Tag Archives: University of Cambridge

Metallic nanoparticles: measuring their discrete quantum states

I tend to forget how new nanotechnology is and unconsciously take for granted stunning feats such as measuring a metallic nanoparticle’s electronic properties. A June 15, 2015 news item on Nanowerk provides a reminder with its description of the difficulties and a new technique to make it easier (Note:  A link has been removed),

How do you measure the electronic properties of individual nanoparticles or molecules that are only a few nanometers in size? Conventional methods using electron transport spectroscopy rely on contacting a material with two contacts, a source and a drain electrode. By applying a small potential difference over the electrodes and monitoring the resulting current, valuable information about the electronic properties are extracted. For example if a material is metallic or semiconducting.
But this becomes quite a challenge if the material is only a few nm in size. Even the most sophisticated fabrication tools such as electron-beam lithography have a resolution of about 10 nm at best, which is not precise enough. Scientists have developed workarounds such as creating small gaps in narrow metallic wires in which a nanoparticle can be trapped if it matches the gap size. However, even though there have been some notable successes using this approach, this method has a low yield and is not very reproducible.

Now an international collaboration including researchers in Japan, the university [sic] of Cambridge and the LCN [London Centre for Nanotechnology] in the UK have approached this in a different way as described in a paper in Nature’s Scientific Reports (“Radio-frequency capacitance spectroscopy of metallic nanoparticles”). Their method only requires a single electrode to be in direct contact with a nanoparticle or molecule, thus significantly simplifying fabrication.

A June 15, 2015 (?) LCN press release, which originated the news item, describes the achievement,

The researchers demonstrated the potential of the radio-frequency reflectometry technique by measurements on Au nanoparticles of only 2.7 nm in diameter. For such small particles, the electronic spectrum is discrete which was indeed observed in the measurements and in very good agreement with theoretical models. The researchers now plan to extend these measurements to other nanoparticles and molecules with applications in a range of areas such as biomedicine, spintronics and quantum information processing.

Here’s a link to and a citation for the paper,

Radio-frequency capacitance spectroscopy of metallic nanoparticles by James C. Frake, Shinya Kano, Chiara Ciccarelli, Jonathan Griffiths, Masanori Sakamoto,  Toshiharu Teranishi, Yutaka Majima, Charles G. Smith & Mark R. Buitelaar. Scientific RepoRts 5:10858 DOi: 10.1038/srep10858 Published June 4, 2015

This is an open access paper.

April 2015 (US) National Math festival; inside story on math tournaments; US tv programme: The Great Math Mystery; and the SET Award (tech women in the movies and on tv)

I have three math items for this posting and one women in technology item, here they are in an almost date order.

X+Y

A British movie titled X+Y provides a fictionalized view of a team member on the British squad competing in an International Mathematics Olympiad.The Guardian’s science blog network hosted a March 11, 2015 review by Adam P. Goucher who also provides an insider’s view (Note: Links have been removed),

As a competition it is brutal and intense.

I speak from experience; I was in the UK team in 2011.

So it was with great expectation that I went to see X+Y, a star-studded British film about the travails of a British IMO hopeful who is struggling against the challenges of romance, Asperger’s and really tough maths.

Obviously, there were a few oversimplifications and departures from reality necessary for a coherent storyline. There were other problems too, but we’ll get to them later.

In order to get chosen for the UK IMO team, you must sit the first round test of the British Mathematical Olympiad (BMO1). About 1200 candidates take this test around the country.

I sat BMO1 on a cold December day at my sixth form, Netherthorpe School in Chesterfield. Apart from the invigilator and me, the room was completely empty, although the surroundings became irrelevant as soon as I was captivated by the problems. The test comprises six questions over the course of three and a half hours. As is the case with all Olympiad problems, there are often many distinct ways to solve them, and correct complete solutions are maximally rewarded irrespective of the elegance or complexity of the proof.

The highest twenty scorers are invited to another training camp at Trinity College, Cambridge, and the top six are selected to represent the UK at an annual competition in Romania.

In Romania, there was much maths, but we also enjoyed a snowball fight against the Italian delegation and sampled the delights of Romanian rum-endowed chocolate. Since I was teetotal at this point in time, the rum content was sufficient to alter my perception in such a way that I decided to attack a problem using Cartesian coordinates (considered by many to be barbaric and masochistic). Luckily my recklessness paid off, enabling me to scrape a much-coveted gold medal by the narrowest of margins.

The connection between the UK and Eastern Europe is rather complicated to explain, being intimately entangled with the history of the IMO. The inaugural Olympiad was held in Romania in 1959, with the competition being only open to countries under the Soviet bloc. A Hungarian mathematician, Béla Bollobás, competed in the first three Olympiads, seizing a perfect score on the third. After his PhD, Bollobás moved to Trinity College, Cambridge, to continue his research, where he fertilised Cambridge with his contributions in probabilistic and extremal combinatorics (becoming a Fellow of the Royal Society in the process). Consequently, there is a close relationship between Hungarian and Cantabrigian mathematics.

Rafe Spall’s character was very convincing, and his eccentricities injected some much-needed humour into the film. Similarly, Asa Butterfield’s portrayal of a “typical mathmo” was realistic. On the other hand, certain characters such as Richard (the team leader) were unnatural and exaggerated. In particular, I was disappointed that all of the competitors were portrayed as being borderline-autistic, when in reality there is a much more diverse mixture of individuals.

X+Y is also a love story, and one based on a true story covered in Morgan Matthews’ earlier work, the documentary Beautiful Young Minds. This followed the 2006 IMO, in China, where one of the members of the UK team fell in love and married the receptionist of the hotel the team were staying at. They have since separated, although his enamourment with China persisted – he switched from studying Mathematics to Chinese Studies.

It is common for relationships to develop during maths Olympiads. Indeed after a member of our team enjoyed a ménage-a-trois at an IMO in the 1980s, the committee increased the security and prohibited boys and girls from entering each others’ rooms.

The film was given a general release March 13, 2015 in the UK and is on the festival circuit elsewhere. Whether or not you can get to see the film, I recommend Goucher’s engaging review/memoir.

