Tag Archives: University of Calgary

Turning asphaltene into graphene

Asphaltene (or asphaltenes are) is waste material that can be turned into graphene according to scientists at Rice University (Texas, US), from a November 18, 2022 news item on ScienceDaily,

Asphaltenes, a byproduct of crude oil production, are a waste material with potential. Rice University scientists are determined to find it by converting the carbon-rich resource into useful graphene.

Muhammad Rahman, an assistant research professor of materials science and nanoengineering, is employing Rice’s unique flash Joule heating process to convert asphaltenes instantly into turbostratic (loosely aligned) graphene and mix it into composites for thermal, anti-corrosion and 3D-printing applications.

The process makes good use of material otherwise burned for reuse as fuel or discarded into tailing ponds and landfills. Using at least some of the world’s reserve of more than 1 trillion barrels of asphaltene as a feedstock for graphene would be good for the environment as well.

A November 17, 2022 Rice University news release (also on EurekAlert), which originated the news item, expands on this exciting news, Note: Links have been removed,

“Asphaltene is a big headache for the oil industry, and I think there will be a lot of interest in this,” said Rahman, who characterized the process as both a scalable and sustainable way to reduce carbon emissions from burning asphaltene.

Rahman is a lead corresponding author of the paper in Science Advances co-led by Rice chemist James Tour, whose lab developed flash Joule heating, materials scientist Pulickel Ajayan and Md Golam Kibria, an assistant professor of chemical and petroleum engineering at the University of Calgary, Canada.

Asphaltenes are 70% to 80% carbon already. The Rice lab combines it with about 20% of carbon black to add conductivity and flashes it with a jolt of electricity, turning it into graphene in less than a second. Other elements in the feedstock, including hydrogen, nitrogen, oxygen and sulfur, are vented away as gases.

“We try to keep the carbon black content as low as possible because we want to maximize the utilization of asphaltene,” Rahman said.

“The government has been putting pressure on the petroleum industries to take care of this,” said Rice graduate student and co-lead author M.A.S.R. Saadi. “There are billions of barrels of asphaltene available, so we began working on this project primarily to see if we could make carbon fiber. That led us to think maybe we should try making graphene with flash Joule heating.”

Assured that Tour’s process worked as well on asphaltene as it did on various other feedstocks, including plastic, electronic waste, tires, coal fly ash and even car parts, the researchers set about making things with their graphene. 

Saadi, who works with Rahman and Ajayan, mixed the graphene into composites, and then into polymer inks bound for 3D printers. “We’ve optimized the ink rheology to show that it is printable,” he said, noting the inks have no more than 10% of graphene mixed in. Mechanical testing of printed objects is forthcoming, he said.

Rice graduate student Paul Advincula, a member of the Tour lab, is co-lead author of the paper. Co-authors are Rice graduate students Md Shajedul Hoque Thakur, Ali Khater, Jacob Beckham and Minghe Lou, undergraduate Aasha Zinke and postdoctoral researcher Soumyabrata Roy; research fellow Shabab Saad, alumnus Ali Shayesteh Zeraati, graduate student Shariful Kibria Nabil and postdoctoral associate Md Abdullah Al Bari of the University of Calgary; graduate student Sravani Bheemasetti and Venkataramana Gadhamshetty, an associate professor, at the South Dakota School of Mines and Technology and its 2D Materials of Biofilm Engineering Science and Technology Center; and research assistant Yiwen Zheng and Aniruddh Vashisth, an assistant professor of mechanical engineering, of the University of Washington.

The research was funded by the Alberta Innovates for Carbon Fiber Grand Challenge programs, the Air Force Office of Scientific Research (FA9550-19-1-0296), the U.S. Army Corps of Engineers (W912HZ-21-2-0050) and the National Science Foundation (1849206, 1920954).  

Here’s a link to and a citation for the paper,

Sustainable valorization of asphaltenes via flash joule heating by M.A.S.R. Saadi, Paul A. Advincula, Md Shajedul Hoque Thakur, Ali Zein Khater, Shabab Saad, Ali Shayesteh Zeraati, Shariful Kibria Nabil, Aasha Zinke, Soumyabrata Roy, Minghe Lou, Sravani N. Bheemasetti, Md Abdullah Al Bari, Yiwen Zheng, Jacob L. Beckham, Venkataramana Gadhamshetty, Aniruddh Vashisth, Md Golam Kibria, James M. Tour, Pulickel M. Ajayan, and Muhammad M. Rahman. Science Advances 18 Nov 2022 Vol 8, Issue 46 DOI: 10.1126/sciadv.add3555

This paper is open access.

Building Transdisciplinary Research Paths [for a] Sustainable & Inclusive Future, a December 14, 2022 science policy event

I received (via email) a December 8, 2022 Canadian Science Policy Centre (CSPC) announcement about their various doings when this event, which seems a little short on information, caught my attention,

[Building Transdisciplinary Research Paths towards a more Sustainable and Inclusive Future]

Upcoming Virtual Event

With this workshop, Belmont Forum and IAI aim to open a collective reflection on the ideas and practices around ‘Transdisciplinarity’ (TD) to foster participatory knowledge production. Our goal is to create a safe environment for people to share their impressions about TD, as a form of experimental lab based on a culture of collaboration.

This CSPC event page cleared up a few questions,

Building Transdisciplinary Research Paths towards a more Sustainable and Inclusive Future

Global environmental change and sustainability require engagement with civil society and wide participation to gain social legitimacy, also, it is necessary to open cooperation among different scientific disciplines, borderless collaboration, and collaborative learning processes, among other crucial issues.

Those efforts have been recurrently encompassed by the idea of ‘Transdisciplinarity’ (TD), which is a fairly new word and evolving concept. Several of those characteristics are daily practices in academic and non-academic communities, sometimes under different words or conceptions.

With this workshop, Belmont Forum and IAI [Inter-American Institute for Global Change Research?] aim to open a collective reflection on the ideas and practices around ‘Transdisciplinarity’ (TD) to foster participatory knowledge production. Our goal is to create a safe environment for people to share their impressions about TD, as a form of experimental lab based on a culture of collaboration.

Date: Dec 14 [2022]

Time: 3:00 pm – 4:00 pm EST

Website [Register here]: https://us02web.zoom.us/meeting/register/tZArcOCupj4rHdBbwhSUpVhpvPuou5kNlZId

For the curious, here’s more about the Belmont Forum from their About page, Note: Links have been removed,

Established in 2009, the Belmont Forum is a partnership of funding organizations, international science councils, and regional consortia committed to the advancement of transdisciplinary science. Forum operations are guided by the Belmont Challenge, a vision document that encourages:

International transdisciplinary research providing knowledge for understanding, mitigating and adapting to global environmental change.

Forum members and partner organizations work collaboratively to meet this Challenge by issuing international calls for proposals, committing to best practices for open data access, and providing transdisciplinary training.  To that end, the Belmont Forum is also working to enhance the broader capacity to conduct transnational environmental change research through its e-Infrastructure and Data Management initiative.

Since its establishment, the Forum has successfully led 19 calls for proposals, supporting 134 projects and more than 1,000 scientists and stakeholders, representing over 90 countries.  Themes addressed by CRAs have included Freshwater Security, Coastal Vulnerability, Food Security and Land Use Change, Climate Predictability and Inter-Regional Linkages, Biodiversity and Ecosystem Services, Arctic Observing and Science for Sustainability, and Mountains as Sentinels of Change.  New themes are developed through a scoping process and made available for proposals through the Belmont Forum website and its BF Grant Operations site.

If you keep scrolling down the Bellmont Forum’s About page, you’ll find an impressive list of partners including the Natural Sciences and Engineering Research Council of Canada (NSERC).

I’m pretty sure IAI is Inter-American Institute for Global Change Research, given that two of the panelists come from that organization. Here’s more about the IAI from their About Us page, Note: Links have been removed,

Humans have affected practically all ecosystems on earth. Over the past 200 years, mankind’s emissions of greenhouse gases into the Earth’s atmosphere have changed its radiative properties and are causing a rise in global temperatures which is now modifying Earth system functions globally. As a result, the 21st-century is faced with environmental changes from local to global scales that require large efforts of mitigation and adaptation by societies and ecosystems. The causes and effects, problems and solutions of global change interlink biogeochemistry, Earth system functions and socio-economic conditions in increasingly complex ways. To guide efforts of mitigation and adaptation to global change and aid policy decisions, scientific knowledge now needs to be generated in broad transdisciplinary ways that address the needs of knowledge users and also provide profound understanding of complex socio-environmental systems.

To address these knowledge needs, 12 nations of the American continent came together in Montevideo, Uruguay, in 1992 to establish the Inter-American Institute for Global Change Research (IAI). The 12 governments, in the Declaration of Montevideo, called for the Institute to develop the best possible international coordination of scientific and economic research on the extent, causes, and consequences of global change in the Americas.

Sixteen governments signed the resulting Agreement Establishing the IAI which laid the  foundation for the IAI’s function as a regional intergovernmental organization that promotes interdisciplinary scientific research and capacity building to inform decision-makers on the continent and beyond. Since the establishment of the Agreement in 1992, 3 additional nations have acceded the treaty, and the IAI has now 19 Parties in the Americas, which come together once every year in the Conference of the Parties to monitor and direct the IAI’s activities.

Now onto the best part, reading about the panelists (from CSPC event page, scroll down and click on the See bio button), Note: I have made some rough changes to the formatting so that the bios match each other more closely,

Dr. Lily House-Peters is Associate Professor in the Department of Geography at California State University, Long Beach. Dr. House-Peters is a broadly trained human-environment geographer with experience in qualitative and quantitative approaches to human dimensions of environmental change, water security, mining and extraction, and natural resource conservation policy. She has a decade of experience and expertise in transdisciplinary research for action-oriented solutions to global environmental change. She is currently part of a team creating a curriculum for global change researchers in the Americas focused on the drivers and barriers of effective transdisciplinary collaboration and processes of integration and convergence in diverse teams.

Dr. Gabriela Alonso Yanez, Associate Professor, Werklund School of Education University of Calgary. Learning and education in the context of sustainability and global change are the focus of my work. Over the last ten years, I have participated in several collaborative research projects with multiple aims, including building researchers’ and organizations’ capacity for collaboration and engaging networks that include knowledge keepers, local community members and academics in co-designing and co-producing solutions-oriented knowledge.

Marshalee Valentine, MSc, BTech. Marshalee Valentine is Co-founder and Vice President of the International Women’s Coffee Alliance Jamaica (IWCA), a charitable organization responsible for the development and implementation of social impact and community development projects geared towards improving the livelihoods of women along the coffee value chain in Jamaica. In addition, she also owns and operates a Quality, Food Safety and Environmental Management Systems Consultancy. Her areas of expertise include; Process improvement, technology and Innovation transfer methods, capacity building and community-based research.

With a background in Agriculture, she holds a Bachelor of Technology in Environmental Sciences and a Master’s Degree in Environmental Management. Marshalee offers a unique perspective for regional authenticity bringing deep sensibility to issues of gender, equity and inclusion, in particular related to GEC issues in small countries.

Fany Ramos Quispe, Science Technology and Policy Fellow, Inter-American Institute for Global Change Research. Fany Ramos Quispe holds a B.S. in Environmental Engineering from the Polytechnic Institute of Mexico, and an MSc. in Environmental Change and International Development from the University of Sheffield in the United Kingdom. She worked with a variety of private and public organizations at the national and international levels. She has experience on projects related to renewable energies, waste and water management, environmental education, climate change, and inter and transdisciplinary research, among others. After her postgraduate studies, she joined the Bolivian government mainly to support international affairs related to climate change at the Plurinational Authority of Mother Earth, afterwards, she joined the Centre for Social Research of the Vicepresidency as a Climate Change Specialist.

For several years now she combined academic and professional activities with side projects and activism for environmental and educational issues. She is a founder and former chair (2019-2020) of the environmental engineers’ society of La Paz and collaborates with different grassroots organizations.

Fany is a member of OWSD Bolivia [Organization for Women in Science for the Developing World {OWSD}] and current IAI Science, Technology and Policy fellow at the Belmont Forum.

Dr. Laila Sandroni, Science Technology and Policy Fellow, InterAmerican Institute for Global Change Research. Laila Sandroni is an Anthropologist and Geographer with experience in transdisciplinary research in social sciences. Her research interests lie in the field of transformations to sustainability and the role of different kinds of knowledge in defining the best paths to achieve biodiversity conservation and forest management. She has particular expertise in epistemology, power-knowledge relations, and evidence-based policy in environmental issues.

Laila has a longstanding involvement with stakeholders working on different paths towards biodiversity conservation. She has experience in transdisciplinary science and participatory methodologies to encompass plural knowledge on the management of protected areas in tropical rainforests in Brazil.

This event seems to be free and it looks like an exciting panel.

Unexpectedly, they don’t have a male participant amongst the panelists. Outside of groups that are explicitly exploring women’s issues in the sciences, I’ve never before seen a science panel composed entirely of women. As well, the organizers seem to have broadened the range of geographies represented at a Canadian event with a researcher who has experience in Brazil, another with experience in Bolivia, a panelist who works in Jamaica, and two academics who focus on the Americas (South, Central, and North).

Transdisciplinarity and other disciplinarities

There are so many: crossdisciplinarity, multidisciplinarity, interdisciplinarity, and transdisciplinarity, that the whole subject gets a little confusing. Jeffrey Evans’ July 29, 2014 post on the Purdue University (Indiana, US) Polytechnic Institute blog answers questions about three (trans-, multi-, and inter-) of the disciplinarities,

Learners entering the Polytechnic Incubator’s new program will no doubt hear the terms “multidisciplinary (arity)” and “interdisciplinary (arity)” thrown about somewhat indiscriminately. Interestingly, we administrators, faculty, and staff also use these terms rather loosely and too often without carefully considering their underlying meaning.

Recently I gave a talk about yet another disciplinarity: “transdisciplinarity.” The purpose of the talk was to share with colleagues from around the country the opportunities and challenges associated with developing a truly transdisciplinary environment in an institution of higher education. During a meeting after I returned, the terms “multi”, “inter”, and “trans” disciplinary(arity) were being thrown around, and it was clear that the meanings of the terms were not clearly understood. Hopefully this blog entry will help shed some light on the subject. …

First, I am not an expert in the various “disciplinarities.” The ideas and descriptions that follow are not mine and have been around for decades, with many books and articles written on the subject. Yet my Polytechnic Incubator colleagues and I believe in these ideas and in their advantages and constraints, and they serve to motivate the design of the Incubator’s transdisciplinary environment.

In 1992, Hugh G. Petrie wrote a seminal article1 for the American Educational Research Association that articulates the meaning of these ideas. Later, in 2007, A. Wendy Russell, Fern Wickson, and Anna L. Carew contributed an article2 discussing the context of transdisciplinarity, prescriptions for transdisciplinary knowledge production and the contradictions that arise, and suggestions for universities to develop capacity for transdisciplinarity, rather than simply investing in knowledge “products.” …

Multidisciplinarity

Petrie1 discusses multidisciplinarity as “the idea of a number of disciplines working together on a problem, an educational program, or a research study. The effect is additive rather than integrative. The project is usually short-lived, and there is seldom any long-term change in the ways in which the disciplinary participants in a multidisciplinary project view their own work.”

Interdisciplinarity

Moving to extend the idea of multidisciplinarity to include more integration, rather than just addition, Petrie writes about interdisciplinarity in this way:

“Interdisciplinary research or education typically refers to those situations in which the integration of the work goes beyond the mere concatenation of disciplinary contributions. Some key elements of disciplinarians’ use of their concepts and tools change. There is a level of integration. Interdisciplinary subjects in university curricula such as physical chemistry or social psychology, which by now have, perhaps,themselves become disciplines, are good examples. A newer one might be the field of immunopharmocology, which combines the work of bacteriology, chemistry, physiology, and immunology. Another instance of interdisciplinarity might be the emerging notion of a core curriculum that goes considerably beyond simple distribution requirements in undergraduate programs of general education.”

Transdisciplinarity

Petrie1 writes about transdisciplinarity in this way: “The notion of transdisciplinarity exemplifies one of the historically important driving forces in the area of interdisciplinarity, namely, the idea of the desirability of the integration of knowledge into some meaningful whole. The best example, perhaps, of the drive to transdisciplinarity might be the early discussions of general systems theory when it was being held forward as a grand synthesis of knowledge. Marxism, structuralism, and feminist theory are sometimes cited as examples of a transdisciplinary approach. Essentially, this kind of interdisciplinarity represents the impetus to integrate knowledge, and, hence, is often characterized by a denigration and repudiation of the disciplines and disciplinary work as essentially fragmented and incomplete.

It seems multidisciplinarity could be viewed as an ad hoc approach whereas interdsciplinarity and transdisciplinarity are intimately related with ‘inter-‘ being a subset of ‘trans-‘.

I think that’s enough for now. Should I ever stumble across a definition for crossdisciplinarity, I will endeavour to add it here.

Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (1 of 2): The Objects

To my imaginary AI friend

Dear friend,

I thought you might be amused by these Roomba-like* paintbots at the Vancouver Art Gallery’s (VAG) latest exhibition, “The Imitation Game: Visual Culture in the Age of Artificial Intelligence” (March 5, 2022 – October 23, 2022).

