speak to the organizers, Gupta, or the students other than to give them compliments. In fact, it’s unlikely there will be any real critique of having this presentation as part of a series titled “City Conversations” and that brings this posting back to institutional insularity. This problem is everywhere not just in universities and I’m increasingly interested in approaches to mitigating the tendency. If there’s anyone out there who knows of any examples where insularity has been tackled, please do leave a comment and, if possible, links.

Creativity—Connection—Innovation—Dr. Arvind Gupta leads a City (Vancouver, Canada) Conversation this Thursday, April 17, 2014

There’s a lot of excitement about Simon Fraser University’s (SFU) upcoming City Conversation’s April 17, 2014 session featuring Dr. Arvind Gupta, computer scientist and newly appointed president of the University of British Columbia (UBC). Being held at 12:30 pm at SFU’s Harbour Centre campus, the event will be broadcast (this is a first for the City Conversations program) to both the Burnaby and Surrey campuses as well.  Here’s a description of the event and of the speaker, along with more details about the locations (from the April 13, 2014 announcement; Note: Links have been removed),,

This week’s City Conversation [titled: Creativity! Connection! Innovation!] will feature Dr. Arvind Gupta, who will discuss the world of research collaborations and innovation, and the role universities and student entrepreneurs play while bringing their ideas to market.

The event will take place at SFU’s Vancouver campus (Harbour Centre, 515 West Hastings St., Room 7000), from 12:30-1:30pm on April 17, and for the first time City Conversations will be simulcast and open to audiences at SFU’s Burnaby (IRMACS Theatre, ASB 10900) and Surrey (Room 5380) campuses.

Participants at SFU’s satellite locations will be able to comment and ask questions of the presenters through video conferencing, with SFU associate vice president, External Relations Joanne Curry (Burnaby) and SFU Surrey executive director Steve Dooley (Surrey) serving as moderators.

Dr. Gupta, former SFU professor and current CEO and scientific director of Mitacs [Canadian not-for-profit organization that offers funding for internships and fellowships at Canadian universities and formerly a mathematics NCE (Networks of Centres of Excellence of Canada) program {a Canadian federal government program}]. Launched at SFU in 1999, Mitacs supports national innovation by coordinating collaborative industry-university research projects with human capital development at its core.

I understand from City Conversations organizer, Michael Alexander, audio will be recorded and a file will be available. I’m not sure what the timing is but the City Conversations Past Event and Recordings webpage is where you can check for the audio file.

I noticed the talk seems to be oriented to the interests of students and staff but am hopeful that some reference will be made to the impact that creativity, connection, and innovation have on a city and how we in Vancouver could participate.

One biographical note of my own here, for two years I tried to contact Michael Alexander with an idea of a City Conversation. We had that conversation March 31, 2014. It was largely focused on my desire to have some science-oriented City Conversations and this is the outcome (and fingers crossed not the last one). I am thrilled to bits.  For anyone wondering what Gupta’s talk has to do with science, innovation is, usually and internationally, code for applied science and technology.

The human body as a musical instrument: performance at the University of British Columbia on April 10, 2014

It’s called The Bang! Festival of interactive music with performances of one kind or another scheduled throughout the day on April 10, 2014 (12 pm: MUSC 320; 1:30 PM: Grad Work; 2 pm: Research) and a finale featuring the Laptop Orchestra at 8 pm at the University of British Columbia’s (UBC) School of Music (Barnett Recital Hall on the Vancouver campus, Canada).

Here’s more about Bob Pritchard, professor of music, and the students who have put this programme together (from an April 7, 2014 UBC news release; Note: Links have been removed),

Pritchard [Bob Prichard], a professor of music at the University of British Columbia, is using technologies that capture physical movement to transform the human body into a musical instrument.

Pritchard and the music and engineering students who make up the UBC Laptop Orchestra wanted to inject more human performance in digital music after attending one too many uninspiring laptop music sets. “Live electronic music can be a bit of an oxymoron,” says Pritchard, referring to artists gazing at their laptops and a heavy reliance on backing tracks.

“Emerging tools and techniques can help electronic musicians find more creative and engaging ways to present their work. What results is a richer experience, which can create a deeper, more emotional connection with your audience.”

The Laptop Orchestra, which will perform a free public concert on April 10, is an extension of a music technology course at UBC’s School of Music. Comprised of 17 students from Arts, Science and Engineering, its members act as musicians, dancers, composers, programmers and hardware specialists. They create adventurous electroacoustic music using programmed and acoustic instruments, including harp, piano, clarinet and violin.

Despite its name, surprisingly few laptops are actually touched onstage. “That’s one of our rules,” says Pritchard, who is helping to launch UBC’s new minor degree in Applied Music Technology in September with Laptop Orchestra co-director Keith Hamel. “Avoid touching the laptop!”

Instead, students use body movements to trigger programmed synthetic instruments or modify the sound of their live instruments in real-time. They strap motion sensors to their bodies and instruments, play wearable iPhone instruments, swing Nintendo Wiis or PlayStation Moves, while Kinect video cameras from Sony Xboxes track their movements.

“Adding movement to our creative process has been awesome,” says Kiran Bhumber, a fourth-year music student and clarinet player. The program helped attract her back to Vancouver after attending a performing arts high school in Toronto. “I really wanted to do something completely different. When I heard of the Laptop Orchestra, I knew it was perfect for me. I begged Bob to let me in.”

The Laptop Orchestra has partnered itself with UBC’s Dept. of Computer and Electrical Engineering (from the news release),

The engineers come with expertise in programming and wireless systems and the musicians bring their performance and composition chops, and program code as well.

Besides creating their powerful music, the students have invented a series of interfaces and musical gadgets. The first is the app sensorUDP, which transforms musicians’ smartphones into motion sensors. Available in the Android app store and compatible with iPhones, it allows performers to layer up to eight programmable sounds and modify them by moving their phone.

Music student Pieteke MacMahon modified the app to create an iPhone Piano, which she plays on her wrist, thanks to a mount created by engineering classmates. As she moves her hands up, the piano notes go up in pitch. When she drops her hands, the sound gets lower, and a delay effect increases if her palm faces up. “Audiences love how intuitive it is,” says the composition major. “It creates music in a way that really makes sense to people, and it looks pretty cool onstage.”

Here’s a video of the iPhone Piano (aka PietekeIPhoneSensor) in action,

The members of the Laptop Orchestra have travelled to collaborate internationally (Note: Links have been removed),

Earlier this year, the ensemble’s unique music took them to Europe. The class spent 10 days this February in Belgium where they collaborated and performed in concert with researchers at the University of Mons, a leading institution for research on gesture-tracking technology.

The Laptop Orchestra’s trip was sponsored by UBC’s Go Global and Arts Research Abroad, which together send hundreds of students on international learning experiences each year.

In Belgium, the ensemble’s dancer Diana Brownie wore a body suit covered head-to-toe in motion sensors as part of a University of Mons research project on body movement. The researchers – one a former student of Pritchard’s – will use the suit’s data to help record and preserve cultural folk dances.

For anyone who needs directions, here’s a link to UBC’s Vancouver Campus Maps, Directions, & Tours webpage.