The Great Math Mystery and the SET award for the Portrayal of a Female in Technology

David Bruggeman in a March 13, 2015 post on his Pasco Phronesis blog describes the upcoming première of a maths installment in the NOVA series presented on the US PBS (Public Broadcasting Service), Note: Links have been removed,

… PBS has announced a new math special.  Mario Livio will host a NOVA special called The Great Math Mystery, premiering April 15.  Livio is an astrophysicist, science and math writer, and fan of science/culture mashups.  The mystery of the title is whether math(s) is invented or was discovered.

You can find out more about The Great Math Mystery here.

David also mentions this,

The Entertainment Industries Council is seeking votes for its first SET Award for Portrayal of a Female in Technology. … Voting on the award is via a Google form, so you will need a Google account to participate.  The nominees appear to be most of the women playing characters with technical jobs in television programs or recent films.  They are:

  • Annedroids on Amazon
  • Arrow: “Felicity Smoak” played by Emily Bett Rickards
  • Bones: “Angela Montenegro” played by Michaela Conlin

Here’s a video describing the competition and the competitors,

More details about the competition are available in David’s March 13, 2015 post or here or here. The deadline for voting is April 6, 2015. Here’s one more link, this one’s to the SET Awards website.

(US) National Math Festival

H/t to David Bruggeman again. This time it’s a Feb. 6, 2015 post on his Pasco Phronesis blog which announces (Note: Links have been removed),

On April 18 [2015], the Smithsonian Institution will host the first National Math Festival in Washington, D.C.  It will be the culmination of a weekend of events in the city to recognize outstanding math research, educators and books.

On April 16 there will be a morning breakfast briefing on Capitol Hill to discuss mathematics education.  It will be followed by a policy seminar in the Library of Congress and an evening gala to support basic research in mathematics and science.

You can find out more about the 2015 National Math Festival here (from the homepage),

On Saturday, April 18th, experience mathematics like never before, when the first-of-its-kind National Math Festival comes to Washington, D.C. As the country’s first national festival dedicated to discovering the delight and power of mathematics, this free and public celebration will feature dozens of activities for every age—from hands-on magic and Houdini-like getaways to lectures with some of the most influential mathematicians of our time.

The National Math Festival is organized by the Mathematical Sciences Research Institute (MSRI) and the Institute for Advanced Study (IAS) in cooperation with the Smithsonian Institution.

There you have it.

A 2nd European roadmap for graphene

About 2.5 years ago there was an article titled, “A roadmap for graphene” (behind a paywall) which Nature magazine published online in Oct. 2012. I see at least two of the 2012 authors, Konstantin (Kostya) Novoselov and Vladimir Fal’ko,, are party to this second, more comprehensive roadmap featured in a Feb. 24, 2015 news item on Nanowerk,

In October 2013, academia and industry came together to form the Graphene Flagship. Now with 142 partners in 23 countries, and a growing number of associate members, the Graphene Flagship was established following a call from the European Commission to address big science and technology challenges of the day through long-term, multidisciplinary R&D efforts.

A Feb.  24, 2015 University of Cambridge news release, which originated the news item, describes the roadmap in more detail,

In an open-access paper published in the Royal Society of Chemistry journal Nanoscale, more than 60 academics and industrialists lay out a science and technology roadmap for graphene, related two-dimensional crystals, other 2D materials, and hybrid systems based on a combination of different 2D crystals and other nanomaterials. The roadmap covers the next ten years and beyond, and its objective is to guide the research community and industry toward the development of products based on graphene and related materials.

The roadmap highlights three broad areas of activity. The first task is to identify new layered materials, assess their potential, and develop reliable, reproducible and safe means of producing them on an industrial scale. Identification of new device concepts enabled by 2D materials is also called for, along with the development of component technologies. The ultimate goal is to integrate components and structures based on 2D materials into systems capable of providing new functionalities and application areas.

Eleven science and technology themes are identified in the roadmap. These are: fundamental science, health and environment, production, electronic devices, spintronics, photonics and optoelectronics, sensors, flexible electronics, energy conversion and storage, composite materials, and biomedical devices. The roadmap addresses each of these areas in turn, with timelines.

Research areas outlined in the roadmap correspond broadly with current flagship work packages, with the addition of a work package devoted to the growing area of biomedical applications, to be included in the next phase of the flagship. A recent independent assessment has confirmed that the Graphene Flagship is firmly on course, with hundreds of research papers, numerous patents and marketable products to its name.

Roadmap timelines predict that, before the end of the ten-year period of the flagship, products will be close to market in the areas of flexible electronics, composites, and energy, as well as advanced prototypes of silicon-integrated photonic devices, sensors, high-speed electronics, and biomedical devices.

“This publication concludes a four-year effort to collect and coordinate state-of-the-art science and technology of graphene and related materials,” says Andrea Ferrari, director of the Cambridge Graphene Centre, and chairman of the Executive Board of the Graphene Flagship. “We hope that this open-access roadmap will serve as the starting point for academia and industry in their efforts to take layered materials and composites from laboratory to market.” Ferrari led the roadmap effort with Italian Institute of Technology physicist Francesco Bonaccorso, who is a Royal Society Newton Fellow of the University of Cambridge, and a Fellow of Hughes Hall.

“We are very proud of the joint effort of the many authors who have produced this roadmap,” says Jari Kinaret, director of the Graphene Flagship. “The roadmap forms a solid foundation for the graphene community in Europe to plan its activities for the coming years. It is not a static document, but will evolve to reflect progress in the field, and new applications identified and pursued by industry.”