Sougwen Chung, Omnia per Omnia, 2018, video (excerpt), Courtesy of the Artist

*A Roomba is a robot vacuum cleaner produced and sold by iRobot.

As far as I know, this is the Vancouver Art Gallery’s first art/science or art/technology exhibit and it is an alternately fascinating, exciting, and frustrating take on artificial intelligence and its impact on the visual arts. Curated by Bruce Grenville, VAG Senior Curator, and Glenn Entis, Guest Curator, the show features 20 ‘objects’ designed to both introduce viewers to the ‘imitation game’ and to challenge them. From the VAG Imitation Game webpage,

The Imitation Game surveys the extraordinary uses (and abuses) of artificial intelligence (AI) in the production of modern and contemporary visual culture around the world. The exhibition follows a chronological narrative that first examines the development of artificial intelligence, from the 1950s to the present [emphasis mine], through a precise historical lens. Building on this foundation, it emphasizes the explosive growth of AI across disciplines, including animation, architecture, art, fashion, graphic design, urban design and video games, over the past decade. Revolving around the important roles of machine learning and computer vision in AI research and experimentation, The Imitation Game reveals the complex nature of this new tool and demonstrates its importance for cultural production.

And now …

As you’ve probably guessed, my friend, you’ll find a combination of both background information and commentary on the show.

I’ve initially focused on two people (a scientist and a mathematician) who were seminal thinkers about machines, intelligence, creativity, and humanity. I’ve also provided some information about the curators, which hopefully gives you some insight into the show.

As for the show itself, you’ll find a few of the ‘objects’ highlighted with one of them being investigated at more length. The curators devoted some of the show to ethical and social justice issues, accordingly, the Vancouver Art Gallery hosted the University of British Columbia’s “Speculative Futures: Artificial Intelligence Symposium” on April 7, 2022,

Presented in conjunction with the exhibition The Imitation Game: Visual Culture in the Age of Artificial Intelligence, the Speculative Futures Symposium examines artificial intelligence and the specific uses of technology in its multifarious dimensions. Across four different panel conversations, leading thinkers of today will explore the ethical implications of technology and discuss how they are working to address these issues in cultural production.”

So, you’ll find more on these topics here too.

And for anyone else reading this (not you, my friend who is ‘strong’ AI and not similar to the ‘weak’ AI found in this show), there is a description of ‘weak’ and ‘strong’ AI on the avtsim.com/weak-ai-strong-ai webpage, Note: A link has been removed,

There are two types of AI: weak AI and strong AI.

Weak, sometimes called narrow, AI is less intelligent as it cannot work without human interaction and focuses on a more narrow, specific, or niched purpose. …

Strong AI on the other hand is in fact comparable to the fictitious AIs we see in media like the terminator. The theoretical Strong AI would be equivalent or greater to human intelligence.

….

My dear friend, I hope you will enjoy.

The Imitation Game and ‘mad, bad, and dangerous to know’

In some circles, it’s better known as ‘The Turing Test;” the Vancouver Art Gallery’s ‘Imitation Game’ hosts a copy of Alan Turing’s foundational paper for establishing whether artificial intelligence is possible (I thought this was pretty exciting).

Here’s more from The Turing Test essay by Graham Oppy and David Dowe for the Stanford Encyclopedia of Philosophy,

The phrase “The Turing Test” is most properly used to refer to a proposal made by Turing (1950) as a way of dealing with the question whether machines can think. According to Turing, the question whether machines can think is itself “too meaningless” to deserve discussion (442). However, if we consider the more precise—and somehow related—question whether a digital computer can do well in a certain kind of game that Turing describes (“The Imitation Game”), then—at least in Turing’s eyes—we do have a question that admits of precise discussion. Moreover, as we shall see, Turing himself thought that it would not be too long before we did have digital computers that could “do well” in the Imitation Game.

The phrase “The Turing Test” is sometimes used more generally to refer to some kinds of behavioural tests for the presence of mind, or thought, or intelligence in putatively minded entities. …

Next to the display holding Turing’s paper, is another display with an excerpt of an explanation from Turing about how he believed Ada Lovelace would have responded to the idea that machines could think based on a copy of some of her writing (also on display). She proposed that creativity, not thinking, is what set people apart from machines. (See the April 17, 2020 article “Thinking Machines? Has the Lovelace Test Been Passed?’ on mindmatters.ai.)

It’s like a dialogue between two seminal thinkers who lived about 100 years apart; Lovelace, born in 1815 and dead in 1852, and Turing, born in 1912 and dead in 1954. Both have fascinating back stories (more about those later) and both played roles in how computers and artificial intelligence are viewed.

Adding some interest to this walk down memory lane is a 3rd display, an illustration of the ‘Mechanical Turk‘, a chess playing machine that made the rounds in Europe from 1770 until it was destroyed in 1854. A hoax that fooled people for quite a while it is a reminder that we’ve been interested in intelligent machines for centuries. (Friend, Turing and Lovelace and the Mechanical Turk are found in Pod 1.)

Back story: Turing and the apple

Turing is credited with being instrumental in breaking the German ENIGMA code during World War II and helping to end the war. I find it odd that he ended up at the University of Manchester in the post-war years. One would expect him to have been at Oxford or Cambridge. At any rate, he died in 1954 of cyanide poisoning two years after he was arrested for being homosexual and convicted of indecency. Given the choice of incarceration or chemical castration, he chose the latter. There is, to this day, debate about whether or not it was suicide. Here’s how his death is described in this Wikipedia entry (Note: Links have been removed),

On 8 June 1954, at his house at 43 Adlington Road, Wilmslow,[150] Turing’s housekeeper found him dead. He had died the previous day at the age of 41. Cyanide poisoning was established as the cause of death.[151] When his body was discovered, an apple lay half-eaten beside his bed, and although the apple was not tested for cyanide,[152] it was speculated that this was the means by which Turing had consumed a fatal dose. An inquest determined that he had committed suicide. Andrew Hodges and another biographer, David Leavitt, have both speculated that Turing was re-enacting a scene from the Walt Disney film Snow White and the Seven Dwarfs (1937), his favourite fairy tale. Both men noted that (in Leavitt’s words) he took “an especially keen pleasure in the scene where the Wicked Queen immerses her apple in the poisonous brew”.[153] Turing’s remains were cremated at Woking Crematorium on 12 June 1954,[154] and his ashes were scattered in the gardens of the crematorium, just as his father’s had been.[155]

Philosopher Jack Copeland has questioned various aspects of the coroner’s historical verdict. He suggested an alternative explanation for the cause of Turing’s death: the accidental inhalation of cyanide fumes from an apparatus used to electroplate gold onto spoons. The potassium cyanide was used to dissolve the gold. Turing had such an apparatus set up in his tiny spare room. Copeland noted that the autopsy findings were more consistent with inhalation than with ingestion of the poison. Turing also habitually ate an apple before going to bed, and it was not unusual for the apple to be discarded half-eaten.[156] Furthermore, Turing had reportedly borne his legal setbacks and hormone treatment (which had been discontinued a year previously) “with good humour” and had shown no sign of despondency prior to his death. He even set down a list of tasks that he intended to complete upon returning to his office after the holiday weekend.[156] Turing’s mother believed that the ingestion was accidental, resulting from her son’s careless storage of laboratory chemicals.[157] Biographer Andrew Hodges theorised that Turing arranged the delivery of the equipment to deliberately allow his mother plausible deniability with regard to any suicide claims.[158]

The US Central Intelligence Agency (CIA) also has an entry for Alan Turing dated April 10, 2015 it’s titled, The Enigma of Alan Turing.

Back story: Ada Byron Lovelace, the 2nd generation of ‘mad, bad, and dangerous to know’

A mathematician and genius in her own right, Ada Lovelace’s father George Gordon Byron, better known as the poet Lord Byron, was notoriously described as ‘mad, bad, and dangerous to know’.

Lovelace too could have been been ‘mad, bad, …’ but she is described less memorably as “… manipulative and aggressive, a drug addict, a gambler and an adulteress, …” as mentioned in my October 13, 20215 posting. It marked the 200th anniversary of her birth, which was celebrated with a British Broadcasting Corporation (BBC) documentary and an exhibit at the Science Museum in London, UK.

She belongs in the Vancouver Art Gallery’s show along with Alan Turing due to her prediction that computers could be made to create music. She also published the first computer program. Her feat is astonishing when you know only one working model {1/7th of the proposed final size) of a computer was ever produced. (The machine invented by Charles Babbage was known as a difference engine. You can find out more about the Difference engine on Wikipedia and about Babbage’s proposed second invention, the Analytical engine.)

(Byron had almost nothing to do with his daughter although his reputation seems to have dogged her. You can find out more about Lord Byron here.)

AI and visual culture at the VAG: the curators

As mentioned earlier, the VAG’s “The Imitation Game: Visual Culture in the Age of Artificial Intelligence” show runs from March 5, 2022 – October 23, 2022. Twice now, I have been to this weirdly exciting and frustrating show.

Bruce Grenville, VAG Chief/Senior Curator, seems to specialize in pulling together diverse materials to illustrate ‘big’ topics. His profile for Emily Carr University of Art + Design (where Grenville teaches) mentions these shows ,

… He has organized many thematic group exhibitions including, MashUp: The Birth of Modern Culture [emphasis mine], a massive survey documenting the emergence of a mode of creativity that materialized in the late 1800s and has grown to become the dominant model of cultural production in the 21st century; KRAZY! The Delirious World [emphasis mine] of Anime + Manga + Video Games + Art, a timely and important survey of modern and contemporary visual culture from around the world; Home and Away: Crossing Cultures on the Pacific Rim [emphasis mine] a look at the work of six artists from Vancouver, Beijing, Ho Chi Minh City, Seoul and Los Angeles, who share a history of emigration and diaspora. …

Glenn Entis, Guest Curator and founding faculty member of Vancouver’s Centre for Digital Media (CDM) is Grenville’s co-curator, from Entis’ CDM profile,

“… an Academy Award-winning animation pioneer and games industry veteran. The former CEO of Dreamworks Interactive, Glenn worked with Steven Spielberg and Jeffrey Katzenberg on a number of video games …,”

Steve Newton in his March 4, 2022 preview does a good job of describing the show although I strongly disagree with the title of his article which proclaims “The Vancouver Art Gallery takes a deep dive into artificial intelligence with The Imitation Game.” I think it’s more of a shallow dive meant to cover more distance than depth,

… The exhibition kicks off with an interactive introduction inviting visitors to actively identify diverse areas of cultural production influenced by AI.

“That was actually one of the pieces that we produced in collaboration with the Centre for Digital Media,” Grenville notes, “so we worked with some graduate-student teams that had actually helped us to design that software. It was the beginning of COVID when we started to design this, so we actually wanted a no-touch interactive. So, really, the idea was to say, ‘Okay, this is the very entrance to the exhibition, and artificial intelligence, this is something I’ve heard about, but I’m not really sure how it’s utilized in ways. But maybe I know something about architecture; maybe I know something about video games; maybe I know something about the history of film.

“So you point to these 10 categories of visual culture [emphasis mine]–video games, architecture, fashion design, graphic design, industrial design, urban design–so you point to one of those, and you might point to ‘film’, and then when you point at it that opens up into five different examples of what’s in the show, so it could be 2001: A Space Odyssey, or Bladerunner, or World on a Wire.”

After the exhibition’s introduction—which Grenville equates to “opening the door to your curiosity” about artificial intelligence–visitors encounter one of its main categories, Objects of Wonder, which speaks to the history of AI and the critical advances the technology has made over the years.

“So there are 20 Objects of Wonder [emphasis mine],” Grenville says, “which go from 1949 to 2022, and they kind of plot out the history of artificial intelligence over that period of time, focusing on a specific object. Like [mathematician and philosopher] Norbert Wiener made this cybernetic creature, he called it a ‘Moth’, in 1949. So there’s a section that looks at this idea of kind of using animals–well, machine animals–and thinking about cybernetics, this idea of communication as feedback, early thinking around neuroscience and how neuroscience starts to imagine this idea of a thinking machine.

And there’s this from Newton’s March 4, 2022 preview,

“It’s interesting,” Grenville ponders, “artificial intelligence is virtually unregulated. [emphasis mine] You know, if you think about the regulatory bodies that govern TV or radio or all the types of telecommunications, there’s no equivalent for artificial intelligence, which really doesn’t make any sense. And so what happens is, sometimes with the best intentions [emphasis mine]—sometimes not with the best intentions—choices are made about how artificial intelligence develops. So one of the big ones is facial-recognition software [emphasis mine], and any body-detection software that’s being utilized.

In addition to it being the best overview of the show I’ve seen so far, this is the only one where you get a little insight into what the curators were thinking when they were developing it.

A deep dive into AI?

it was only while searching for a little information before the show that I realized I don’t have any definitions for artificial intelligence! What is AI? Sadly, there are no definitions of AI in the exhibit.

It seems even experts don’t have a good definition. Take a look at this,

The definition of AI is fluid [emphasis mine] and reflects a constantly shifting landscape marked by technological advancements and growing areas of application. Indeed, it has frequently been observed that once AI becomes capable of solving a particular problem or accomplishing a certain task, it is often no longer considered to be “real” intelligence [emphasis mine] (Haenlein & Kaplan, 2019). A firm definition was not applied for this report [emphasis mine], given the variety of implementations described above. However, for the purposes of deliberation, the Panel chose to interpret AI as a collection of statistical and software techniques, as well as the associated data and the social context in which they evolve — this allows for a broader and more inclusive interpretation of AI technologies and forms of agency. The Panel uses the term AI interchangeably to describe various implementations of machine-assisted design and discovery, including those based on machine learning, deep learning, and reinforcement learning, except for specific examples where the choice of implementation is salient. [p. 6 print version; p. 34 PDF version]

The above is from the Leaps and Boundaries report released May 10, 2022 by the Council of Canadian Academies’ Expert Panel on Artificial Intelligence for Science and Engineering.

Sometimes a show will take you in an unexpected direction. I feel a lot better ‘not knowing’. Still, I wish the curators had acknowledged somewhere in the show that artificial intelligence is a slippery concept. Especially when you add in robots and automatons. (more about them later)

21st century technology in a 19th/20th century building

Void stairs inside the building. Completed in 1906, the building was later designated as a National Historic Site in 1980 [downloaded from https://en.wikipedia.org/wiki/Vancouver_Art_Gallery#cite_note-canen-7]

Just barely making it into the 20th century, the building where the Vancouver Art Gallery currently resides was for many years the provincial courthouse (1911 – 1978). In some ways, it’s a disconcerting setting for this show.

They’ve done their best to make the upstairs where the exhibit is displayed look like today’s galleries with their ‘white cube aesthetic’ and strong resemblance to the scientific laboratories seen in movies.

(For more about the dominance, since the 1930s, of the ‘white cube aesthetic’ in art galleries around the world, see my July 26, 2021 posting; scroll down about 50% of the way.)

It makes for an interesting tension, the contrast between the grand staircase, the cupola, and other architectural elements and the sterile, ‘laboratory’ environment of the modern art gallery.

20 Objects of Wonder and the flow of the show

It was flummoxing. Where are the 20 objects? Why does it feel like a maze in a laboratory? Loved the bees, but why? Eeeek Creepers! What is visual culture anyway? Where am I?

The objects of the show

It turns out that the curators have a more refined concept for ‘object’ than I do. There weren’t 20 material objects, there were 20 numbered ‘pods’ with perhaps a screen or a couple of screens or a screen and a material object or two illustrating the pod’s topic.

Looking up a definition for the word (accessed from a June 9, 2022 duckduckgo.com search). yielded this, (the second one seems à propos),

objectŏb′jĭkt, -jĕkt″

noun

1. Something perceptible by one or more of the senses, especially by vision or touch; a material thing.

2. A focus of attention, feeling, thought, or action.

3. A limiting factor that must be considered.

The American Heritage® Dictionary of the English Language, 5th Edition.

Each pod = a focus of attention.

The show’s flow is a maze. Am I a rat?

The pods are defined by a number and by temporary walls. So if you look up, you’ll see a number and a space partly enclosed by a temporary wall or two.

It’s a very choppy experience. For example, one minute you can be in pod 1 and, when you turn the corner, you’re in pod 4 or 5 or ? There are pods I’ve not seen, despite my two visits, because I kept losing my way. This led to an existential crisis on my second visit. “Had I missed the greater meaning of this show? Was there some sort of logic to how it was organized? Was there meaning to my life? Was I a rat being nudged around in a maze?” I didn’t know.

Thankfully, I have since recovered. But, I will return to my existential crisis later, with a special mention for “Creepers.”

The fascinating

My friend, you know I appreciated the history and in addition to Alan Turing, Ada Lovelace and the Mechanical Turk, at the beginning of the show, they included a reference to Ovid (or Pūblius Ovidius Nāsō), a Roman poet who lived from 43 BCE – 17/18 CE in one of the double digit (17? or 10? or …) in one of the pods featuring a robot on screen. As to why Ovid might be included, this excerpt from a February 12, 2018 posting on the cosmolocal.org website provides a clue (Note. Links have been removed),

The University of King’s College [Halifax, Nova Scotia] presents Automatons! From Ovid to AI, a nine-lecture series examining the history, issues and relationships between humans, robots, and artificial intelligence [emphasis mine]. The series runs from January 10 to April 4 [2018], and features leading scholars, performers and critics from Canada, the US and Britain.