I have skimmed through the report briefly (wish I had more time) and have a couple of comments. First, there’s an excellent glossary of terms for anyone who might stumble over chemical abbreviations and/or more technical terminology. Second, they present a very interesting analysis of the intellectual property (patents) landscape (Note: Links have been removed. Incidental numbers are footnote references),

In the graphene area, there has been a particularly rapid increase in patent activity from around 2007.45 Much of this is driven by patent applications made by major corporations and universities in South Korea and USA.53 Additionally, a high level of graphene patent activity in China is also observed.54 These features have led some commentators to conclude that graphene innovations arising in Europe are being mainly exploited elsewhere.55 Nonetheless, an analysis of the Intellectual Property (IP) provides evidence that Europe already has a significant foothold in the graphene patent landscape and significant opportunities to secure future value. As the underlying graphene technology space develops, and the GRM [graphene and related materials] patent landscape matures, re-distribution of the patent landscape seems inevitable and Europe is well positioned to benefit from patent-based commercialisation of GRM research.

Overall, the graphene patent landscape is growing rapidly and already resembles that of sub-segments of the semiconductor and biotechnology industries,56 which experience high levels of patent activity. The patent strategies of the businesses active in such sub-sectors frequently include ‘portfolio maximization’56 and ‘portfolio optimization’56 strategies, and the sub-sectors experience the development of what commentators term ‘patent thickets’56, or multiple overlapping granted patent rights.56 A range of policies, regulatory and business strategies have been developed to limit such patent practices.57 In such circumstances, accurate patent landscaping may provide critical information to policy-makers, investors and individual industry participants, underpinning the development of sound policies, business strategies and research commercialisation plans.

It sounds like a patent thicket is developing (Note: Links have been removed. Incidental numbers are footnote references),,

Fig. 13 provides evidence of a relative increase in graphene patent filings in South Korea from 2007 to 2009 compared to 2004–2006. This could indicate increased commercial interest in graphene technology from around 2007. The period 2010 to 2012 shows a marked relative increase in graphene patent filings in China. It should be noted that a general increase in Chinese patent filings across many ST domains in this period is observed.76 Notwithstanding this general increase in Chinese patent activity, there does appear to be increased commercial interest in graphene in China. It is notable that the European Patent Office contribution as a percentage of all graphene patent filings globally falls from a 8% in the period 2007 to 2009 to 4% in the period 2010 to 2012.

The importance of the US, China and South Korea is emphasised by the top assignees, shown in Fig. 14. The corporation with most graphene patent applications is the Korean multinational Samsung, with over three times as many filings as its nearest rival. It has also patented an unrivalled range of graphene-technology applications, including synthesis procedures,77 transparent display devices,78 composite materials,79 transistors,80 batteries and solar cells.81 Samsung’s patent applications indicate a sustained and heavy investment in graphene R&D, as well as collaboration (co-assignment of patents) with a wide range of academic institutions.82,83

 

image file: c4nr01600a-f14.tif
Fig. 14 Top 10 graphene patent assignees by number and cumulative over all time as of end-July 2014. Number of patents are indicated in the red histograms referred to the left Y axis, while the cumulative percentage is the blue line, referred to the right Y axis.

It is also interesting to note that patent filings by universities and research institutions make up a significant proportion ([similar]50%) of total patent filings: the other half comprises contributions from small and medium-sized enterprises (SMEs) and multinationals.

Europe’s position is shown in Fig. 10, 12 and 14. While Europe makes a good showing in the geographical distribution of publications, it lags behind in patent applications, with only 7% of patent filings as compared to 30% in the US, 25% in China, and 13% in South Korea (Fig. 13) and only 9% of filings by academic institutions assigned in Europe (Fig. 15).

 

image file: c4nr01600a-f15.tif
Fig. 15 Geographical breakdown of academic patent holders as of July 2014.

While Europe is trailing other regions in terms of number of patent filings, it nevertheless has a significant foothold in the patent landscape. Currently, the top European patent holder is Finland’s Nokia, primarily around incorporation of graphene into electrical devices, including resonators and electrodes.72,84,85

This may sound like Europe is trailing behind but that’s not the case according to the roadmap (Note: Links have been removed. Incidental numbers are footnote references),

European Universities also show promise in the graphene patent landscape. We also find evidence of corporate-academic collaborations in Europe, including e.g. co-assignments filed with European research institutions and Germany’s AMO GmbH,86 and chemical giant BASF.87,88 Finally, Europe sees significant patent filings from a number of international corporate and university players including Samsung,77 Vorbeck Materials,89 Princeton University,90–92 and Rice University,93–95 perhaps reflecting the quality of the European ST base around graphene, and its importance as a market for graphene technologies.

There are a number of features in the graphene patent landscape which may lead to a risk of patent thickets96 or ‘multiple overlapping granted patents’ existing around aspects of graphene technology systems. [emphasis mine] There is a relatively high volume of patent activity around graphene, which is an early stage technology space, with applications in patent intensive industry sectors. Often patents claim carbon nano structures other than graphene in graphene patent landscapes, illustrating difficulties around defining ‘graphene’ and mapping the graphene patent landscape. Additionally, the graphene patent nomenclature is not entirely settled. Different patent examiners might grant patents over the same components which the different experts and industry players call by different names.

For anyone new to this blog, I am not a big fan of current patent regimes as they seem to be stifling rather encouraging innovation. Sadly, patents and copyright were originally developed to encourage creativity and innovation by allowing the creators to profit from their ideas. Over time a system designed to encourage innovation has devolved into one that does the opposite. (My Oct. 31, 2011 post titled Patents as weapons and obstacles, details my take on this matter.) I’m not arguing against patents and copyright but suggesting that the system be fixed or replaced with something that delivers on the original intention.

Getting back to the matter at hand, here’s a link to and a citation for the 200 pp. 2015 European Graphene roadmap,

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems by Andrea C. Ferrari, Francesco Bonaccorso, Vladimir Fal’ko, Konstantin S. Novoselov, Stephan Roche, Peter Bøggild, Stefano Borini, Frank H. L. Koppens, Vincenzo Palermo, Nicola Pugno, José A. Garrido, Roman Sordan, Alberto Bianco, Laura Ballerini, Maurizio Prato, Elefterios Lidorikis, Jani Kivioja, Claudio Marinelli, Tapani Ryhänen, Alberto Morpurgo, Jonathan N. Coleman, Valeria Nicolosi, Luigi Colombo, Albert Fert, Mar Garcia-Hernandez, Adrian Bachtold, Grégory F. Schneider, Francisco Guinea, Cees Dekker, Matteo Barbone, Zhipei Sun, Costas Galiotis,  Alexander N. Grigorenko, Gerasimos Konstantatos, Andras Kis, Mikhail Katsnelson, Lieven Vandersypen, Annick Loiseau, Vittorio Morandi, Daniel Neumaier, Emanuele Treossi, Vittorio Pellegrini, Marco Polini, Alessandro Tredicucci, Gareth M. Williams, Byung Hee Hong, Jong-Hyun Ahn, Jong Min Kim, Herbert Zirath, Bart J. van Wees, Herre van der Zant, Luigi Occhipinti, Andrea Di Matteo, Ian A. Kinloch, Thomas Seyller, Etienne Quesnel, Xinliang Feng,  Ken Teo, Nalin Rupesinghe, Pertti Hakonen, Simon R. T. Neil, Quentin Tannock, Tomas Löfwander and Jari Kinaret. Nanoscale, 2015, Advance Article DOI: 10.1039/C4NR01600A First published online 22 Sep 2014

Here’s a diagram illustrating the roadmap process,

Fig. 122 The STRs [science and technology roadmaps] follow a hierarchical structure where the strategic level in a) is connected to the more detailed roadmap shown in b). These general roadmaps are the condensed form of the topical roadmaps presented in the previous sections, and give technological targets for key applications to become commercially competitive and the forecasts for when the targets are predicted to be met.  Courtesy: Researchers and  the Royal Society's journal, Nanoscale

Fig. 122 The STRs [science and technology roadmaps] follow a hierarchical structure where the strategic level in a) is connected to the more detailed roadmap shown in b). These general roadmaps are the condensed form of the topical roadmaps presented in the previous sections, and give technological targets for key applications to become commercially competitive and the forecasts for when the targets are predicted to be met.
Courtesy: Researchers and the Royal Society’s journal, Nanoscale

The image here is not the best quality; the one embedded in the relevant Nanowerk news item is better.

As for the earlier roadmap, here’s my Oct. 11, 2012 post on the topic.

‘Eve’ (robot/artificial intelligence) searches for new drugs

Following on today’s (Feb. 5, 2015) earlier post, The future of work during the age of robots and artificial intelligence, here’s a Feb. 3, 2015 news item on ScienceDaily featuring ‘Eve’, a scientist robot,

Eve, an artificially-intelligent ‘robot scientist’ could make drug discovery faster and much cheaper, say researchers writing in the Royal Society journal Interface. The team has demonstrated the success of the approach as Eve discovered that a compound shown to have anti-cancer properties might also be used in the fight against malaria.

A Feb. 4, 2015 University of Manchester press release (also on EurekAlert but dated Feb. 3, 2015), which originated the news item, gives a brief introduction to robot scientists,

Robot scientists are a natural extension of the trend of increased involvement of automation in science. They can automatically develop and test hypotheses to explain observations, run experiments using laboratory robotics, interpret the results to amend their hypotheses, and then repeat the cycle, automating high-throughput hypothesis-led research. Robot scientists are also well suited to recording scientific knowledge: as the experiments are conceived and executed automatically by computer, it is possible to completely capture and digitally curate all aspects of the scientific process.

In 2009, Adam, a robot scientist developed by researchers at the Universities of Aberystwyth and Cambridge, became the first machine to autonomously discover new scientific knowledge. The same team has now developed Eve, based at the University of Manchester, whose purpose is to speed up the drug discovery process and make it more economical. In the study published today, they describe how the robot can help identify promising new drug candidates for malaria and neglected tropical diseases such as African sleeping sickness and Chagas’ disease.

“Neglected tropical diseases are a scourge of humanity, infecting hundreds of millions of people, and killing millions of people every year,” says Professor Ross King, from the Manchester Institute of Biotechnology at the University of Manchester. “We know what causes these diseases and that we can, in theory, attack the parasites that cause them using small molecule drugs. But the cost and speed of drug discovery and the economic return make them unattractive to the pharmaceutical industry.

“Eve exploits its artificial intelligence to learn from early successes in her screens and select compounds that have a high probability of being active against the chosen drug target. A smart screening system, based on genetically engineered yeast, is used. This allows Eve to exclude compounds that are toxic to cells and select those that block the action of the parasite protein while leaving any equivalent human protein unscathed. This reduces the costs, uncertainty, and time involved in drug screening, and has the potential to improve the lives of millions of people worldwide.”

The press release goes on to describe how ‘Eve’ works,

Eve is designed to automate early-stage drug design. First, she systematically tests each member from a large set of compounds in the standard brute-force way of conventional mass screening. The compounds are screened against assays (tests) designed to be automatically engineered, and can be generated much faster and more cheaply than the bespoke assays that are currently standard. This enables more types of assay to be applied, more efficient use of screening facilities to be made, and thereby increases the probability of a discovery within a given budget.

Eve’s robotic system is capable of screening over 10,000 compounds per day. However, while simple to automate, mass screening is still relatively slow and wasteful of resources as every compound in the library is tested. It is also unintelligent, as it makes no use of what is learnt during screening.

To improve this process, Eve selects at random a subset of the library to find compounds that pass the first assay; any ‘hits’ are re-tested multiple times to reduce the probability of false positives. Taking this set of confirmed hits, Eve uses statistics and machine learning to predict new structures that might score better against the assays. Although she currently does not have the ability to synthesise such compounds, future versions of the robot could potentially incorporate this feature.

Steve Oliver from the Cambridge Systems Biology Centre and the Department of Biochemistry at the University of Cambridge says: “Every industry now benefits from automation and science is no exception. Bringing in machine learning to make this process intelligent – rather than just a ‘brute force’ approach – could greatly speed up scientific progress and potentially reap huge rewards.”