“Drawing from theatre, literature, art, science and philosophy, our 2018 King’s College Lecture Series features leading international authorities exploring our intimate relationships with machines,” says Dr. Gordon McOuat, professor in the King’s History of Science and Technology (HOST) and Contemporary Studies Programs.

“From the myths of Ovid [emphasis mine] and the automatons [emphasis mine] of the early modern period to the rise of robots, cyborgs, AI and artificial living things in the modern world, the 2018 King’s College Lecture Series examines the historical, cultural, scientific and philosophical place of automatons in our lives—and our future,” adds McOuat.

I loved the way the curators managed to integrate the historical roots for artificial intelligence and, by extension, the world of automatons, robots, cyborgs, and androids. Yes, starting the show with Alan Turing and Ada Lovelace could be expected but Norbert Wiener’s Moth (1949) acts as a sort of preview for Sougwen Chung’s “Omnia per Omnia, 2018” (GIF seen at the beginning of this post). Take a look for yourself (from the cyberneticzoo.com September 19, 2009 posting by cyberne1. Do you see the similarity or am I the only one?

[sourced from Google images, Source:life) & downloaded from https://cyberneticzoo.com/cyberneticanimals/1949-wieners-moth-wiener-wiesner-singleton/]

Sculpture

This is the first time I’ve come across an AI/sculpture project. The VAG show features Scott Eaton’s sculptures on screens in a room devoted to his work.

Scott Eaton: Entangled II, 2019 4k video (still) Courtesy of the Artist [downloaded from https://www.vanartgallery.bc.ca/exhibitions/the-imitation-game]

This looks like an image of a piece of ginger root and It’s fascinating to watch the process as the AI agent ‘evolves’ Eaton’s drawings into onscreen sculptures. It would have enhanced the experience if at least one of Eaton’s ‘evolved’ and physically realized sculptures had been present in the room but perhaps there were financial and/or logistical reasons for the absence.

Both Chung and Eaton are collaborating with an AI agent. In Chung’s case the AI is integrated into the paintbots with which she interacts and paints alongside and in Eaton’s case, it’s via a computer screen. In both cases, the work is mildly hypnotizing in a way that reminds me of lava lamps.

One last note about Chung and her work. She was one of the artists invited to present new work at an invite-only April 22, 2022 Embodied Futures workshop at the “What will life become?” event held by the Berrgruen Institute and the University of Southern California (USC),

Embodied Futures invites participants to imagine novel forms of life, mind, and being through artistic and intellectual provocations on April 22 [2022].

Beginning at 1 p.m., together we will experience the launch of five artworks commissioned by the Berggruen Institute. We asked these artists: How does your work inflect how we think about “the human” in relation to alternative “embodiments” such as machines, AIs, plants, animals, the planet, and possible alien life forms in the cosmos? [emphases mine]  Later in the afternoon, we will take provocations generated by the morning’s panels and the art premieres in small breakout groups that will sketch futures worlds, and lively entities that might dwell there, in 2049.

This leads to (and my friend, while I too am taking a shallow dive, for this bit I’m going a little deeper):

Bees and architecture

Neri Oxman’s contribution (Golden Bee Cube, Synthetic Apiary II [2020]) is an exhibit featuring three honeycomb structures and a video featuring the bees in her synthetic apiary.

Neri Oxman and the MIT Mediated Matter Group, Golden Bee Cube, Synthetic Apiary II, 2020, beeswax, acrylic, gold particles, gold powder Courtesy of Neri Oxman and the MIT Mediated Matter Group

Neri Oxman (then a faculty member of the Mediated Matter Group at the Massachusetts Institute of Technology) described the basis for the first and all other iterations of her synthetic apiary in Patrick Lynch’s October 5, 2016 article for ‘ArchDaily; Broadcasting Architecture Worldwide’, Note: Links have been removed,

Designer and architect Neri Oxman and the Mediated Matter group have announced their latest design project: the Synthetic Apiary. Aimed at combating the massive bee colony losses that have occurred in recent years, the Synthetic Apiary explores the possibility of constructing controlled, indoor environments that would allow honeybee populations to thrive year-round.

“It is time that the inclusion of apiaries—natural or synthetic—for this “keystone species” be considered a basic requirement of any sustainability program,” says Oxman.

In developing the Synthetic Apiary, Mediated Matter studied the habits and needs of honeybees, determining the precise amounts of light, humidity and temperature required to simulate a perpetual spring environment. [emphasis mine] They then engineered an undisturbed space where bees are provided with synthetic pollen and sugared water and could be evaluated regularly for health.

In the initial experiment, the honeybees’ natural cycle proved to adapt to the new environment, as the Queen was able to successfully lay eggs in the apiary. The bees showed the ability to function normally in the environment, suggesting that natural cultivation in artificial spaces may be possible across scales, “from organism- to building-scale.”

“At the core of this project is the creation of an entirely synthetic environment enabling controlled, large-scale investigations of hives,” explain the designers.

Mediated Matter chose to research into honeybees not just because of their recent loss of habitat, but also because of their ability to work together to create their own architecture, [emphasis mine] a topic the group has explored in their ongoing research on biologically augmented digital fabrication, including employing silkworms to create objects and environments at product, architectural, and possibly urban, scales.

“The Synthetic Apiary bridges the organism- and building-scale by exploring a “keystone species”: bees. Many insect communities present collective behavior known as “swarming,” prioritizing group over individual survival, while constantly working to achieve common goals. Often, groups of these eusocial organisms leverage collaborative behavior for relatively large-scale construction. For example, ants create extremely complex networks by tunneling, wasps generate intricate paper nests with materials sourced from local areas, and bees deposit wax to build intricate hive structures.”

This January 19, 2022 article by Crown Honey for its eponymous blog updates Oxman’s work (Note 1: All emphases are mine; Note 2: A link has been removed),

Synthetic Apiary II investigates co-fabrication between humans and honey bees through the use of designed environments in which Apis mellifera colonies construct comb. These designed environments serve as a means by which to convey information to the colony. The comb that the bees construct within these environments comprises their response to the input information, enabling a form of communication through which we can begin to understand the hive’s collective actions from their perspective.

Some environments are embedded with chemical cues created through a novel pheromone 3D-printing process, while others generate magnetic fields of varying strength and direction. Others still contain geometries of varying complexity or designs that alter their form over time.

When offered wax augmented with synthetic biomarkers, bees appear to readily incorporate it into their construction process, likely due to the high energy cost of producing fresh wax. This suggests that comb construction is a responsive and dynamic process involving complex adaptations to perturbations from environmental stimuli, not merely a set of predefined behaviors building toward specific constructed forms. Each environment therefore acts as a signal that can be sent to the colony to initiate a process of co-fabrication.

Characterization of constructed comb morphology generally involves visual observation and physical measurements of structural features—methods which are limited in scale of analysis and blind to internal architecture. In contrast, the wax structures built by the colonies in Synthetic Apiary II are analyzed through high-throughput X-ray computed tomography (CT) scans that enable a more holistic digital reconstruction of the hive’s structure.

Geometric analysis of these forms provides information about the hive’s design process, preferences, and limitations when tied to the inputs, and thereby yields insights into the invisible mediations between bees and their environment.
Developing computational tools to learn from bees can facilitate the very beginnings of a dialogue with them. Refined by evolution over hundreds of thousands of years, their comb-building behaviors and social organizations may reveal new forms and methods of formation that can be applied across our human endeavors in architecture, design, engineering, and culture.

Further, with a basic understanding and language established, methods of co-fabrication together with bees may be developed, enabling the use of new biocompatible materials and the creation of more efficient structural geometries that modern technology alone cannot achieve.

In this way, we also move our built environment toward a more synergistic embodiment, able to be more seamlessly integrated into natural environments through material and form, even providing habitats of benefit to both humans and nonhumans. It is essential to our mutual survival for us to not only protect but moreover to empower these critical pollinators – whose intrinsic behaviors and ecosystems we have altered through our industrial processes and practices of human-centric design – to thrive without human intervention once again.

In order to design our way out of the environmental crisis that we ourselves created, we must first learn to speak nature’s language. …

The three (natural, gold nanoparticle, and silver nanoparticle) honeycombs in the exhibit are among the few physical objects (the others being the historical documents and the paintbots with their canvasses) in the show and it’s almost a relief after the parade of screens. It’s the accompanying video that’s eerie. Everything is in white, as befits a science laboratory, in this synthetic apiary where bees are fed sugar water and fooled into a spring that is eternal.

Courtesy: Massachusetts Institute of Technology Copyright: Mediated Matter [downloaded from https://www.media.mit.edu/projects/synthetic-apiary/overview/]

(You may want to check out Lynch’s October 5, 2016 article or Crown Honey’s January 19, 2022 article as both have embedded images and the Lynch article includes a Synthetic Apiary video. The image above is a still from the video.)

As I asked a friend, where are the flowers? Ron Miksha, a bee ecologist working at the University of Calgary, details some of the problems with Oxman’s Synthetic Apiary this way in his October 7, 2016 posting on his Bad Beekeeping Blog,

In a practical sense, the synthetic apiary fails on many fronts: Bees will survive a few months on concoctions of sugar syrup and substitute pollen, but they need a natural variety of amino acids and minerals to actually thrive. They need propolis and floral pollen. They need a ceiling 100 metres high and a 2-kilometre hallway if drone and queen will mate, or they’ll die after the old queen dies. They need an artificial sun that travels across the sky, otherwise, the bees will be attracted to artificial lights and won’t return to their hive. They need flowery meadows, fresh water, open skies. [emphasis mine] They need a better holodeck.

Dorothy Woodend’s March 10, 2022 review of the VAG show for The Tyee poses other issues with the bees and the honeycombs,

When AI messes about with other species, there is something even more unsettling about the process. American-Israeli artist Neri Oxman’s Golden Bee Cube, Synthetic Apiary II, 2020 uses real bees who are proffered silver and gold [nanoparticles] to create their comb structures. While the resulting hives are indeed beautiful, rendered in shades of burnished metal, there is a quality of unease imbued in them. Is the piece akin to apiary torture chambers? I wonder how the bees feel about this collaboration and whether they’d like to renegotiate the deal.

There’s no question the honeycombs are fascinating and disturbing but I don’t understand how artificial intelligence was a key factor in either version of Oxman’s synthetic apiary. In the 2022 article by Crown Honey, there’s this “Developing computational tools to learn from bees can facilitate the very beginnings of a dialogue with them [honeybees].” It’s probable that the computational tools being referenced include AI and the Crown Honey article seems to suggest those computational tools are being used to analyze the bees behaviour after the fact.

Yes, I can imagine a future where ‘strong’ AI (such as you, my friend) is in ‘dialogue’ with the bees and making suggestions and running the experiments but it’s not clear that this is the case currently. The Oxman exhibit contribution would seem to be about the future and its possibilities whereas many of the other ‘objects’ concern the past and/or the present.

Friend, let’s take a break, shall we? Part 2 is coming up.

Quantum Mechanics & Gravity conference (August 15 – 19, 2022) launches Vancouver (Canada)-based Quantum Gravity Institute and more

I received (via email) a July 21, 2022 news release about the launch of a quantum science initiative in Vancouver (BTW, I have more about the Canadian quantum scene later in this post),

World’s top physicists unite to tackle one of Science’s greatest
mysteries


Vancouver-based Quantum Gravity Society leads international quest to
discover Theory of Quantum Gravity

Vancouver, B.C. (July 21, 2022): More than two dozen of the world’s
top physicists, including three Nobel Prize winners, will gather in
Vancouver this August for a Quantum Gravity Conference that will host
the launch a Vancouver-based Quantum Gravity Institute (QGI) and a
new global research collaboration that could significantly advance our
understanding of physics and gravity and profoundly change the world as
we know it.

For roughly 100 years, the world’s understanding of physics has been
based on Albert Einstein’s General Theory of Relativity (GR), which
explored the theory of space, time and gravity, and quantum mechanics
(QM), which focuses on the behaviour of matter and light on the atomic
and subatomic scale. GR has given us a deep understanding of the cosmos,
leading to space travel and technology like atomic clocks, which govern
global GPS systems. QM is responsible for most of the equipment that
runs our world today, including the electronics, lasers, computers, cell
phones, plastics, and other technologies that support modern
transportation, communications, medicine, agriculture, energy systems
and more.

While each theory has led to countless scientific breakthroughs, in many
cases, they are incompatible and seemingly contradictory. Discovering a
unifying connection between these two fundamental theories, the elusive
Theory of Quantum Gravity, could provide the world with a deeper
understanding of time, gravity and matter and how to potentially control
them. It could also lead to new technologies that would affect most
aspects of daily life, including how we communicate, grow food, deliver
health care, transport people and goods, and produce energy.

“Discovering the Theory of Quantum Gravity could lead to the
possibility of time travel, new quantum devices, or even massive new
energy resources that produce clean energy and help us address climate
change,” said Philip Stamp, Professor, Department of Physics and
Astronomy, University of British Columbia, and Visiting Associate in
Theoretical Astrophysics at Caltech [California Institute of Technology]. “The potential long-term ramifications of this discovery are so incredible that life on earth 100
years from now could look as miraculous to us now as today’s
technology would have seemed to people living 100 years ago.”

The new Quantum Gravity Institute and the conference were founded by the
Quantum Gravity Society, which was created in 2022 by a group of
Canadian technology, business and community leaders, and leading
physicists. Among its goals are to advance the science of physics and
facilitate research on the Theory of Quantum Gravity through initiatives
such as the conference and assembling the world’s leading archive of
scientific papers and lectures associated with the attempts to reconcile
these two theories over the past century.

Attending the Quantum Gravity Conference in Vancouver (August 15-19 [2022])
will be two dozen of the world’s top physicists, including Nobel
Laureates Kip Thorne, Jim Peebles and Sir Roger Penrose, as well as
physicists Baron Martin Rees, Markus Aspelmeyer, Viatcheslav Mukhanov
and Paul Steinhardt. On Wednesday, August 17, the conference will be
open to the public, providing them with a once-in-a-lifetime opportunity
to attend keynote addresses from the world’s pre-eminent physicists.
… A noon-hour discussion on the importance of the
research will be delivered by Kip Thorne, the former Feynman Professor
of physics at Caltech. Thorne is well known for his popular books, and
for developing the original idea for the 2014 film “Interstellar.” He
was also crucial to the development of the book “Contact” by Carl Sagan,
which was also made into a motion picture.

“We look forward to welcoming many of the world’s brightest minds to
Vancouver for our first Quantum Gravity Conference,” said Frank
Giustra, CEO Fiore Group and Co-Founder, Quantum Gravity Society. “One
of the goals of our Society will be to establish Vancouver as a
supportive home base for research and facilitate the scientific
collaboration that will be required to unlock this mystery that has
eluded some of the world’s most brilliant physicists for so long.”

“The format is key,” explains Terry Hui, UC Berkley Physics alumnus
and Co-Founder, Quantum Gravity Society [and CEO of Concord Pacific].
“Like the Solvay Conference nearly 100 years ago, the Quantum Gravity
Conference will bring top scientists together in salon-style gatherings. The
relaxed evening format following the conference will reduce barriers and
allow these great minds to freely exchange ideas. I hope this will help accelerate
the solution of this hundred-year bottleneck between theories relatively
soon.”

“As amazing as our journey of scientific discovery has been over the
past century, we still have so much to learn about how the universe
works on a macro, atomic and subatomic level,” added Paul Lee,
Managing Partner, Vanedge Capital, and Co-Founder, Quantum Gravity
Society. “New experiments and observations capable of advancing work
on this scientific challenge are becoming increasingly possible in
today’s physics labs and using new astronomical tools. The Quantum
Gravity Society looks forward to leveraging that growing technical
capacity with joint theory and experimental work that harnesses the
collective expertise of the world’s great physicists.”

About Quantum Gravity Society

Quantum Gravity Society was founded in Vancouver, Canada in 2020 by a
group of Canadian business, technology and community leaders, and
leading international physicists. The Society’s founding members
include Frank Giustra (Fiore Group), Terry Hui (Concord Pacific), Paul
Lee and Moe Kermani (Vanedge Capital) and Markus Frind (Frind Estate
Winery), along with renowned physicists Abhay Ashtekar, Sir Roger
Penrose, Philip Stamp, Bill Unruh and Birgitta Whaley. For more
information, visit Quantum Gravity Society.

About the Quantum Gravity Conference (Vancouver 2022)


The inaugural Quantum Gravity Conference (August 15-19 [2022]) is presented by
Quantum Gravity Society, Fiore Group, Vanedge Capital, Concord Pacific,
The Westin Bayshore, Vancouver and Frind Estate Winery. For conference
information, visit conference.quantumgravityinstitute.ca. To
register to attend the conference, visit Eventbrite.com.

The front page on the Quantum Gravity Society website is identical to the front page for the Quantum Mechanics & Gravity: Marrying Theory & Experiment conference website. It’s probable that will change with time.

This seems to be an in-person event only.

The site for the conference is in an exceptionally pretty location in Coal Harbour and it’s close to Stanley Park (a major tourist attraction),

The Westin Bayshore, Vancouver
1601 Bayshore Drive
Vancouver, BC V6G 2V4
View map

Assuming that most of my readers will be interested in the ‘public’ day, here’s more from the Wednesday, August 17, 2022 registration page on Eventbrite,

Tickets:

  • Corporate Table of 8 all day access – includes VIP Luncheon: $1,100
  • Ticket per person all day access – includes VIP Luncheon: $129
  • Ticket per person all day access (no VIP luncheon): $59
  • Student / Academia Ticket – all day access (no VIP luncheon): $30

Date:

Wednesday, August 17, 2022 @ 9:00 a.m. – 5:15 p.m. (PT)

Schedule:

  • Registration Opens: 8:00 a.m.
  • Morning Program: 9:00 a.m. – 12:30 p.m.
  • VIP Lunch: 12:30 p.m. – 2:30 p.m.
  • Afternoon Program: 2:30 p.m. – 4:20 p.m.
  • Public Discussion / Debate: 4:20 p.m. – 5:15 p.m.

Program:

9:00 a.m. Session 1: Beginning of the Universe

  • Viatcheslav Mukhanov – Theoretical Physicist and Cosmologist, University of Munich
  • Paul Steinhardt – Theoretical Physicist, Princeton University

Session 2: History of the Universe

  • Jim Peebles, 2019 Nobel Laureate, Princeton University
  • Baron Martin Rees – Cosmologist and Astrophysicist, University of Cambridge
  • Sir Roger Penrose, 2020 Nobel Laureate, University of Oxford (via zoom)

12:30 p.m. VIP Lunch Session: Quantum Gravity — Why Should We Care?

  • Kip Thorne – 2017 Nobel Laureate, Executive Producer of blockbuster film “Interstellar”

2:30 p.m. Session 3: What do Experiments Say?

  • Markus Aspelmeyer – Experimental Physicist, Quantum Optics and Optomechanics Leader, University of Vienna
  • Sir Roger Penrose – 2020 Nobel Laureate (via zoom)

Session 4: Time Travel

  • Kip Thorne – 2017 Nobel Laureate, Executive Producer of blockbuster film “Interstellar”

Event Partners

  • Quantum Gravity Society
  • Westin Bayshore
  • Fiore Group
  • Concord Pacific
  • VanEdge Capital
  • Frind Estate Winery

Marketing Partners

  • BC Business Council
  • Greater Vancouver Board of Trade

Please note that Sir Roger Penrose will be present via Zoom but all the others will be there in the room with you.

Given that Kip Thorne won his 2017 Nobel Prize in Physics (with Rainer Weiss and Barry Barish) for work on gravitational waves, it’s surprising there’s no mention of this in the publicity for a conference on quantum gravity. Finding gravitational waves in 2016 was a very big deal (see Josh Fischman’s and Steve Mirsky’s February 11, 2016 interview with Kip Thorne for Scientific American).

Some thoughts on this conference and the Canadian quantum scene

This conference has a fascinating collection of players. Even I recognized some of the names, e.g., Penrose, Rees, Thorne.

The academics were to be expected and every presenter is an academic, often with their own Wikipedia page. Weirdly, there’s no one from the Perimeter Institute Institute for Theoretical Physics or TRIUMF (a national physics laboratory and centre for particle acceleration) or from anywhere else in Canada, which may be due to their academic specialty rather than an attempt to freeze out Canadian physicists. In any event, the conference academics are largely from the US (a lot of them from CalTech and Stanford) and from the UK.

The business people are a bit of a surprise. The BC Business Council and the Greater Vancouver Board of Trade? Frank Giustra who first made his money with gold mines, then with Lionsgate Entertainment, and who continues to make a great deal of money with his equity investment company, Fiore Group? Terry Hui, Chief Executive Office of Concord Pacific, a real estate development company? VanEdge Capital, an early stage venture capital fund? A winery? Missing from this list is D-Wave Systems, Canada’s quantum calling card and local company. While their area of expertise is quantum computing, I’d still expect to see them present as sponsors. *ETA December 6, 2022: I just looked at the conference page again and D-Wave is now listed as a sponsor.*

The academics? These people are not cheap dates (flights, speaker’s fees, a room at the Bayshore, meals). This is a very expensive conference and $129 for lunch and a daypass is likely a heavily subsidized ticket.

Another surprise? No government money/sponsorship. I don’t recall seeing another academic conference held in Canada without any government participation.

Canadian quantum scene

A National Quantum Strategy was first announced in the 2021 Canadian federal budget and reannounced in the 2022 federal budget (see my April 19, 2022 posting for a few more budget details).. Or, you may find this National Quantum Strategy Consultations: What We Heard Report more informative. There’s also a webpage for general information about the National Quantum Strategy.

As evidence of action, the Natural Science and Engineering Research Council of Canada (NSERC) announced new grant programmes made possible by the National Quantum Strategy in a March 15, 2022 news release,

Quantum science and innovation are giving rise to promising advances in communications, computing, materials, sensing, health care, navigation and other key areas. The Government of Canada is committed to helping shape the future of quantum technology by supporting Canada’s quantum sector and establishing leadership in this emerging and transformative domain.

Today [March 15, 2022], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, is announcing an investment of $137.9 million through the Natural Sciences and Engineering Research Council of Canada’s (NSERC) Collaborative Research and Training Experience (CREATE) grants and Alliance grants. These grants are an important next step in advancing the National Quantum Strategy and will reinforce Canada’s research strengths in quantum science while also helping to develop a talent pipeline to support the growth of a strong quantum community.

Quick facts

Budget 2021 committed $360 million to build the foundation for a National Quantum Strategy, enabling the Government of Canada to build on previous investments in the sector to advance the emerging field of quantum technologies. The quantum sector is key to fuelling Canada’s economy, long-term resilience and growth, especially as technologies mature and more sectors harness quantum capabilities.

Development of quantum technologies offers job opportunities in research and science, software and hardware engineering and development, manufacturing, technical support, sales and marketing, business operations and other fields.

The Government of Canada also invested more than $1 billion in quantum research and science from 2009 to 2020—mainly through competitive granting agency programs, including Natural Sciences and Engineering Research Council of Canada programs and the Canada First Research Excellence Fund—to help establish Canada as a global leader in quantum science.

In addition, the government has invested in bringing new quantum technologies to market, including investments through Canada’s regional development agencies, the Strategic Innovation Fund and the National Research Council of Canada’s Industrial Research Assistance Program.

Bank of Canada, cryptocurrency, and quantum computing

My July 25, 2022 posting features a special project, Note: All emphases are mine,

… (from an April 14, 2022 HKA Marketing Communications news release on EurekAlert),

Multiverse Computing, a global leader in quantum computing solutions for the financial industry and beyond with offices in Toronto and Spain, today announced it has completed a proof-of-concept project with the Bank of Canada through which the parties used quantum computing to simulate the adoption of cryptocurrency as a method of payment by non-financial firms.

“We are proud to be a trusted partner of the first G7 central bank to explore modelling of complex networks and cryptocurrencies through the use of quantum computing,” said Sam Mugel, CTO [Chief Technical Officer] at Multiverse Computing. “The results of the simulation are very intriguing and insightful as stakeholders consider further research in the domain. Thanks to the algorithm we developed together with our partners at the Bank of Canada, we have been able to model a complex system reliably and accurately given the current state of quantum computing capabilities.”

Multiverse Computing conducted its innovative work related to applying quantum computing for modelling complex economic interactions in a research project with the Bank of Canada. The project explored quantum computing technology as a way to simulate complex economic behaviour that is otherwise very difficult to simulate using traditional computational techniques.

By implementing this solution using D-Wave’s annealing quantum computer, the simulation was able to tackle financial networks as large as 8-10 players, with up to 2^90 possible network configurations. Note that classical computing approaches cannot solve large networks of practical relevance as a 15-player network requires as many resources as there are atoms in the universe.

Quantum Technologies and the Council of Canadian Academies (CCA)

In a May 26, 2022 blog posting the CCA announced its Expert Panel on Quantum Technologies (they will be issuing a Quantum Technologies report),

The emergence of quantum technologies will impact all sectors of the Canadian economy, presenting significant opportunities but also risks. At the request of the National Research Council of Canada (NRC) and Innovation, Science and Economic Development Canada (ISED), the Council of Canadian Academies (CCA) has formed an Expert Panel to examine the impacts, opportunities, and challenges quantum technologies present for Canadian industry, governments, and Canadians. Raymond Laflamme, O.C., FRSC, Canada Research Chair in Quantum Information and Professor in the Department of Physics and Astronomy at the University of Waterloo, will serve as Chair of the Expert Panel.

“Quantum technologies have the potential to transform computing, sensing, communications, healthcare, navigation and many other areas,” said Dr. Laflamme. “But a close examination of the risks and vulnerabilities of these technologies is critical, and I look forward to undertaking this crucial work with the panel.”

As Chair, Dr. Laflamme will lead a multidisciplinary group with expertise in quantum technologies, economics, innovation, ethics, and legal and regulatory frameworks. The Panel will answer the following question:

In light of current trends affecting the evolution of quantum technologies, what impacts, opportunities and challenges do these present for Canadian industry, governments and Canadians more broadly?

The Expert Panel on Quantum Technologies:

Raymond Laflamme, O.C., FRSC (Chair), Canada Research Chair in Quantum Information; the Mike and Ophelia Lazaridis John von Neumann Chair in Quantum Information; Professor, Department of Physics and Astronomy, University of Waterloo

Sally Daub, Founder and Managing Partner, Pool Global Partners

Shohini Ghose, Professor, Physics and Computer Science, Wilfrid Laurier University; NSERC Chair for Women in Science and Engineering

Paul Gulyas, Senior Innovation Executive, IBM Canada

Mark W. Johnson, Senior Vice-President, Quantum Technologies and Systems Products, D-Wave Systems

Elham Kashefi, Professor of Quantum Computing, School of Informatics, University of Edinburgh; Directeur de recherche au CNRS, LIP6 Sorbonne Université

Mauritz Kop, Fellow and Visiting Scholar, Stanford Law School, Stanford University

Dominic Martin, Professor, Département d’organisation et de ressources humaines, École des sciences de la gestion, Université du Québec à Montréal

Darius Ornston, Associate Professor, Munk School of Global Affairs and Public Policy, University of Toronto

Barry Sanders, FRSC, Director, Institute for Quantum Science and Technology, University of Calgary

Eric Santor, Advisor to the Governor, Bank of Canada

Christian Sarra-Bournet, Quantum Strategy Director and Executive Director, Institut quantique, Université de Sherbrooke

Stephanie Simmons, Associate Professor, Canada Research Chair in Quantum Nanoelectronics, and CIFAR Quantum Information Science Fellow, Department of Physics, Simon Fraser University

Jacqueline Walsh, Instructor; Director, initio Technology & Innovation Law Clinic, Dalhousie University

You’ll note that both the Bank of Canada and D-Wave Systems are represented on this expert panel.

The CCA Quantum Technologies report (in progress) page can be found here.

Does it mean anything?

Since I only skim the top layer of information (disparagingly described as ‘high level’ by the technology types I used to work with), all I can say is there’s a remarkable level of interest from various groups who are self-organizing. (The interest is international as well. I found the International Society for Quantum Gravity [ISQG], which had its first meeting in 2021.)

I don’t know what the purpose is other than it seems the Canadian focus seems to be on money. The board of trade and business council have no interest in primary research and the federal government’s national quantum strategy is part of Innovation, Science and Economic Development (ISED) Canada’s mandate. You’ll notice ‘science’ is sandwiched between ‘innovation’, which is often code for business, and economic development.

The Bank of Canada’s monetary interests are quite obvious.

The Perimeter Institute mentioned earlier was founded by Mike Lazaridis (from his Wikipedia entry) Note: Links have been removed,

… a Canadian businessman [emphasis mine], investor in quantum computing technologies, and founder of BlackBerry, which created and manufactured the BlackBerry wireless handheld device. With an estimated net worth of US$800 million (as of June 2011), Lazaridis was ranked by Forbes as the 17th wealthiest Canadian and 651st in the world.[4]

In 2000, Lazaridis founded and donated more than $170 million to the Perimeter Institute for Theoretical Physics.[11][12] He and his wife Ophelia founded and donated more than $100 million to the Institute for Quantum Computing at the University of Waterloo in 2002.[8]

That Institute for Quantum Computing? There’s an interesting connection. Raymond Laflamme, the chair for the CCA expert panel, was its director for a number of years and he’s closely affiliated with the Perimeter Institute. (I’m not suggesting anything nefarious or dodgy. It’s a small community in Canada and relationships tend to be tightly interlaced.) I’m surprised he’s not part of the quantum mechanics and gravity conference but that could have something to do with scheduling.

One last interesting bit about Laflamme, from his Wikipedia entry, Note: Links have been removed)

As Stephen Hawking’s PhD student, he first became famous for convincing Hawking that time does not reverse in a contracting universe, along with Don Page. Hawking told the story of how this happened in his famous book A Brief History of Time in the chapter The Arrow of Time.[3] Later on Laflamme made a name for himself in quantum computing and quantum information theory, which is what he is famous for today.

Getting back to the Quantum Mechanics & Gravity: Marrying Theory & Experiment, the public day looks pretty interesting and when is the next time you’ll have a chance to hobnob with all those Nobel Laureates?

Going blind when your neural implant company flirts with bankruptcy (long read)

This story got me to thinking about what happens when any kind of implant company (pacemaker, deep brain stimulator, etc.) goes bankrupt or is acquired by another company with a different business model.

As I worked on this piece, more issues were raised and the scope expanded to include prosthetics along with implants while the focus narrowed to neuro as in, neural implants and neuroprosthetics. At the same time, I found salient examples for this posting in other medical advances such as gene editing.

In sum, all references to implants and prosthetics are to neural devices and some issues are illustrated with salient examples from other medical advances (specifically, gene editing).

Definitions (for those who find them useful)

The US Food and Drug Administration defines implants and prosthetics,

Medical implants are devices or tissues that are placed inside or on the surface of the body. Many implants are prosthetics, intended to replace missing body parts. Other implants deliver medication, monitor body functions, or provide support to organs and tissues.

As for what constitutes a neural implant/neuroprosthetic, there’s this from Emily Waltz’s January 20, 2020 article (How Do Neural Implants Work? Neural implants are used for deep brain stimulation, vagus nerve stimulation, and mind-controlled prostheses) for the Institute of Electrical and Electronics Engineers (IEEE) Spectrum magazine,

A neural implant, then, is a device—typically an electrode of some kind—that’s inserted into the body, comes into contact with tissues that contain neurons, and interacts with those neurons in some way.

Now, let’s start with the recent near bankruptcy of a retinal implant company.

The company goes bust (more or less)

From a February 25, 2022 Science Friday (a National Public Radio program) posting/audio file, Note: Links have been removed,

Barbara Campbell was walking through a New York City subway station during rush hour when her world abruptly went dark. For four years, Campbell had been using a high-tech implant in her left eye that gave her a crude kind of bionic vision, partially compensating for the genetic disease that had rendered her completely blind in her 30s. “I remember exactly where I was: I was switching from the 6 train to the F train,” Campbell tells IEEE Spectrum. “I was about to go down the stairs, and all of a sudden I heard a little ‘beep, beep, beep’ sound.’”

It wasn’t her phone battery running out. It was her Argus II retinal implant system powering down. The patches of light and dark that she’d been able to see with the implant’s help vanished.

Terry Byland is the only person to have received this kind of implant in both eyes. He got the first-generation Argus I implant, made by the company Second Sight Medical Products, in his right eye in 2004, and the subsequent Argus II implant in his left 11 years later. He helped the company test the technology, spoke to the press movingly about his experiences, and even met Stevie Wonder at a conference. “[I] went from being just a person that was doing the testing to being a spokesman,” he remembers.

Yet in 2020, Byland had to find out secondhand that the company had abandoned the technology and was on the verge of going bankrupt. While his two-implant system is still working, he doesn’t know how long that will be the case. “As long as nothing goes wrong, I’m fine,” he says. “But if something does go wrong with it, well, I’m screwed. Because there’s no way of getting it fixed.”

Science Friday and the IEEE [Institute of Electrical and Electronics Engineers] Spectrum magazine collaborated to produce this story. You’ll find the audio files and the transcript of interviews with the authors and one of the implant patients in this February 25, 2022 Science Friday (a National Public Radio program) posting.

Here’s more from the February 15, 2022 IEEE Spectrum article by Eliza Strickland and Mark Harris,

Ross Doerr, another Second Sight patient, doesn’t mince words: “It is fantastic technology and a lousy company,” he says. He received an implant in one eye in 2019 and remembers seeing the shining lights of Christmas trees that holiday season. He was thrilled to learn in early 2020 that he was eligible for software upgrades that could further improve his vision. Yet in the early months of the COVID-19 pandemic, he heard troubling rumors about the company and called his Second Sight vision-rehab therapist. “She said, ‘Well, funny you should call. We all just got laid off,’ ” he remembers. She said, ‘By the way, you’re not getting your upgrades.’ ”

These three patients, and more than 350 other blind people around the world with Second Sight’s implants in their eyes, find themselves in a world in which the technology that transformed their lives is just another obsolete gadget. One technical hiccup, one broken wire, and they lose their artificial vision, possibly forever. To add injury to insult: A defunct Argus system in the eye could cause medical complications or interfere with procedures such as MRI scans, and it could be painful or expensive to remove.