To test the viability of the approach, the researchers developed assays targeting key molecules from parasites responsible for diseases such as malaria, Chagas’ disease and schistosomiasis and tested against these a library of approximately 1,500 clinically approved compounds. Through this, Eve showed that a compound that has previously been investigated as an anti-cancer drug inhibits a key molecule known as DHFR in the malaria parasite. Drugs that inhibit this molecule are currently routinely used to protect against malaria, and are given to over a million children; however, the emergence of strains of parasites resistant to existing drugs means that the search for new drugs is becoming increasingly more urgent.

“Despite extensive efforts, no one has been able to find a new antimalarial that targets DHFR and is able to pass clinical trials,” adds Professor Oliver. “Eve’s discovery could be even more significant than just demonstrating a new approach to drug discovery.”

Here’s a link to and a citation for the paper,

Cheaper faster drug development validated by the repositioning of drugs against neglected tropical diseases by Kevin Williams, Elizabeth Bilsland, Andrew Sparkes, Wayne Aubrey, Michael Young, Larisa N. Soldatova, Kurt De Grave, Jan Ramon, Michaela de Clare, Worachart Sirawaraporn, Stephen G. Oliver, and Ross D. King. Journal of the Royal Society Interface March 2015 Volume: 12 Issue: 104 DOI: 10.1098/rsif.2014.1289 Published 4 February 2015

This paper is open access.

Flexible, graphene-based display: first ever?

It seems like there’s been a lot of discussion about flexible displays, graphene or not, over the years so the announcement of the first graphene-based flexible display might seem a little anticlimactic. That’s one of the problems with the technology and science communities. Sometimes there’s so much talk about an idea or concept that by the time it becomes reality people think it’s already been done and is not news.

So, kudos to the folks at the University of Cambridge who have been working on this development for a long time. From a Sept. 10, 2014 news release on EurekAlert,

The partnership between the two organisations combines the graphene expertise of the Cambridge Graphene Centre (CGC), with the transistor and display processing steps that Plastic Logic has already developed for flexible electronics. This prototype is a first example of how the partnership will accelerate the commercial development of graphene, and is a first step towards the wider implementation of graphene and graphene-like materials into flexible electronics.

The new prototype is an active matrix electrophoretic display, similar to the screens used in today’s e-readers, except it is made of flexible plastic instead of glass. In contrast to conventional displays, the pixel electronics, or backplane, of this display includes a solution-processed graphene electrode, which replaces the sputtered metal electrode layer within Plastic Logic’s conventional devices, bringing product and process benefits.

Graphene is more flexible than conventional ceramic alternatives like indium-tin oxide (ITO) and more transparent than metal films. The ultra-flexible graphene layer may enable a wide range of products, including foldable electronics. Graphene can also be processed from solution bringing inherent benefits of using more efficient printed and roll-to-roll manufacturing approaches.

The new 150 pixel per inch (150 ppi) backplane was made at low temperatures (less than 100°C) using Plastic Logic’s Organic Thin Film Transistor (OTFT) technology. The graphene electrode was deposited from solution and subsequently patterned with micron-scale features to complete the backplane.

For this prototype, the backplane was combined with an electrophoretic imaging film to create an ultra-low power and durable display. Future demonstrations may incorporate liquid crystal (LCD) and organic light emitting diodes (OLED) technology to achieve full colour and video functionality. Lightweight flexible active-matrix backplanes may also be used for sensors, with novel digital medical imaging and gesture recognition applications already in development.

“We are happy to see our collaboration with Plastic Logic resulting in the first graphene-based electrophoretic display exploiting graphene in its pixels’ electronics,” said Professor Andrea Ferrari, Director of the Cambridge Graphene Centre. “This is a significant step forward to enable fully wearable and flexible devices. This cements the Cambridge graphene-technology cluster and shows how an effective academic-industrial partnership is key to help move graphene from the lab to the factory floor.”

As an example of how long this development has been in the works, I have a Nov. 7, 2011 posting about a University of Cambridge stretchable, electronic skin produced by what was then the university’s Nokia Research Centre. That ‘skin’ was a big step forward to achieving a phone/device/flexible display (the Morph), wrappable around your wrist, first publicized in 2008 as I noted in a March 30, 2010 posting.

According to the news release, there should be some more news soon,

This joint effort between Plastic Logic and the CGC was also recently boosted by a grant from the UK Technology Strategy Board, within the ‘realising the graphene revolution’ initiative. This will target the realisation of an advanced, full colour, OELD based display within the next 12 months.

My colleague Dexter Johnson has offered some business-oriented insight into this development at Cambridge in his Sept. 9, 2014 posting on the Nanoclast blog on the IEEE (Institute of Electrical and Electronics Engineers) website (Note: Links have been removed),

In the UK’s concerted efforts to become a hub for graphene commercialization, one of the key partnerships between academic research and industry has been the one between the Cambridge Graphene Centre located at the University of Cambridge and a number of companies, including Nokia, Dyson, BaE systems, Philips and Plastic Logic. The last on this list, Plastic Logic, was spun out originally from the University of Cambridge in 2000. However, since its beginnings it has required a $200 million investment from RusNano to keep itself afloat back in 2011 for a time called Mountain View, California, home.

The post is well worth reading for anyone interested in the twists and turns of graphene commercialization in the UK.

Tibetan Buddhist singing bowls inspire more efficient solar cells

There’s no mention as to whether or not Dr Niraj Lal practices any form of meditation or how he came across Tibetan Buddhist singing bowls but somehow he was inspired by them when studying for his PhD at Cambridge University (UK). From a Sept. 8, 2014 news item by Niall Byrne for physorg.com,

The shape of a centuries-old Buddhist singing bowl has inspired a Canberra scientist to re-think the way that solar cells are designed to maximize their efficiency.

Dr Niraj Lal, of the Australian National University,  found during his PhD at the University of Cambridge, that small nano-sized versions of Buddhist singing bowls resonate with light in the same way as they do with sound, and he’s applied this shape to solar cells to increase their ability to capture more light and convert it into electricity.

A Sept. ?, 2014 news release from Australian science communication company, Science in Public, fills in a few more details without any mention of Lal’s meditation practices, should he have any,

“Current standard solar panels lose a large amount of light-energy as it hits the surface, making the panels’ generation of electricity inefficient,” says Niraj. “But if the cells are singing bowl-shaped, then the light bounces around inside the cell for longer”.

Normally used in meditation, music, and relaxation, Buddhist singing bowls make a continuous harmonic ringing sound when the rim of the metal bowl is vibrated with a wooden or other utensil.

During his PhD, Niraj discovered that his ‘nanobowls’ manipulated light by creating a ‘plasmonic’ resonance, which quadrupled the laboratory solar cell’s efficiency compared to a similarly made flat solar cell.

Now, Niraj and his team aim to change all that by applying his singing-bowl discovery to tandem solar cells: a technology that has previously been limited to aerospace applications.

In research which will be published in the November issue of IEEE Journal of Photonics, Niraj and his colleagues have shown that by layering two different types of solar panels on top of each other in tandem, the efficiency of flat rooftop solar panels can achieve 30 per cent—currently, laboratory silicon solar panels convert only 25 per cent of light into electricity, while commercial varieties convert closer to 20 per cent.

The tandem cell design works by absorbing a sunlight more effectively —each cell is made from a different material so that it can ‘see’ a different light wavelength.

“To a silicon solar cell, a rainbow just looks like a big bit of red in the sky—they don’t ‘see’ the blue, green or UV light—they convert all light to electricity as if it was red ,” says Niraj. “But when we put a second cell on top, which ‘sees’ the blue part of light, but allows the red to pass through to the ‘red-seeing’ cell below, we can reach a combined efficiency of more than 30 percent.”

Niraj and a team at ANU are now looking at ways to super-charge the tandem cell design by applying the Buddhist singing bowl shape to further increase efficiency.

“If we can make a solar cell that ‘sees’ more colours and  keeps the right light in the right layers, then we could increase efficiency even further,” says Niraj.

“Every extra percent in efficiency saves you thousands of dollars over the lifetime of the panel,” says Niraj. “Current roof-top solar panels have been steadily increasing in efficiency, which has been a big driver of the fourfold drop in the price for these panels over the last five years.”

More importantly, says Niraj, greater efficiency will allow solar technology to compete with fossil fuels and meet the challenges of climate change and access.

“Electricity is also one of the most enabling technologies we have ever seen, and linking people in rural areas around the world to electricity is one of the most powerful things we can do.”

At the end of the Science in Public news release there’s mention of a science communication competition,

Niraj was a 2014 national finalist of FameLab Australia. FameLab is a global science communication competition for early-career scientists. His work is supported by the Australian Research Council and ARENA – the Australian Renewable Energy Agency.

About FameLab

In 2014, the British Council and Fresh Science have joined forces to bring FameLab to Australia.

FameLab Australia will offer specialist science media training and, ultimately, the chance for early-career researchers to pitch their research at the FameLab International Grand Final in the UK at The Times Cheltenham Science Festival from 3 to 5 June 2014.

FameLab is an international communication competition for scientists, including engineers and mathematicians. Designed to inspire and motivate young researchers to actively engage with the public and with potential stakeholders, FameLab is all about finding the best new voices of science and engineering across the world.

Founded in 2005 by The Times Cheltenham Science Festival, FameLab, working in partnership with the British Council, has already seen more than 5,000 young scientists and engineers participate in over 23 different countries — from Hong Kong to South Africa, USA to Egypt.

Now, FameLab comes to Australia in a landmark collaboration with the British Council and Fresh Science — Australia’s very own science communication competition.

For more information about FameLab Australia, head to www.famelab.org.au

You can find out more about Australia’s Fresh Science here.

Getting back to Dr. Lal, here’s a video he made about his work and where he demonstrates a Tibetan Buddhist singing bowl (this is a very low tech video and the sound quality isn’t great),

Here’s a link to and a citation for Lal’s most recent paper,

Optics and Light Trapping for Tandem Solar Cells on Silicon by Lal, N.N.; White, T.P. ; and Catchpole, K.R. Photovoltaics, IEEE Journal of  (Volume:PP ,  Issue: 99) Page(s): 1 – 7 ISSN : 2156-3381 DOI: 10.1109/JPHOTOV.2014.2342491 Published online 19 August 2014

The paper is behind a paywall but there is open access to Lal’s 2012 University of Cambridge PhD thesis on his approach,

Enhancing solar cells with plasmonic nanovoids by Lal, Niraj Narsey
URI: http://www.dspace.cam.ac.uk/handle/1810/243864 Date:2012-07-03

Hap;y reading!

White beetles and complex photonic nanostructures

At least one species of white beetles which have excited scientists with their complex nanostructures are native to Southeast Asia according to an Aug. 15, 2014 news item on Nanowerk,

The physical properties of the ultra-white scales on certain species of beetle could be used to make whiter paper, plastics and paints, while using far less material than is used in current manufacturing methods.

The Cyphochilus beetle, which is native to South-East Asia, is whiter than paper, thanks to ultra-thin scales which cover its body. A new investigation of the optical properties of these scales has shown that they are able to scatter light more efficiently than any other biological tissue known, which is how they are able to achieve such a bright whiteness.

An Aug. 15, 2014 University of Cambridge press release (also on EurekAlert), which originated the news item, describes the properties needed to create the optical conditions necessary for the colour white to be seen,

Animals produce colours for several purposes, from camouflage to communication, to mating and thermoregulation. Bright colours are usually produced using pigments, which absorb certain wavelengths of light and reflect others, which our eyes then perceive as colour.

To appear as white, however, a tissue needs to reflect all wavelengths of light with the same efficiency. The ultra-white Cyphochilus and L. Stigma beetles produce this colouration by exploiting the geometry of a dense complex network of chitin – a molecule similar in structure to cellulose, which is found throughout nature, including in the shells of molluscs, the exoskeletons of insects and the cell walls of fungi. The chitin filaments are just a few billionths of a metre thick, and on their own are not particularly good at reflecting light.

The research, a collaboration between the University of Cambridge and the European Laboratory for non-Linear Spectroscopy in Italy has shown that the beetles have optimised their internal structure in order to produce maximum white with minimum material, like a painter who needs to whiten a wall with a very small quantity of paint. This efficiency is particularly important for insects that fly, as it makes them lighter.