The writers included some information about what happened to the business, from the February 15, 2022 IEEE Spectrum article, Note: Links have been removed,

After Second Sight discontinued its retinal implant in 2019 and nearly went out of business in 2020, a public offering in June 2021 raised US $57.5 million at $5 per share. The company promised to focus on its ongoing clinical trial of a brain implant, called Orion, that also provides artificial vision. But its stock price plunged to around $1.50, and in February 2022, just before this article was published, the company announced a proposed merger with an early-stage biopharmaceutical company called Nano Precision Medical (NPM). None of Second Sight’s executives will be on the leadership team of the new company, which will focus on developing NPM’s novel implant for drug delivery.The company’s current leadership declined to be interviewed for this article but did provide an emailed statement prior to the merger announcement. It said, in part: “We are a recognized global leader in neuromodulation devices for blindness and are committed to developing new technologies to treat the broadest population of sight-impaired individuals.”

It’s unclear what Second Sight’s proposed merger means for Argus patients. The day after the merger was announced, Adam Mendelsohn, CEO of Nano Precision Medical, told Spectrum that he doesn’t yet know what contractual obligations the combined company will have to Argus and Orion patients. But, he says, NPM will try to do what’s “right from an ethical perspective.” The past, he added in an email, is “simply not relevant to the new future.”

There may be some alternatives, from the February 15, 2022 IEEE Spectrum article (Note: Links have been removed),

Second Sight may have given up on its retinal implant, but other companies still see a need—and a market—for bionic vision without brain surgery. Paris-based Pixium Vision is conducting European and U.S. feasibility trials to see if its Prima system can help patients with age-related macular degeneration, a much more common condition than retinitis pigmentosa.

Daniel Palanker, a professor of ophthalmology at Stanford University who licensed his technology to Pixium, says the Prima implant is smaller, simpler, and cheaper than the Argus II. But he argues that Prima’s superior image resolution has the potential to make Pixium Vision a success. “If you provide excellent vision, there will be lots of patients,” he tells Spectrum. “If you provide crappy vision, there will be very few.”

Some clinicians involved in the Argus II work are trying to salvage what they can from the technology. Gislin Dagnelie, an associate professor of ophthalmology at Johns Hopkins University School of Medicine, has set up a network of clinicians who are still working with Argus II patients. The researchers are experimenting with a thermal camera to help users see faces, a stereo camera to filter out the background, and AI-powered object recognition. These upgrades are unlikely to result in commercial hardware today but could help future vision prostheses.

The writers have carefully balanced this piece so it is not an outright condemnation of the companies (Second Sight and Nano Precision), from the February 15, 2022 IEEE Spectrum article,

Failure is an inevitable part of innovation. The Argus II was an innovative technology, and progress made by Second Sight may pave the way for other companies that are developing bionic vision systems. But for people considering such an implant in the future, the cautionary tale of Argus patients left in the lurch may make a tough decision even tougher. Should they take a chance on a novel technology? If they do get an implant and find that it helps them navigate the world, should they allow themselves to depend upon it?

Abandoning the Argus II technology—and the people who use it—might have made short-term financial sense for Second Sight, but it’s a decision that could come back to bite the merged company if it does decide to commercialize a brain implant, believes Doerr.

For anyone curious about retinal implant technology (specifically the Argus II), I have a description in a June 30, 2015 posting.

Speculations and hopes for neuroprosthetics

The field of neuroprosthetics is very active. Dr Arthur Saniotis and Prof Maciej Henneberg have written an article where they speculate about the possibilities of a neuroprosthetic that may one day merge with neurons in a February 21, 2022 Nanowerk Spotlight article,

For over a generation several types of medical neuroprosthetics have been developed, which have improved the lives of thousands of individuals. For instance, cochlear implants have restored functional hearing in individuals with severe hearing impairment.

Further advances in motor neuroprosthetics are attempting to restore motor functions in tetraplegic, limb loss and brain stem stroke paralysis subjects.

Currently, scientists are working on various kinds of brain/machine interfaces [BMI] in order to restore movement and partial sensory function. One such device is the ‘Ipsihand’ that enables movement of a paralyzed hand. The device works by detecting the recipient’s intention in the form of electrical signals, thereby triggering hand movement.

Another recent development is the 12 month BMI gait neurohabilitation program that uses a visual-tactile feedback system in combination with a physical exoskeleton and EEG operated AI actuators while walking. This program has been tried on eight patients with reported improvements in lower limb movement and somatic sensation.

Surgically placed electrode implants have also reduced tremor symptoms in individuals with Parkinson’s disease.

Although neuroprosthetics have provided various benefits they do have their problems. Firstly, electrode implants to the brain are prone to degradation, necessitating new implants after a few years. Secondly, as in any kind of surgery, implanted electrodes can cause post-operative infection and glial scarring. Furthermore, one study showed that the neurobiological efficacy of an implant is dependent on the rate of speed of its insertion.

But what if humans designed a neuroprosthetic, which could bypass the medical glitches of invasive neuroprosthetics? However, instead of connecting devices to neural networks, this neuroprosthetic would directly merge with neurons – a novel step. Such a neuroprosthetic could radically optimize treatments for neurodegenerative disorders and brain injuries, and possibly cognitive enhancement [emphasis mine].

A team of three international scientists has recently designed a nanobased neuroprosthetic, which was published in Frontiers in Neuroscience (“Integration of Nanobots Into Neural Circuits As a Future Therapy for Treating Neurodegenerative Disorders“). [open access paper published in 2018]

An interesting feature of their nanobot neuroprosthetic is that it has been inspired from nature by way of endomyccorhizae – a type of plant/fungus symbiosis, which is over four hundred million years old. During endomyccorhizae, fungi use numerous threadlike projections called mycelium that penetrate plant roots, forming colossal underground networks with nearby root systems. During this process fungi take up vital nutrients while protecting plant roots from infections – a win-win relationship. Consequently, the nano-neuroprosthetic has been named ‘endomyccorhizae ligand interface’, or ‘ELI’ for short.

The Spotlight article goes on to describe how these nanobots might function. As for the possibility of cognitive enhancement, I wonder if that might come to be described as a form of ‘artificial intelligence’.

(Dr Arthur Saniotis and Prof Maciej Henneberg are both from the Department of Anthropology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences; and Biological Anthropology and Comparative Anatomy Research Unit, Adelaide Medical School, University of Adelaide. Abdul-Rahman Sawalma who’s listed as an author on the 2018 paper is from the Palestinian Neuroscience Initiative, Al-Quds University, Beit Hanina, Palestine.)

Saniotis and Henneberg’s Spotlight article presents an optimistic view of neuroprosthetics. It seems telling that they cite cochlear implants as a success story when it is viewed by many as ethically fraught (see the Cochlear implant Wikipedia entry; scroll down to ‘Criticism and controversy’).

Ethics and your implants

This is from an April 6, 2015 article by Luc Henry on technologist.eu,

Technologist: What are the potential consequences of accepting the “augmented human” in society?

Gregor Wolbring: There are many that we might not even envision now. But let me focus on failure and obsolescence [emphasis mine], two issues that are rarely discussed. What happens when the mechanisms fails in the middle of an action? Failure has hazardous consequences, but obsolescence has psychological ones. …. The constant surgical inter­vention needed to update the hardware may not be feasible. A person might feel obsolete if she cohabits with others using a newer version.

T. Are researchers working on prosthetics sometimes disconnected from reality?

G. W. Students engaged in the development of prosthetics have to learn how to think in societal terms and develop a broader perspective. Our education system provides them with a fascination for clever solutions to technological challenges but not with tools aiming at understanding the consequences, such as whether their product might increase or decrease social justice.

Wolbring is a professor at the University of Calgary’s Cumming School of Medicine (profile page) who writes on social issues to do with human enhancement/ augmentation. As well,

Some of his areas of engagement are: ability studies including governance of ability expectations, disability studies, governance of emerging and existing sciences and technologies (e.g. nanoscale science and technology, molecular manufacturing, aging, longevity and immortality, cognitive sciences, neuromorphic engineering, genetics, synthetic biology, robotics, artificial intelligence, automatization, brain machine interfaces, sensors), impact of science and technology on marginalized populations, especially people with disabilities he governance of bodily enhancement, sustainability issues, EcoHealth, resilience, ethics issues, health policy issues, human rights and sport.

He also maintains his own website here.

Not just startups

I’d classify Second Sight as a tech startup company and they have a high rate of failure, which may not have been clear to the patients who had the implants. Clinical trials can present problems too as this excerpt from my September 17, 2020 posting notes,

This October 31, 2017 article by Emily Underwood for Science was revelatory,

“In 2003, neurologist Helen Mayberg of Emory University in Atlanta began to test a bold, experimental treatment for people with severe depression, which involved implanting metal electrodes deep in the brain in a region called area 25 [emphases mine]. The initial data were promising; eventually, they convinced a device company, St. Jude Medical in Saint Paul, to sponsor a 200-person clinical trial dubbed BROADEN.

This month [October 2017], however, Lancet Psychiatry reported the first published data on the trial’s failure. The study stopped recruiting participants in 2012, after a 6-month study in 90 people failed to show statistically significant improvements between those receiving active stimulation and a control group, in which the device was implanted but switched off.

… a tricky dilemma for companies and research teams involved in deep brain stimulation (DBS) research: If trial participants want to keep their implants [emphases mine], who will take responsibility—and pay—for their ongoing care? And participants in last week’s meeting said it underscores the need for the growing corps of DBS researchers to think long-term about their planned studies.”

Symbiosis can be another consequence, as mentioned in my September 17, 2020 posting,

From a July 24, 2019 article by Liam Drew for Nature Outlook: The brain,

“It becomes part of you,” Patient 6 said, describing the technology that enabled her, after 45 years of severe epilepsy, to halt her disabling seizures. Electrodes had been implanted on the surface of her brain that would send a signal to a hand-held device when they detected signs of impending epileptic activity. On hearing a warning from the device, Patient 6 knew to take a dose of medication to halt the coming seizure.

“You grow gradually into it and get used to it, so it then becomes a part of every day,” she told Frederic Gilbert, an ethicist who studies brain–computer interfaces (BCIs) at the University of Tasmania in Hobart, Australia. “It became me,” she said. [emphasis mine]

Symbiosis is a term, borrowed from ecology, that means an intimate co-existence of two species for mutual advantage. As technologists work towards directly connecting the human brain to computers, it is increasingly being used to describe humans’ potential relationship with artificial intelligence. [emphasis mine]

It’s complicated

For a lot of people these devices are or could be life-changing. At the same time, there are a number of different issues related to implants/prosthetics; the following is not an exhaustive list. As Wolbring notes, issues that we can’t begin to imagine now are likely to emerge as these medical advances become more ubiquitous.

Ability/disability?

Assistive technologies are almost always portrayed as helpful. For example, a cochlear implant gives people without hearing the ability to hear. The assumption is that this is always a good thing—unless you’re a deaf person who wants to define the problem a little differently. Who gets to decide what is good and ‘normal’ and what is desirable?

While the cochlear implant is the most extreme example I can think of, there are variations of these questions throughout the ‘disability’ communities.

Also, as Wolbring notes in his interview with the Technologist.eu, the education system tends to favour technological solutions which don’t take social issues into account. Wolbring cites social justice issues when he mentions failure and obsolescence.

Technical failures and obsolescence

The story, excerpted earlier in this posting, opened with a striking example of a technical failure at an awkward moment; a blind woman depending on her retinal implant loses all sight as she maneuvers through a subway station in New York City.

Aside from being an awful way to find out the company supplying and supporting your implant is in serious financial trouble and can’t offer assistance or repair, the failure offers a preview of what could happen as implants and prosthetics become more commonly used.

Keeping up/fomo (fear of missing out)/obsolescence

It used to be called ‘keeping up with the Joneses, it’s the practice of comparing yourself and your worldly goods to someone else(‘s) and then trying to equal what they have or do better. Usually, people want to have more and better than the mythical Joneses.

These days, the phenomenon (which has been expanded to include social networking) is better known as ‘fomo’ or fear of missing out (see the Fear of missing out Wikipedia entry).

Whatever you want to call it, humanity’s competitive nature can be seen where technology is concerned. When I worked in technology companies, I noticed that hardware and software were sometimes purchased for features that were effectively useless to us. But, not upgrading to a newer version was unthinkable.

Call it fomo or ‘keeping up with the Joneses’, it’s a powerful force and when people (and even companies) miss out or can’t keep up, it can lead to a sense of inferiority in the same way that having an obsolete implant or prosthetic could.

Social consequences

Could there be a neural implant/neuroprosthetic divide? There is already a digital divide (from its Wikipedia entry),

The digital divide is a gap between those who have access to new technology and those who do not … people without access to the Internet and other ICTs [information and communication technologies] are at a socio-economic disadvantage because they are unable or less able to find and apply for jobs, shop and sell online, participate democratically, or research and learn.

After reading Wolbring’s comments, it’s not hard to imagine a neural implant/neuroprosthetic divide with its attendant psychological and social consequences.

What kind of human am I?

There are other issues as noted in my September 17, 2020 posting. I’ve already mentioned ‘patient 6’, the woman who developed a symbiotic relationship with her brain/computer interface. This is how the relationship ended,

… He [Frederic Gilbert, ethicist] is now preparing a follow-up report on Patient 6. The company that implanted the device in her brain to help free her from seizures went bankrupt. The device had to be removed.

… Patient 6 cried as she told Gilbert about losing the device. … “I lost myself,” she said.

“It was more than a device,” Gilbert says. “The company owned the existence of this new person.”

Above human

The possibility that implants will not merely restore or endow someone with ‘standard’ sight or hearing or motion or … but will augment or improve on nature was broached in this May 2, 2013 posting, More than human—a bionic ear that extends hearing beyond the usual frequencies and is one of many in the ‘Human Enhancement’ category on this blog.

More recently, Hugh Herr, an Associate Professor at the Massachusetts Institute of Technology (MIT), leader of the Biomechatronics research group at MIT’s Media Lab, a double amputee, and prosthetic enthusiast, starred in the recent (February 23, 2022) broadcast of ‘Augmented‘ on the Public Broadcasting Service (PBS) science programme, Nova.

I found ‘Augmented’ a little offputting as it gave every indication of being an advertisement for Herr’s work in the form of a hero’s journey. I was not able to watch more than 10 mins. This preview gives you a pretty good idea of what it was like although the part in ‘Augmented, where he says he’d like to be a cyborg hasn’t been included,

At a guess, there were a few talking heads (taking up from 10%-20% of the running time) who provided some cautionary words to counterbalance the enthusiasm in the rest of the programme. It’s a standard approach designed to give the impression that both sides of a question are being recognized. The cautionary material is usually inserted past the 1/2 way mark while leaving several minutes at the end for returning to the more optimistic material.

In a February 2, 2010 posting I have excerpts from an article featuring quotes from Herr that I still find startling,

Written by Paul Hochman for Fast Company, Bionic Legs, iLimbs, and Other Super-Human Prostheses [ETA March 23, 2022: an updated version of the article is now on Genius.com] delves further into the world where people may be willing to trade a healthy limb for a prosthetic. From the article,

There are many advantages to having your leg amputated.

Pedicure costs drop 50% overnight. A pair of socks lasts twice as long. But Hugh Herr, the director of the Biomechatronics Group at the MIT Media Lab, goes a step further. “It’s actually unfair,” Herr says about amputees’ advantages over the able-bodied. “As tech advancements in prosthetics come along, amputees can exploit those improvements. They can get upgrades. A person with a natural body can’t.”

Herr is not the only one who favours prosthetics (also from the Hochman article),

This influx of R&D cash, combined with breakthroughs in materials science and processor speed, has had a striking visual and social result: an emblem of hurt and loss has become a paradigm of the sleek, modern, and powerful. Which is why Michael Bailey, a 24-year-old student in Duluth, Georgia, is looking forward to the day when he can amputate the last two fingers on his left hand.

“I don’t think I would have said this if it had never happened,” says Bailey, referring to the accident that tore off his pinkie, ring, and middle fingers. “But I told Touch Bionics I’d cut the rest of my hand off if I could make all five of my fingers robotic.”

But Bailey is most surprised by his own reaction. “When I’m wearing it, I do feel different: I feel stronger. As weird as that sounds, having a piece of machinery incorporated into your body, as a part of you, well, it makes you feel above human.[emphasis mine] It’s a very powerful thing.”

My September 17, 2020 posting touches on more ethical and social issues including some of those surrounding consumer neurotechnologies or brain-computer interfaces (BCI). Unfortunately, I don’t have space for these issues here.

As for Paul Hochman’s article, Bionic Legs, iLimbs, and Other Super-Human Prostheses, now on Genius.com, it has been updated.

Money makes the world go around

Money and business practices have been indirectly referenced (for the most part) up to now in this posting. The February 15, 2022 IEEE Spectrum article and Hochman’s article, Bionic Legs, iLimbs, and Other Super-Human Prostheses, cover two aspects of the money angle.

In the IEEE Spectrum article, a tech start-up company, Second Sight, ran into financial trouble and is acquired by a company that has no plans to develop Second Sight’s core technology. The people implanted with the Argus II technology have been stranded as were ‘patient 6’ and others participating in the clinical trial described in the July 24, 2019 article by Liam Drew for Nature Outlook: The brain mentioned earlier in this posting.