Here’s what the Cyphochilus beetle looks like,

Cyphochilus beetle Credit: Lorenzo Cortese and Silvia Vignolini

Cyphochilus beetle Credit: Lorenzo Cortese and Silvia Vignolini Courtesy University of Cambridge

The press release goes on to describe the beetle’s optical properties in greater detail,

Over millions of years of evolution the beetles have developed a compressed network of chitin filaments. This network is directionally-dependent, or anisotropic, which allows high intensities of reflected light for all colours at the same time, resulting in a very intense white with very little material.

“Current technology is not able to produce a coating as white as these beetles can in such a thin layer,” said Dr Silvia Vignolini of the University’s Cavendish Laboratory, who led the research. “In order to survive, these beetles need to optimise their optical response but this comes with the strong constraint of using as little material as possible in order to save energy and to keep the scales light enough in order to fly. Curiously, these beetles succeed in this task using chitin, which has a relatively low refractive index.”

The secret lies in the beetles’ nanostructures,

Exactly how this could be possible remained unclear up to now. The researchers studied how light propagates in the white scales, quantitatively measuring their scattering strength for the first time and demonstrating that they scatter light more efficiently than any other low-refractive-index material yet known.

“These scales have a structure that is truly complex since it gives rise to something that is more than the sum of its parts,” said co-author Dr Matteo Burresi of the Italian National Institute of Optics in Florence. “Our simulations show that a randomly packed collection of its constituent elements by itself is not sufficient to achieve the degree of brightness that we observe.”

Here’s a link to and a citation for the paper,

Bright-White Beetle Scales Optimise Multiple Scattering of Light by Matteo Burresi, Lorenzo Cortese, Lorenzo Pattelli, Mathias Kolle, Peter Vukusic, Diederik S. Wiersma, Ullrich Steiner, & Silvia Vignolini.  Scientific Reports 4, Article number: 6075 doi:10.1038/srep06075 Published 15 August 2014

This paper is open access.

First ever Nanoscience and Nanotechnology Symposium in English-speaking Caribbean

A July 12, 2014 news item on Nanowerk heralds this new International symposium on nanoscience and nanotechnology,

The ‘International Symposium on Nanoscience and Nanotechnology’ will be hosted at The University of the West Indies (UWI), St. Augustine [in Trinidad and Tobago], from July 15-17, 2014. The symposium, focused on the frontier areas of science, medicine and technology, is the first of its kind in the English-speaking Caribbean and is organised jointly by CARISCIENCE, The UWI and the University of Trinidad and Tobago. The symposium consists of a Public Lecture on Day 1 and Scientific Sessions over Days 2 and 3.

This international symposium is important and ground-breaking since these are widely viewed as revolutionary fields. Nanoscience and nanotechnology are considered to have huge potential to bring benefits to many areas of research and application and are attracting rapidly increasing investments from governments and businesses in many parts of the world.

Despite developments in nanoscience and nanotechnology, the Caribbean as a region has not been involved to the extent that more advanced countries have. As such, this symposium aims to provide a stronger focus on the impact and implications of developments in nanoscience/nanotechnology for stakeholders within the Caribbean region, including researchers, academics, university students, government and policy makers, industry partners and the wider public. The symposium will explore various topics under the following themes:

Nanotechnology for Sustainable Energy and Industrial Applications
Nanotechnology for Electronic Device and Sensor Applications
Nanotechnology in Biology, Medicine and Pharmaceuticals
Nanoscale Synthesis, Nanofabrication and Characterization

A July 11, 2014 UWI news release, which originated the news item, provides details about the speakers and more,

An impressive line-up of leading, globally recognised experts from world-class international and regional institutes awaits, including the Public Lecture titled “Science and the Elements of Daily Life,” to be delivered by world-renowned scientist, Professor Anthony K. Cheetham FRS, University of Cambridge, Vice President and Treasurer of The Royal Society. Additionally, the Keynote Address at the Opening Ceremony will be delivered by The Right Honourable Keith Mitchell, Prime Minister of Grenada, with responsibility for Science and Technology in CARICOM.

Speakers at the scientific sessions include Professor Fidel Castro Díaz-Balart (Scientific Advisor to the President of the Republic of Cuba and Vice President of The Academy of Science, Cuba); Professor Frank Gu (University of Waterloo, Canada); Professor Christopher Backhouse (former Director of the Waterloo Institute of Nanotechnology, University of Waterloo, Canada); Professor G. U. Kulkarni (JNCASR, India) and Professor Masami Okamoto (Toyota Technology Institute, Japan).

Students, teachers, academics and the wider public, are all invited and encouraged to attend and use this unique opportunity to engage these leading scientists.

The free Public Lecture is scheduled for Tuesday July 15, 2014, from 5pm-7.30pm, at the Daaga Auditorium, The UWI, St. Augustine Campus. [emphasis mine] The Scientific Sessions take place on Wednesday and Thursday July 16 and 17, 2014, from 8.30am-5pm, at Lecture Theatre A1, UWI Teaching and Learning Complex, Circular Road, St. Augustine. There will also be a small Poster Session to highlight some research done in the areas of Nanoscience and nanotechnology in the Caribbean.

All attendees (to the scientific sessions) must complete and send registration forms to the email address janicejoseph63@hotmail.com by Sunday, July 13, 2014. Registration forms may be downloaded at the Campus Events Calendar entry by visiting www.sta.uwi.edu/news/ecalendar.

A registration fee must be paid in cash at the registration desk on Wednesday July 16, 2014, Day 2, at the start of the scientific sessions.

  • Academic and non-academic:  TT$ 600
  • Graduate student: TT$ 150
  • Undergraduate student: no cost

For further information on the symposium, please visit the Campus Events Calendar at www.sta.uwi.edu/news/ecalendar

I wish them all the best. They seem (judging by the institutions represented) to have attracted a stellar roster of speakers.