I don’t know anything about the business bankruptcy mentioned in the Drew article but one of the business problems described in the IEEE Spectrum article suggests that Second Sight was founded before answering a basic question, “What is the market size for this product?”

On 18 July 2019, Second Sight sent Argus patients a letter saying it would be phasing out the retinal implant technology to clear the way for the development of its next-generation brain implant for blindness, Orion, which had begun a clinical trial with six patients the previous year. …

“The leadership at the time didn’t believe they could make [the Argus retinal implant] part of the business profitable,” Greenberg [Robert Greenberg, Second Sight co-founder] says. “I understood the decision, because I think the size of the market turned out to be smaller than we had thought.”

….

The question of whether a medical procedure or medicine can be profitable (or should the question be sufficiently profitable?) was referenced in my April 26, 2019 posting in the context of gene editing and personalized medicine

Edward Abrahams, president of the Personalized Medicine Coalition (US-based), advocates for personalized medicine while noting in passing, market forces as represented by Goldman Sachs in his May 23, 2018 piece for statnews.com (Note: A link has been removed),

Goldman Sachs, for example, issued a report titled “The Genome Revolution.” It argues that while “genome medicine” offers “tremendous value for patients and society,” curing patients may not be “a sustainable business model.” [emphasis mine] The analysis underlines that the health system is not set up to reap the benefits of new scientific discoveries and technologies. Just as we are on the precipice of an era in which gene therapies, gene-editing, and immunotherapies promise to address the root causes of disease, Goldman Sachs says that these therapies have a “very different outlook with regard to recurring revenue versus chronic therapies.”

The ‘Glybera’ story in my July 4, 2019 posting (scroll down about 40% of the way) highlights the issue with “recurring revenue versus chronic therapies,”

Kelly Crowe in a November 17, 2018 article for the CBC (Canadian Broadcasting Corporation) news writes about Glybera,

It is one of this country’s great scientific achievements.

“The first drug ever approved that can fix a faulty gene.

It’s called Glybera, and it can treat a painful and potentially deadly genetic disorder with a single dose — a genuine made-in-Canada medical breakthrough.

But most Canadians have never heard of it.

Here’s my summary (from the July 4, 2019 posting),

It cost $1M for a single treatment and that single treatment is good for at least 10 years.

Pharmaceutical companies make their money from repeated use of their medicaments and Glybera required only one treatment so the company priced it according to how much they would have gotten for repeated use, $100,000 per year over a 10 year period. The company was not able to persuade governments and/or individuals to pay the cost

In the end, 31 people got the treatment, most of them received it for free through clinical trials.

For rich people only?

Megan Devlin’s March 8, 2022 article for the Daily Hive announces a major research investment into medical research (Note: A link has been removed),

Vancouver [Canada] billionaire Chip Wilson revealed Tuesday [March 8, 2022] that he has a rare genetic condition that causes his muscles to waste away, and announced he’s spending $100 million on research to find a cure.

His condition is called facio-scapulo-humeral muscular dystrophy, or FSHD for short. It progresses rapidly in some people and more slowly in others, but is characterized by progressive muscle weakness starting the the face, the neck, shoulders, and later the lower body.

“I’m out for survival of my own life,” Wilson said.

“I also have the resources to do something about this which affects so many people in the world.”

Wilson hopes the $100 million will produce a cure or muscle-regenerating treatment by 2027.

“This could be one of the biggest discoveries of all time, for humankind,” Wilson said. “Most people lose muscle, they fall, and they die. If we can keep muscle as we age this can be a longevity drug like we’ve never seen before.”

According to rarediseases.org, FSHD affects between four and 10 people out of every 100,000 [emphasis mine], Right now, therapies are limited to exercise and pain management. There is no way to stall or reverse the disease’s course.

Wilson is best known for founding athleisure clothing company Lululemon. He also owns the most expensive home in British Columbia, a $73 million mansion in Vancouver’s Kitsilano neighbourhood.

Let’s see what the numbers add up to,

4 – 10 people out of 100,000

40 – 100 people out of 1M

1200 – 3,000 people out of 30M (let’s say this is Canada’s population)\

12,000 – 30,000 people out of 300M (let’s say this is the US’s population)

42,000 – 105,000 out of 1.115B (let’s say this is China’s population)

The rough total comes to 55,200 to 138,000 people between three countries with a combined population total of 1.445B. Given how business currently operates, it seems unlikely that any company will want to offer Wilson’s hoped for medical therapy although he and possibly others may benefit from a clinical trial.

Should profit or wealth be considerations?

The stories about the patients with the implants and the patients who need Glybera are heartbreaking and point to a question not often asked when medical therapies and medications are developed. Is the profit model the best choice and, if so, how much profit?

I have no answer to that question but I wish it was asked by medical researchers and policy makers.

As for wealthy people dictating the direction for medical research, I don’t have answers there either. I hope the research will yield applications and/or valuable information for more than Wilson’s disease.

It’s his money after all

Wilson calls his new venture, SolveFSHD. It doesn’t seem to be affiliated with any university or biomedical science organization and it’s not clear how the money will be awarded (no programmes, no application procedure, no panel of experts). There are three people on the team, Eva R. Chin, scientist and executive director, Chip Wilson, SolveFSHD founder/funder, and FSHD patient, and Neil Camarta, engineer, executive (fossil fuels and clean energy), and FSHD patient. There’s also a Twitter feed (presumably for the latest updates): https://twitter.com/SOLVEFSHD.

Perhaps unrelated but intriguing is news about a proposed new building in Kenneth Chan’s March 31, 2022 article for the Daily Hive,

Low Tide Properties, the real estate arm of Lululemon founder Chip Wilson [emphasis mine], has submitted a new development permit application to build a 148-ft-tall, eight-storey, mixed-use commercial building in the False Creek Flats of Vancouver.

The proposal, designed by local architectural firm Musson Cattell Mackey Partnership, calls for 236,000 sq ft of total floor area, including 105,000 sq ft of general office space, 102,000 sq ft of laboratory space [emphasis mine], and 5,000 sq ft of ground-level retail space. An outdoor amenity space for building workers will be provided on the rooftop.

[next door] The 2001-built, five-storey building at 1618 Station Street immediately to the west of the development site is also owned by Low Tide Properties [emphasis mine]. The Ferguson, the name of the existing building, contains about 79,000 sq ft of total floor area, including 47,000 sq ft of laboratory space and 32,000 sq ft of general office space. Biotechnology company Stemcell technologies [STEMCELL] Technologies] is the anchor tenant [emphasis mine].

I wonder if this proposed new building will house SolveFSHD and perhaps other FSHD-focused enterprises. The proximity of STEMCELL Technologies could be quite convenient. In any event, $100M will buy a lot (pun intended).

The end

Issues I’ve described here in the context of neural implants/neuroprosthetics and cutting edge medical advances are standard problems not specific to these technologies/treatments:

  • What happens when the technology fails (hopefully not at a critical moment)?
  • What happens when your supplier goes out of business or discontinues the products you purchase from them?
  • How much does it cost?
  • Who can afford the treatment/product? Will it only be for rich people?
  • Will this technology/procedure/etc. exacerbate or create new social tensions between social classes, cultural groups, religious groups, races, etc.?

Of course, having your neural implant fail suddenly in the middle of a New York City subway station seems a substantively different experience than having your car break down on the road.

There are, of course, there are the issues we can’t yet envision (as Wolbring notes) and there are issues such as symbiotic relationships with our implants and/or feeling that you are “above human.” Whether symbiosis and ‘implant/prosthetic superiority’ will affect more than a small number of people or become major issues is still to be determined.

There’s a lot to be optimistic about where new medical research and advances are concerned but I would like to see more thoughtful coverage in the media (e.g., news programmes and documentaries like ‘Augmented’) and more thoughtful comments from medical researchers.

Of course, the biggest issue I’ve raised here is about the current business models for health care products where profit is valued over people’s health and well-being. it’s a big question and I don’t see any definitive answers but the question put me in mind of this quote (from a September 22, 2020 obituary for US Supreme Court Justice Ruth Bader Ginsburg by Irene Monroe for Curve),

Ginsburg’s advocacy for justice was unwavering and showed it, especially with each oral dissent. In another oral dissent, Ginsburg quoted a familiar Martin Luther King Jr. line, adding her coda:” ‘The arc of the universe is long, but it bends toward justice,’” but only “if there is a steadfast commitment to see the task through to completion.” …

Martin Luther King Jr. popularized and paraphrased the quote (from a January 18, 2018 article by Mychal Denzel Smith for Huffington Post),

His use of the quote is best understood by considering his source material. “The arc of the moral universe is long, but it bends toward justice” is King’s clever paraphrasing of a portion of a sermon delivered in 1853 by the abolitionist minister Theodore Parker. Born in Lexington, Massachusetts, in 1810, Parker studied at Harvard Divinity School and eventually became an influential transcendentalist and minister in the Unitarian church. In that sermon, Parker said: “I do not pretend to understand the moral universe. The arc is a long one. My eye reaches but little ways. I cannot calculate the curve and complete the figure by experience of sight. I can divine it by conscience. And from what I see I am sure it bends toward justice.”

I choose to keep faith that people will get the healthcare products they need and that all of us need to keep working at making access more fair.

Council of Canadian Academies (CCA): science policy internship and a new panel on Public Safety in the Digital Age

It’s been a busy week for the Council of Canadian Academies (CCA); I don’t usually get two notices in such close order.

2022 science policy internship

The application deadline is Oct. 18, 2021, you will work remotely, and the stipend for the 2020 internship was $18,500 for six months.

Here’s more from a September 13, 2021 CCA notice (received Sept. 13, 2021 via email),

CCA Accepting Applications for Internship Program

The program provides interns with an opportunity to gain experience working at the interface of science and public policy. Interns will participate in the development of assessments by conducting research in support of CCA’s expert panel process.

The internship program is a full-time commitment of six months and will be a remote opportunity due to the Covid-19 pandemic.

Applicants must be recent graduates with a graduate or professional degree, or post-doctoral fellows, with a strong interest in the use of evidence for policy. The application deadline is October 18, 2021. The start date is January 10, 2022. Applications and letters of reference should be addressed to Anita Melnyk at internship@cca-reports.ca.

More information about the CCA Internship Program and the application process can be found here. [Note: The link takes you to a page with information about a 2020 internship opportunity; presumably, the application requirements have not changed.]

Good luck!

Expert Panel on Public Safety in the Digital Age Announced

I have a few comments (see the ‘Concerns and hopes’ subhead) about this future report but first, here’s the announcement of the expert panel that was convened to look into the matter of public safety (received via email September 15, 2021),

CCA Appoints Expert Panel on Public Safety in the Digital Age

Access to the internet and digital technologies are essential for people, businesses, and governments to carry out everyday activities. But as more and more activities move online, people and organizations are increasingly vulnerable to serious threats and harms that are enabled by constantly evolving technology. At the request of Public Safety Canada, [emphasis mine] the Council of Canadian Academies (CCA) has formed an Expert Panel to examine leading practices that could help address risks to public safety while respecting human rights and privacy. Jennifer Stoddart, O.C., Strategic Advisor, Privacy and Cybersecurity Group, Fasken Martineau DuMoulin [law firm], will serve as Chair of the Expert Panel.

“The ever-evolving nature of crimes and threats that take place online present a huge challenge for governments and law enforcement,” said Ms. Stoddart. “Safeguarding public safety while protecting civil liberties requires a better understanding of the impacts of advances in digital technology and the challenges they create.”

As Chair, Ms. Stoddart will lead a multidisciplinary group with expertise in cybersecurity, social sciences, criminology, law enforcement, and law and governance. The Panel will answer the following question:

Considering the impact that advances in information and communications technologies have had on a global scale, what do current evidence and knowledge suggest regarding promising and leading practices that could be applied in Canada for investigating, preventing, and countering threats to public safety while respecting human rights and privacy?

“This is an important question, the answer to which will have both immediate and far-reaching implications for the safety and well-being of people living in Canada. Jennifer Stoddart and this expert panel are very well-positioned to answer it,” said Eric M. Meslin, PhD, FRSC, FCAHS, President and CEO of the CCA.

More information about the assessment can be found here.

The Expert Panel on Public Safety in the Digital Age:

  • Jennifer Stoddart (Chair), O.C., Strategic Advisor, Privacy and Cybersecurity Group, Fasken Martineau DuMoulin [law firm].
  • Benoît Dupont, Professor, School of Criminology, and Canada Research Chair in Cybersecurity and Research Chair for the Prevention of Cybercrime, Université de Montréal; Scientific Director, Smart Cybersecurity Network (SERENE-RISC). Note: This is one of Canada’s Networks of Centres of Excellence (NCE)
  • Richard Frank, Associate Professor, School of Criminology, Simon Fraser University; Director, International CyberCrime Research Centre International. Note: This is an SFU/ Society for the Policing of Cyberspace (POLCYB) partnership
  • Colin Gavaghan, Director, New Zealand Law Foundation Centre for Law and Policy in Emerging Technologies, Faculty of Law, University of Otago.
  • Laura Huey, Professor, Department of Sociology, Western University; Founder, Canadian Society of Evidence Based Policing [Can-SEPB].
  • Emily Laidlaw, Associate Professor and Canada Research Chair in Cybersecurity Law, Faculty of Law, University of Calgary.
  • Arash Habibi Lashkari, Associate Professor, Faculty of Computer Science, University of New Brunswick; Research Coordinator, Canadian Institute of Cybersecurity [CIC].
  • Christian Leuprecht, Class of 1965 Professor in Leadership, Department of Political Science and Economics, Royal Military College; Director, Institute of Intergovernmental Relations, School of Policy Studies, Queen’s University.
  • Florian Martin-Bariteau, Associate Professor of Law and University Research Chair in Technology and Society, University of Ottawa; Director, Centre for Law, Technology and Society.
  • Shannon Parker, Detective/Constable, Saskatoon Police Service.
  • Christopher Parsons, Senior Research Associate, Citizen Lab, Munk School of Global Affairs & Public Policy, University of Toronto.
  • Jad Saliba, Founder and Chief Technology Officer, Magnet Forensics Inc.
  • Heidi Tworek, Associate Professor, School of Public Policy and Global Affairs, and Department of History, University of British Columbia.

Oddly, there’s no mention that Jennifer Stoddart (Wikipedia entry) was Canada’s sixth privacy commissioner. Also, Fasken Martineau DuMoulin (her employer) changed its name to Fasken in 2017 (Wikipedia entry). The company currently has offices in Canada, UK, South Africa, and China (Firm webpage on company website).

Exactly how did the question get framed?

It’s always informative to look at the summary (from the reports Public Safety in the Digital Age webpage on the CCA website),

Information and communications technologies have profoundly changed almost every aspect of life and business in the last two decades. While the digital revolution has brought about many positive changes, it has also created opportunities for criminal organizations and malicious actors [emphasis mine] to target individuals, businesses, and systems. Ultimately, serious crime facilitated by technology and harmful online activities pose a threat to the safety and well-being of people in Canada and beyond.

Damaging or criminal online activities can be difficult to measure and often go unreported. Law enforcement agencies and other organizations working to address issues such as the sexual exploitation of children, human trafficking, and violent extremism [emphasis mine] must constantly adapt their tools and methods to try and prevent and respond to crimes committed online.

A better understanding of the impacts of these technological advances on public safety and the challenges they create could help to inform approaches to protecting public safety in Canada.

This assessment will examine promising practices that could help to address threats to public safety related to the use of digital technologies while respecting human rights and privacy.

The Sponsor:

Public Safety Canada

The Question:

Considering the impact that advances in information and communications technologies have had on a global scale, what do current evidence and knowledge suggest regarding promising and leading practices that could be applied in Canada for investigating, preventing, and countering threats to public safety while respecting human rights and privacy?

Three things stand out for me. First, public safety, what is it?, second, ‘malicious actors’, and third, the examples used for the issues being addressed (more about this in the Comments subsection, which follows).

What is public safety?

Before launching into any comments, here’s a description for Public Safety Canada (from their About webpage) where you’ll find a hodge podge,

Public Safety Canada was created in 2003 to ensure coordination across all federal departments and agencies responsible for national security and the safety of Canadians.

Our mandate is to keep Canadians safe from a range of risks such as natural disasters, crime and terrorism.

Our mission is to build a safe and resilient Canada.

The Public Safety Portfolio

A cohesive and integrated approach to Canada’s security requires cooperation across government. Together, these agencies have an annual budget of over $9 billion and more than 66,000 employees working in every part of the country.

Public Safety Partner Agencies

The Canada Border Services Agency (CBSA) manages the nation’s borders by enforcing Canadian laws governing trade and travel, as well as international agreements and conventions. CBSA facilitates legitimate cross-border traffic and supports economic development while stopping people and goods that pose a potential threat to Canada.

The Canadian Security Intelligence Service (CSIS) investigates and reports on activities that may pose a threat to the security of Canada. CSIS also provides security assessments, on request, to all federal departments and agencies.

The Correctional Service of Canada (CSC) helps protect society by encouraging offenders to become law-abiding citizens while exercising reasonable, safe, secure and humane control. CSC is responsible for managing offenders sentenced to two years or more in federal correctional institutions and under community supervision.

The Parole Board of Canada (PBC) is an independent body that grants, denies or revokes parole for inmates in federal prisons and provincial inmates in province without their own parole board. The PBC helps protect society by facilitating the timely reintegration of offenders into society as law-abiding citizens.

The Royal Canadian Mounted Police (RCMP) enforces Canadian laws, prevents crime and maintains peace, order and security.

So, Public Safety includes a spy agency (CSIS), the prison system (Correctional Services and Parole Board), and the national police force (RCMP) and law enforcement at the borders with the Canada Border Services Agency (CBSA). None of the partner agencies are dedicated to natural disasters although it’s mentioned in the department’s mandate.

The focus is largely on criminal activity and espionage. On that note, a very senior civilian RCMP intelligence official, Cameron Ortis*, was charged with passing secrets to foreign entities (malicious actors?). (See the September 13, 2021 [updated Sept. 15, 2021] news article by Amanda Connolly, Mercedes Stephenson, Stewart Bell, Sam Cooper & Rachel Browne for CTV news and the Sept. 18, 2019 [updated January 6, 2020] article by Douglas Quan for the National Post for more details.)

There appears to be at least one other major security breach; that involving Canada’s only level four laboratory, the Winnipeg-based National Microbiology Lab (NML). (See a June 10, 2021 article by Karen Pauls for Canadian Broadcasting Corporation news online for more details.)

As far as I’m aware, Ortis is still being held with a trial date scheduled for September 2022 (see Catherine Tunney’s April 9, 2021 article for CBC news online) and, to date, there have been no charges laid in the Winnipeg lab case.

Concerns and hopes

Ordinarily I’d note links and relationships between the various expert panel members but in this case it would be a big surprise if they weren’t linked in some fashion as the focus seems to be heavily focused on cybersecurity (as per the panel member’s bios.), which I imagine is a smallish community in Canada.

As I’ve made clear in the paragraphs leading into the comments, Canada appears to have seriously fumbled the ball where national and international cybersecurity is concerned.

So getting back to “First, public safety, what is it?, second, ‘malicious actors’, and third, the examples used for the issues,” I’m a bit puzzled.

Public safety as best I can tell, is just about anything they’d like it to be. ‘Malicious actors’ is a term I’ve seen used to imply a foreign power is behind the actions being held up for scrutiny.

The examples used for the issues being addressed “sexual exploitation of children, human trafficking, and violent extremism” hint at a focus on crimes that cross borders and criminal organizations, as well as, like-minded individuals organizing violent and extremist acts but not specifically at any national or international security concerns.

On a more mundane note, I’m a little surprised that identity theft wasn’t mentioned as an example.

I’m hopeful there will be some examination of emerging technologies such as quantum communication (specifically, encryption issues) and artificial intelligence. I also hope the report will include a discussion about mistakes and over reliance on technology (for a refresher course on what happens when organizations, such as the Canadian federal government, make mistakes in the digital world; search ‘Phoenix payroll system’, a 2016 made-in-Canada and preventable debacle, which to this day is still being fixed).

In the end, I think the only topic that can be safely excluded from the report is climate change otherwise it’s a pretty open mandate as far as can be told from publicly available information.

I noticed the international panel member is from New Zealand (the international component is almost always from the US, UK, northern Europe, and/or the Commonwealth). Given that New Zealand (as well as being part of the commonwealth) is one of the ‘Five Eyes Intelligence Community’, which includes Canada, Australia, the UK, the US, and, NZ, I was expecting a cybersecurity expert. If Professor Colin Gavaghan does have that expertise, it’s not obvious on his University of Otaga profile page (Note: Links have been removed),

Research interests

Colin is the first director of the New Zealand Law Foundation sponsored Centre for Law and Policy in Emerging Technologies. The Centre examines the legal, ethical and policy issues around new technologies. To date, the Centre has carried out work on biotechnology, nanotechnology, information and communication technologies and artificial intelligence.

In addition to emerging technologies, Colin lectures and writes on medical and criminal law.

Together with colleagues in Computer Science and Philosophy, Colin is the leader of a three-year project exploring the legal, ethical and social implications of artificial intelligence for New Zealand.

Background

Colin regularly advises on matters of technology and regulation. He is first Chair of the NZ Police’s Advisory Panel on Emergent Technologies, and a member of the Digital Council for Aotearoa, which advises the Government on digital technologies. Since 2017, he has been a member (and more recently Deputy Chair) of the Advisory Committee on Assisted Reproductive Technology. He was an expert witness in the High Court case of Seales v Attorney General, and has advised members of parliament on draft legislation.

He is a frustrated writer of science fiction, but compensates with occasional appearances on panels at SF conventions.

I appreciate the sense of humour evident in that last line.

Almost breaking news

Wednesday, September 15, 2021 an announcement of a new alliance in the Indo-Pacific region, the Three Eyes (Australia, UK, and US or AUKUS) was made.

Interestingly all three are part of the Five Eyes intelligence alliance comprised of Australia, Canada, New Zealand, UK, and US. Hmmm … Canada and New Zealand both border the Pacific and last I heard, the UK is still in Europe.

A September 17, 2021 article, “Canada caught off guard by exclusion from security pact” by Robert Fife and Steven Chase for the Globe and Mail (I’m quoting from my paper copy),

The Canadian government was surprised this week by the announcement of a new security pact among the United States, Britain and Australia, one that excluded Canada [and New Zealand too] and is aimed at confronting China’s growing military and political influence in the Indo-Pacific region, according to senior government officials.

Three officials, representing Canada’s Foreign Affairs, Intelligence and Defence departments, told the Globe and Mail that Ottawa was not consulted about the pact, and had no idea the trilateral security announcement was coming until it was made on Wednesday [September 15, 2021] by U.S. President Joe Biden, British Prime Minister Boris Johnson and Australian Prime Minister Scott Morrison.

The new trilateral alliance, dubbed AUKUS, after the initials of the three countries, will allow for greater sharing of information in areas such as artificial intelligence and cyber and underwater defence capabilities.

Fife and Chase have also written a September 17, 2021 Globe and Mail article titled, “Chinese Major-General worked with fired Winnipeg Lab scientist,”

… joint research conducted between Major-General Chen Wei and former Canadian government lab scientist Xiangguo Qiu indicates that co-operation between the Chinese military and scientists at the National Microbiology Laboratory (NML) went much higher than was previously known. The People’s Liberation Army is the military of China’s ruling Communist Party.

Given that no one overseeing the Canadian lab, which is a level 4 and which should have meant high security, seems to have known that Wei was a member of the military and with the Cameron Ortis situation still looming, would you have included Canada in the new pact?

*ETA September 20, 2021: For anyone who’s curious about the Cameron Ortis case, there’s a Fifth Estate documentary (approximately 46 minutes): The Smartest Guy in the Room: Cameron Ortis and the RCMP Secrets Scandal.

Litus, a University of Calgary spin-off company, and its lithium extraction process

This company is very secretive. Other than some information about the technology everything else is a mystery. From an April 28, 2021 news item on mining.com,

Litus announced the launching of LiNC, a patent-pending lithium extraction solution initially developed at the University of Calgary in Alberta, Canada.

In a press release, the company said that the nanotechnology composite material within LiNC has very strong ionic affinity and lithium selectivity in the presence of high concentrations of competing ions such as sodium, magnesium and calcium. 

According to Litus, its technology is able to efficiently and sustainably extract more lithium from brine sources than similar methods.

“Demand for lithium is growing at a rate that current production methods and technologies simply can’t meet. Through the application of LiNC, mining companies have an opportunity to not only increase the reserves and production of their existing assets but should be able to open up new sources of lithium that have been either uneconomic or too environmentally sensitive to be practical with previous extraction technology,” the firm’s statement reads.

There is another company which also extracts lithium from the brine in oil wells; their claim to fame is a ‘greener’ extraction method (see my February 23, 2021 posting about Summit Nanotech, which is also located in Calgary, Alberta.)

Getting back to the mysterious Litus,I found this on the About Us section of their homepage,

The Company was formed in 2019 on research originally conducted at the University of Calgary. 

Litus is passionate about developing and supporting technology products that inspire its customers and partners to create energy solutions that are more abundant, more accessible, cleaner, safer, and more efficient. 

The Company is currently applying its leadership in nanotechnology and chemical processing to help companies produce lithium more efficiently and cleanly than previously possible.

THE TEAM

Litus is led by an exceptional group of professional chemists, nanotechnologists, and chemical process engineers, as well as experienced entrepreneurial business professionals. The team has a proven track record of success with both scientific achievements, and in scaling new technologies to become industrially and commercially successful solutions.

You can check out the company’s LinkedIn profile but it’s not particularly useful. There are apparently nine employees but none are identified and the description of the company’s technology is the same as what can be found on their website’s homepage.

Should you be interested in the ‘lithium extraction from brine’ industry, Gabriel Friedman’s February 9, 2021 article for the Financial Post provides some insight into the competitiveness and volatility of this still niche market.

Entanglement-based quantum network courtesy of Dutch researchers

Belated congratulations to the researchers at the Delft University of Technology! Very exciting news as an April 15, 2021 news item on ScienceDaily makes clear,

A team of researchers from QuTech in the Netherlands reports realization of the first multi-node quantum network, connecting three quantum processors. In addition, they achieved a proof-of-principle demonstration of key quantum network protocols. Their findings mark an important milestone towards the future quantum internet and have now been published in Science.

An April 15, 2021 Delft University of Technology (TU Delft) press release (also on EurekAlert), which originated the news item, describes the breakthrough in more detail, Note: QuTech is the research center for Quantum Computing and Quantum Internet, a collaboration between TU Delft and TNO is Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek (English: Netherlands Organisation for Applied Scientific Research), an independent research organization),

The quantum internet

The power of the Internet is that it allows any two computers on Earth to be connected with each other, enabling applications undreamt of at the time of its creation decades ago. Today, researchers in many labs around the world are working towards first versions of a quantum internet – a network that can connect any two quantum devices, such as quantum computers or sensors, over large distances. Whereas today’s Internet distributes information in bits (that can be either 0 or 1), a future quantum internet will make use of quantum bits that can be 0 and 1 at the same time. ‘A quantum internet will open up a range of novel applications, from unhackable communication and cloud computing with complete user privacy to high-precision time-keeping,’ says Matteo Pompili, PhD student and a member of the research team. ‘And like with the Internet 40 years ago, there are probably many applications we cannot foresee right now.’

Towards ubiquitous connectivity

The first steps towards a quantum internet were taken in the past decade by linking two quantum devices that shared a direct physical link. However, being able to pass on quantum information through intermediate nodes (analogous to routers in the classical internet) is essential for creating a scalable quantum network. In addition, many promising quantum internet applications rely on entangled quantum bits, to be distributed between multiple nodes. Entanglement is a phenomenon observed at the quantum scale, fundamentally connecting particles at small and even at large distances. It provides quantum computers their enormous computational power and it is the fundamental resource for sharing quantum information over the future quantum internet. By realizing their quantum network in the lab, a team of researchers at QuTech – a collaboration between Delft University of Technology and TNO – is the first to have connected two quantum processors through an intermediate node and to have established shared entanglement between multiple stand-alone quantum processors.

Operating the quantum network

The rudimentary quantum network consists of three quantum nodes, at some distance within the same building. To make these nodes operate as a true network, the researchers had to invent a novel architecture that enables scaling beyond a single link. The middle node (called Bob) has a physical connection to both outer nodes (called Alice and Charlie), allowing entanglement links with each of these nodes to be established. Bob is equipped with an additional quantum bit that can be used as memory, allowing a previously generated quantum link to be stored while a new link is being established. After establishing the quantum links Alice-Bob and Bob-Charlie, a set of quantum operations at Bob converts these links into a quantum link Alice-Charlie. Alternatively, by performing a different set of quantum operations at Bob, entanglement between all three nodes is established.

Ready for subsequent use

An important feature of the network is that it announces the successful completion of these (intrinsically probabilistic) protocols with a “flag” signal. Such heralding is crucial for scalability, as in a future quantum internet many of such protocols will need to be concatenated. ‘Once established, we were able to preserve the resulting entangled states, protecting them from noise,’ says Sophie Hermans, another member of the team. ‘It means that, in principle, we can use these states for quantum key distribution, a quantum computation or any other subsequent quantum protocol.’

Quantum Internet Demonstrator

This first entanglement-based quantum network provides the researchers with a unique testbed for developing and testing quantum internet hardware, software and protocols. ‘The future quantum internet will consist of countless quantum devices and intermediate nodes,’ says Ronald Hanson, who led the research team. ‘Colleagues at QuTech are already looking into future compatibility with existing data infrastructures.’ In due time, the current proof-of-principle approach will be tested outside the lab on existing telecom fibre – on QuTech’s Quantum Internet Demonstrator, of which the first metropolitan link is scheduled to be completed in 2022.

Higher-level layers

In the lab, the researchers will focus on adding more quantum bits to their three-node network and on adding higher level software and hardware layers. Pompili: ‘Once all the high-level control and interface layers for running the network have been developed, anybody will be able to write and run a network application without needing to understand how lasers and cryostats work. That is the end goal.’

This news has likely lit some competitive fires in the research community. I think this is the first time I’ve featured news about the quantum internet since 2016 when, as it turns out, it was research from the University of Calgary that piqued my interest. See Teleporting photons in Calgary (Canada) is a step towards a quantum internet (a September 21, 2016 posting).

Here’s a link to and a citation for this latest work

Realization of a multinode quantum network of remote solid-state qubits by M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers, P. C. Humphreys, R. N. Schouten, R. F. L. Vermeulen, M. J. Tiggelman, L. dos Santos Martins, B. Dirkse, S. Wehner, R. Hanson. Science 16 Apr 2021: Vol. 372, Issue 6539, pp. 259-264 DOI: 10.1126/science.abg1919

This paper is behind a paywall.

There is a video which introduces the concept of a quantum internet,

“Wolves, Livestock, and the Physical and Social Environments,” an April 14, 2021 event in celebration of Italian Research in the World Day

ARPICO (Society of Italian Researchers & Professionals in Western Canada) is presenting a pre-celebration event to honour Italian Research in the World Day (April 15, 2021). Take special note: the event is being held the day before.

Before launching into the announcement, bravo to the organizers! ARPICO consistently offers the most comprehensive details about their events of any group that contacts me. One more thing, to date, they are the only group that have described which technology they’re using for the webcast and explicitly address any concerns about downloading software (you don’t have to) or about personal information. (Check out Technical Instruction here.)

Here are the details from ARPICO’s April 4, 2021 announcement (received via email),

We hope everyone is doing well and being safe while we attempt to outlast this pandemic. In the meanwhile, from the comfort of our homes, we hope to be able to continue to share with you informative lectures to entertain and stimulate thought.

It is our pleasure, in collaboration with the Consulate General of Italy in Vancouver, to announce that ARPICO’s next public event will be held on April 14th, 2021 at 7:00 PM, in celebration of Italian Research in the World Day. Italian Research in the World Day was instituted starting in 2018 as part of the Piano Straordinario “Vivere all’Italiana” – Giornata della ricerca Italiana nel mondo. The celebration day was chosen by government decree to be every year on April 15 on the anniversary of the birth of Leonardo da Vinci.

The main objective of the Italian Research Day in the World is to value the quality and competencies of Italian researchers abroad, but also to promote concrete actions and investments to allow Italian researchers to continue pursuing their careers in their homeland. Italy wishes to enable Italian talents to return from abroad as well as to become an attractive environment for foreign researchers.

This year we are pleased to have Professor Marco Musiani, an academic in biological sciences, share with us a lecture titled “Wolves, Livestock, and the Physical and Social Environments.” An abstract and short professional biography are provided below.

We have chosen BlueJeans as the videoconferencing platform, for which you will only require a web browser (Chrome, Firefox, Edge, Safari, Opera are all supported). Full detailed instructions on how the virtual event will unfold are available on the EventBrite listing here in the Technical Instruction section.

If participants wish to donate to ARPICO, this can be done within EventBrite; this would be greatly appreciated in order to help us continue to build upon our scholarship fund, and to defray the cost of the videoconferencing license.

We look forward to seeing everyone there.

The evening agenda is as follows:

  • 6:45PM – BlueJeans Presentation link becomes active and registrants may join.
    • If you experience any technical details please email us at info@arpico.ca and we will attempt to assist you as best we can.
  • 7:00pm – Start of the evening Event with introductions & lecture by Prof. Marco Musiani
  • ~8:00 pm – Q & A Period via BlueJeans Chat Interface

If you have not already done so, please register for the event by visiting the EventBrite link or RSVPing to info@arpico.ca.

Further details are also available at arpico.ca and Eventbrite.

Wolves, Livestock, and the Physical and Social Environments

Due primarily to wolf predation on livestock (depredation), some groups oppose wolf (Canis lupus) conservation, which is an objective for large sectors of the public. Prof. Musiani’s talk will compare wolf depredation of sheep in Southern Europe to wolf depredation of beef cattle in the US and Canada, taking into account the differences in social and economic contexts. It will detail where and when wolf attacks happen, and what environmental factors promote such attacks. Livestock depredation by wolves is a cost of wolf conservation borne by livestock producers, which creates conflict between producers, wolves and organizations involved in wolf conservation and management. Compensation is the main tool used to mitigate the costs of depredation, but this tool may be limited at improving tolerance for wolves. In poorer countries compensation funds might not be available. Other lethal and nonlethal tools used to manage the problem will also be analysed. Wolf depredation may be a small economic cost to the industry, although it may be a significant cost to affected producers as these costs are not equitably distributed across the industry. Prof. Musiani maintains that conservation groups should consider the potential consequences of all of these ecological and economic trends. Specifically, declining sheep or cattle price and the steady increase in land price might induce conversion of agricultural land to rural-residential developments, which could negatively impact the whole environment via large scale habitat change and increased human presence.

Marco Musiani is a Professor in the Dept. of Biological Sciences, Faculty of Science, University of Calgary. He also has a Joint Appointment with the Faculty of Veterinary Medicine in Calgary. His lab has a strong focus on landscape ecology, molecular ecology, and wildlife conservation.

Marco is Principal Investigator on projects on caribou, elk, moose, wolves, grizzlies and other wildlife species throughout the Rocky Mountains and Foothills regions of Canada. All such projects are run together with graduate students and have applications towards impact assessment, mainly of human infrastructure.

His focus is on academic matters. However, he also serves as reviewer for research and management projects, and acted as a consultant for the Food and Agriculture Organisation of the United Nations (working on conflicts with wolves).

WHEN (EVENT): Wed, April 14th, 2021 at 7:00PM (BlueJeans link active at 6:45PM)

WHERE: Online using the BlueJeans Conferencing platform.

RSVP: Please register for tickets at EventBrite

Tickets are Needed

Tickets for this event are FREE. Due to limited seating at the venue, we ask that each household register once and watch the presentation together on a single device.       You will receive the event videoconferencing invite link via email in your registration confirmation.

FAQs

  • Where can I contact the organizer with any questions? info@arpico.ca
  • Can I update my registration information? Yes. If you have any questions, contact us at info@arpico.ca
  • I am having trouble using EventBrite and cannot reserve my ticket(s). Can someone at ARPICO help me with my ticket reservation? Of course, simply send your ticket request to us at info@arpico.ca so we help you.

You can find the programme announcement on this ARPICO event page.

Turning brain-controlled wireless electronic prostheses into reality plus some ethical points

Researchers at Stanford University (California, US) believe they have a solution for a problem with neuroprosthetics (Note: I have included brief comments about neuroprosthetics and possible ethical issues at the end of this posting) according an August 5, 2020 news item on ScienceDaily,

The current generation of neural implants record enormous amounts of neural activity, then transmit these brain signals through wires to a computer. But, so far, when researchers have tried to create wireless brain-computer interfaces to do this, it took so much power to transmit the data that the implants generated too much heat to be safe for the patient. A new study suggests how to solve his problem — and thus cut the wires.

Caption: Photo of a current neural implant, that uses wires to transmit information and receive power. New research suggests how to one day cut the wires. Credit: Sergey Stavisky

An August 3, 2020 Stanford University news release (also on EurekAlert but published August 4, 2020) by Tom Abate, which originated the news item, details the problem and the proposed solution,

Stanford researchers have been working for years to advance a technology that could one day help people with paralysis regain use of their limbs, and enable amputees to use their thoughts to control prostheses and interact with computers.

The team has been focusing on improving a brain-computer interface, a device implanted beneath the skull on the surface of a patient’s brain. This implant connects the human nervous system to an electronic device that might, for instance, help restore some motor control to a person with a spinal cord injury, or someone with a neurological condition like amyotrophic lateral sclerosis, also called Lou Gehrig’s disease.

The current generation of these devices record enormous amounts of neural activity, then transmit these brain signals through wires to a computer. But when researchers have tried to create wireless brain-computer interfaces to do this, it took so much power to transmit the data that the devices would generate too much heat to be safe for the patient.

Now, a team led by electrical engineers and neuroscientists Krishna Shenoy, PhD, and Boris Murmann, PhD, and neurosurgeon and neuroscientist Jaimie Henderson, MD, have shown how it would be possible to create a wireless device, capable of gathering and transmitting accurate neural signals, but using a tenth of the power required by current wire-enabled systems. These wireless devices would look more natural than the wired models and give patients freer range of motion.

Graduate student Nir Even-Chen and postdoctoral fellow Dante Muratore, PhD, describe the team’s approach in a Nature Biomedical Engineering paper.

The team’s neuroscientists identified the specific neural signals needed to control a prosthetic device, such as a robotic arm or a computer cursor. The team’s electrical engineers then designed the circuitry that would enable a future, wireless brain-computer interface to process and transmit these these carefully identified and isolated signals, using less power and thus making it safe to implant the device on the surface of the brain.

To test their idea, the researchers collected neuronal data from three nonhuman primates and one human participant in a (BrainGate) clinical trial.

As the subjects performed movement tasks, such as positioning a cursor on a computer screen, the researchers took measurements. The findings validated their hypothesis that a wireless interface could accurately control an individual’s motion by recording a subset of action-specific brain signals, rather than acting like the wired device and collecting brain signals in bulk.

The next step will be to build an implant based on this new approach and proceed through a series of tests toward the ultimate goal.

Here’s a link to and a citation for the paper,

Power-saving design opportunities for wireless intracortical brain–computer interfaces by Nir Even-Chen, Dante G. Muratore, Sergey D. Stavisky, Leigh R. Hochberg, Jaimie M. Henderson, Boris Murmann & Krishna V. Shenoy. Nature Biomedical Engineering (2020) DOI: https://doi.org/10.1038/s41551-020-0595-9 Published: 03 August 2020

This paper is behind a paywall.

Comments about ethical issues

As I found out while investigating, ethical issues in this area abound. My first thought was to look at how someone with a focus on ability studies might view the complexities.

My ‘go to’ resource for human enhancement and ethical issues is Gregor Wolbring, an associate professor at the University of Calgary (Alberta, Canada). his profile lists these areas of interest: ability studies, disability studies, governance of emerging and existing sciences and technologies (e.g. neuromorphic engineering, genetics, synthetic biology, robotics, artificial intelligence, automatization, brain machine interfaces, sensors) and more.

I can’t find anything more recent on this particular topic but I did find an August 10, 2017 essay for The Conversation where he comments on technology and human enhancement ethical issues where the technology is gene-editing. Regardless, he makes points that are applicable to brain-computer interfaces (human enhancement), Note: Links have been removed),

Ability expectations have been and still are used to disable, or disempower, many people, not only people seen as impaired. They’ve been used to disable or marginalize women (men making the argument that rationality is an important ability and women don’t have it). They also have been used to disable and disempower certain ethnic groups (one ethnic group argues they’re smarter than another ethnic group) and others.

A recent Pew Research survey on human enhancement revealed that an increase in the ability to be productive at work was seen as a positive. What does such ability expectation mean for the “us” in an era of scientific advancements in gene-editing, human enhancement and robotics?

Which abilities are seen as more important than others?

The ability expectations among “us” will determine how gene-editing and other scientific advances will be used.

And so how we govern ability expectations, and who influences that governance, will shape the future. Therefore, it’s essential that ability governance and ability literacy play a major role in shaping all advancements in science and technology.

One of the reasons I find Gregor’s commentary so valuable is that he writes lucidly about ability and disability as concepts and poses what can be provocative questions about expectations and what it is to be truly abled or disabled. You can find more of his writing here on his eponymous (more or less) blog.

Ethics of clinical trials for testing brain implants

This October 31, 2017 article by Emily Underwood for Science was revelatory,

In 2003, neurologist Helen Mayberg of Emory University in Atlanta began to test a bold, experimental treatment for people with severe depression, which involved implanting metal electrodes deep in the brain in a region called area 25 [emphases mine]. The initial data were promising; eventually, they convinced a device company, St. Jude Medical in Saint Paul, to sponsor a 200-person clinical trial dubbed BROADEN.

This month [October 2017], however, Lancet Psychiatry reported the first published data on the trial’s failure. The study stopped recruiting participants in 2012, after a 6-month study in 90 people failed to show statistically significant improvements between those receiving active stimulation and a control group, in which the device was implanted but switched off.

… a tricky dilemma for companies and research teams involved in deep brain stimulation (DBS) research: If trial participants want to keep their implants [emphases mine], who will take responsibility—and pay—for their ongoing care? And participants in last week’s meeting said it underscores the need for the growing corps of DBS researchers to think long-term about their planned studies.

… participants bear financial responsibility for maintaining the device should they choose to keep it, and for any additional surgeries that might be needed in the future, Mayberg says. “The big issue becomes cost [emphasis mine],” she says. “We transition from having grants and device donations” covering costs, to patients being responsible. And although the participants agreed to those conditions before enrolling in the trial, Mayberg says she considers it a “moral responsibility” to advocate for lower costs for her patients, even it if means “begging for charity payments” from hospitals. And she worries about what will happen to trial participants if she is no longer around to advocate for them. “What happens if I retire, or get hit by a bus?” she asks.

There’s another uncomfortable possibility: that the hypothesis was wrong [emphases mine] to begin with. A large body of evidence from many different labs supports the idea that area 25 is “key to successful antidepressant response,” Mayberg says. But “it may be too simple-minded” to think that zapping a single brain node and its connections can effectively treat a disease as complex as depression, Krakauer [John Krakauer, a neuroscientist at Johns Hopkins University in Baltimore, Maryland] says. Figuring that out will likely require more preclinical research in people—a daunting prospect that raises additional ethical dilemmas, Krakauer says. “The hardest thing about being a clinical researcher,” he says, “is knowing when to jump.”

Brain-computer interfaces, symbiosis, and ethical issues

This was the most recent and most directly applicable work that I could find. From a July 24, 2019 article by Liam Drew for Nature Outlook: The brain,

“It becomes part of you,” Patient 6 said, describing the technology that enabled her, after 45 years of severe epilepsy, to halt her disabling seizures. Electrodes had been implanted on the surface of her brain that would send a signal to a hand-held device when they detected signs of impending epileptic activity. On hearing a warning from the device, Patient 6 knew to take a dose of medication to halt the coming seizure.

“You grow gradually into it and get used to it, so it then becomes a part of every day,” she told Frederic Gilbert, an ethicist who studies brain–computer interfaces (BCIs) at the University of Tasmania in Hobart, Australia. “It became me,” she said. [emphasis mine]

Gilbert was interviewing six people who had participated in the first clinical trial of a predictive BCI to help understand how living with a computer that monitors brain activity directly affects individuals psychologically1. Patient 6’s experience was extreme: Gilbert describes her relationship with her BCI as a “radical symbiosis”.

Symbiosis is a term, borrowed from ecology, that means an intimate co-existence of two species for mutual advantage. As technologists work towards directly connecting the human brain to computers, it is increasingly being used to describe humans’ potential relationship with artificial intelligence.

Interface technologies are divided into those that ‘read’ the brain to record brain activity and decode its meaning, and those that ‘write’ to the brain to manipulate activity in specific regions and affect their function.

Commercial research is opaque, but scientists at social-media platform Facebook are known to be pursuing brain-reading techniques for use in headsets that would convert users’ brain activity into text. And neurotechnology companies such as Kernel in Los Angeles, California, and Neuralink, founded by Elon Musk in San Francisco, California, predict bidirectional coupling in which computers respond to people’s brain activity and insert information into their neural circuitry. [emphasis mine]

Already, it is clear that melding digital technologies with human brains can have provocative effects, not least on people’s agency — their ability to act freely and according to their own choices. Although neuroethicists’ priority is to optimize medical practice, their observations also shape the debate about the development of commercial neurotechnologies.

Neuroethicists began to note the complex nature of the therapy’s side effects. “Some effects that might be described as personality changes are more problematic than others,” says Maslen [Hannah Maslen, a neuroethicist at the University of Oxford, UK]. A crucial question is whether the person who is undergoing stimulation can reflect on how they have changed. Gilbert, for instance, describes a DBS patient who started to gamble compulsively, blowing his family’s savings and seeming not to care. He could only understand how problematic his behaviour was when the stimulation was turned off.

Such cases present serious questions about how the technology might affect a person’s ability to give consent to be treated, or for treatment to continue. [emphases mine] If the person who is undergoing DBS is happy to continue, should a concerned family member or doctor be able to overrule them? If someone other than the patient can terminate treatment against the patient’s wishes, it implies that the technology degrades people’s ability to make decisions for themselves. It suggests that if a person thinks in a certain way only when an electrical current alters their brain activity, then those thoughts do not reflect an authentic self.

To observe a person with tetraplegia bringing a drink to their mouth using a BCI-controlled robotic arm is spectacular. [emphasis mine] This rapidly advancing technology works by implanting an array of electrodes either on or in a person’s motor cortex — a brain region involved in planning and executing movements. The activity of the brain is recorded while the individual engages in cognitive tasks, such as imagining that they are moving their hand, and these recordings are used to command the robotic limb.

If neuroscientists could unambiguously discern a person’s intentions from the chattering electrical activity that they record in the brain, and then see that it matched the robotic arm’s actions, ethical concerns would be minimized. But this is not the case. The neural correlates of psychological phenomena are inexact and poorly understood, which means that signals from the brain are increasingly being processed by artificial intelligence (AI) software before reaching prostheses.[emphasis mine]

But, he [Philipp Kellmeyer, a neurologist and neuroethicist at the University of Freiburg, Germany] says, using AI tools also introduces ethical issues of which regulators have little experience. [emphasis mine] Machine-learning software learns to analyse data by generating algorithms that cannot be predicted and that are difficult, or impossible, to comprehend. This introduces an unknown and perhaps unaccountable process between a person’s thoughts and the technology that is acting on their behalf.

Maslen is already helping to shape BCI-device regulation. She is in discussion with the European Commission about regulations it will implement in 2020 that cover non-invasive brain-modulating devices that are sold straight to consumers. [emphases mine; Note: There is a Canadian company selling this type of product, MUSE] Maslen became interested in the safety of these devices, which were covered by only cursory safety regulations. Although such devices are simple, they pass electrical currents through people’s scalps to modulate brain activity. Maslen found reports of them causing burns, headaches and visual disturbances. She also says clinical studies have shown that, although non-invasive electrical stimulation of the brain can enhance certain cognitive abilities, this can come at the cost of deficits in other aspects of cognition.

Regarding my note about MUSE, the company is InteraXon and its product is MUSE.They advertise the product as “Brain Sensing Headbands That Improve Your Meditation Practice.” The company website and the product seem to be one entity, Choose Muse. The company’s product has been used in some serious research papers they can be found here. I did not see any research papers concerning safety issues.

Getting back to Drew’s July 24, 2019 article and Patient 6,

… He [Gilbert] is now preparing a follow-up report on Patient 6. The company that implanted the device in her brain to help free her from seizures went bankrupt. The device had to be removed.

… Patient 6 cried as she told Gilbert about losing the device. … “I lost myself,” she said.

“It was more than a device,” Gilbert says. “The company owned the existence of this new person.”

I strongly recommend reading Drew’s July 24, 2019 article in its entirety.

Finally

It’s easy to forget that in all the excitement over technologies ‘making our lives better’ that there can be a dark side or two. Some of the points brought forth in the articles by Wolbring, Underwood, and Drew confirmed my uneasiness as reasonable and gave me some specific examples of how these technologies raise new issues or old issues in new ways.

What I find interesting is that no one is using the term ‘cyborg’, which would seem quite applicable.There is an April 20, 2012 posting here titled ‘My mother is a cyborg‘ where I noted that by at lease one definition people with joint replacements, pacemakers, etc. are considered cyborgs. In short, cyborgs or technology integrated into bodies have been amongst us for quite some time.

Interestingly, no one seems to care much when insects are turned into cyborgs (can’t remember who pointed this out) but it is a popular area of research especially for military applications and search and rescue applications.

I’ve sometimes used the term ‘machine/flesh’ and or ‘augmentation’ as a description of technologies integrated with bodies, human or otherwise. You can find lots on the topic here however I’ve tagged or categorized it.

Amongst other pieces you can find here, there’s the August 8, 2016 posting, ‘Technology, athletics, and the ‘new’ human‘ featuring Oscar Pistorius when he was still best known as the ‘blade runner’ and a remarkably successful paralympic athlete. It’s about his efforts to compete against able-bodied athletes at the London Olympic Games in 2012. It is fascinating to read about technology and elite athletes of any kind as they are often the first to try out ‘enhancements’.

Gregor Wolbring has a number of essays on The Conversation looking at Paralympic athletes and their pursuit of enhancements and how all of this is affecting our notions of abilities and disabilities. By extension, one has to assume that ‘abled’ athletes are also affected with the trickle-down effect on the rest of us.

Regardless of where we start the investigation, there is a sameness to the participants in neuroethics discussions with a few experts and commercial interests deciding on how the rest of us (however you define ‘us’ as per Gregor Wolbring’s essay) will live.

This paucity of perspectives is something I was getting at in my COVID-19 editorial for the Canadian Science Policy Centre. My thesis being that we need a range of ideas and insights that cannot be culled from small groups of people who’ve trained and read the same materials or entrepreneurs who too often seem to put profit over thoughtful implementations of new technologies. (See the PDF May 2020 edition [you’ll find me under Policy Development]) or see my May 15, 2020 posting here (with all the sources listed.)

As for this new research at Stanford, it’s exciting news, which raises questions, as it offers the hope of independent movement for people diagnosed as tetraplegic (sometimes known as quadriplegic.)