Nanocellulose and an intensity of structural colour

I love the topic of structural colour (or color, depending on your spelling preferences) and have covered it many times and in many ways. One of the best pieces I’ve encountered about structural colour (an article by Christina Luiggi for The Scientist provided an overview of structural colour as it’s found in plants and animals) was featured in my Feb. 7, 2013 posting. If you go to my posting, you’ll find a link to Luiggi’s article which I recommend reading in its entirety if you have the time.

As for this latest nanocellulose story, a June 13, 2014 news item on Nanowerk describes University of Cambridge (UK) research into films and structural colour,

Brightly-coloured, iridescent films, made from the same wood pulp that is used to make paper, could potentially substitute traditional toxic pigments in the textile and security industries. The films use the same principle as can be seen in some of the most vivid colours in nature, resulting in colours which do not fade, even after a century.

Some of the brightest and most colourful materials in nature – such as peacock feathers, butterfly wings and opals – get their colour not from pigments, but from their internal structure alone.

Researchers from the University of Cambridge have recreated a similar structure in the lab, resulting in brightly-coloured films which could be used for textile or security applications.

A June 13, 2014 University of Cambridge news release, which originated the news item, describe the phenomenon of structural colour as it applies to cellulose materials,

In plants such as Pollia condensata, striking iridescent and metallic colours are the result of cellulose fibres arranged in spiral stacks, which reflect light at specific wavelengths. [emphasis mine]

Cellulose is made up of long chains of sugar molecules, and is the most abundant biomass material in nature. It can be found in the cells of every plant and is the main compound that gives cell walls their strength.

The news release goes on to provide a brief description of the research,

The researchers used wood pulp, the same material that is used for producing paper, as their starting material. Through manipulating the structure of the cellulose contained in the wood pulp, the researchers were able to fabricate iridescent colour films without using pigments.

To make the films, the researchers extracted cellulose nanocrystals from the wood pulp. When suspended in water, the rod-like nanocrystals spontaneously assemble into nanostructured layers that selectively reflect light of a specific colour. The colour reflected depends on the dimensions of the layers. By varying humidity conditions during the film fabrication, the researchers were able to change the reflected colour and capture the different phases of the colour formation.

Cellulose nanocrystals (CNC) are also known as nanocrystalline cellulose (NCC).

Here’s a link to and a citation for  the paper,

Controlled, Bio-inspired Self-Assembly of Cellulose-Based Chiral Reflectors by Ahu Gumrah Dumanli, Gen Kamita, Jasper Landman, Hanne van der Kooij, Beverley J. Glover, Jeremy J. Baumberg, Ullrich Steiner, and Silvia Vignolini. Optical Materials Article first published online: 30 MAY 2014 DOI: 10.1002/adom.201400112

© 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

While the researchers have supplied an image of the Pollia condensata, I prefer this one, which is also featured in my Feb. 7, 2013 posting,

AGELESS BRILLIANCE: Although the pigment-derived leaf color of this decades-old specimen of the African perennial Pollia condensata has faded, the fruit still maintains its intense metallic-blue iridescence.COURTESY OF P.J. RUDALL [downloaded from http://www.the-scientist.com/?articles.view/articleNo/34200/title/Color-from-Structure/]

AGELESS BRILLIANCE: Although the pigment-derived leaf color of this decades-old specimen of the African perennial Pollia condensata has faded, the fruit still maintains its intense metallic-blue iridescence.COURTESY OF P.J. RUDALL [downloaded from http://www.the-scientist.com/?articles.view/articleNo/34200/title/Color-from-Structure/]

Stunning, non?

Nanotechnology at the movies: Transcendence opens April 18, 2014 in the US & Canada

Screenwriter Jack Paglen has an intriguing interpretation of nanotechnology, one he (along with the director) shares in an April 13, 2014 article by Larry Getlen for the NY Post and in his movie, Transcendence. which is opening in the US and Canada on April 18, 2014. First, here are a few of the more general ideas underlying his screenplay,

In “Transcendence” — out Friday [April 18, 2014] and directed by Oscar-winning cinematographer Wally Pfister (“Inception,” “The Dark Knight”) — Johnny Depp plays Dr. Will Caster, an artificial-intelligence researcher who has spent his career trying to design a sentient computer that can hold, and even exceed, the world’s collective intelligence.

After he’s shot by antitechnology activists, his consciousness is uploaded to a computer network just before his body dies.

“The theories associated with the film say that when a strong artificial intelligence wakes up, it will quickly become more intelligent than a human being,” screenwriter Jack Paglen says, referring to a concept known as “the singularity.”

It should be noted that there are anti-technology terrorists. I don’t think I’ve covered that topic in a while so an Aug. 31, 2012 posting is the most recent and, despite the title, “In depth and one year later—the nanotechnology bombings in Mexico” provides an overview of sorts. For a more up-to-date view, you can read Eric Markowitz’s April 9, 2014 article for Vocative.com. I do have one observation about the article where Markowitz has linked some recent protests in San Francisco to the bombings in Mexico. Those protests in San Francisco seem more like a ‘poor vs. the rich’ situation where the rich happen to come from the technology sector.

Getting back to “Transcendence” and singularity, there’s a good Wikipedia entry describing the ideas and some of the thinkers behind the notion of a singularity or technological singularity, as it’s sometimes called (Note: Links have been removed),

The technological singularity, or simply the singularity, is a hypothetical moment in time when artificial intelligence will have progressed to the point of a greater-than-human intelligence, radically changing civilization, and perhaps human nature.[1] Because the capabilities of such an intelligence may be difficult for a human to comprehend, the technological singularity is often seen as an occurrence (akin to a gravitational singularity) beyond which the future course of human history is unpredictable or even unfathomable.

The first use of the term “singularity” in this context was by mathematician John von Neumann. In 1958, regarding a summary of a conversation with von Neumann, Stanislaw Ulam described “ever accelerating progress of technology and changes in the mode of human life, which gives the appearance of approaching some essential singularity in the history of the race beyond which human affairs, as we know them, could not continue”.[2] The term was popularized by science fiction writer Vernor Vinge, who argues that artificial intelligence, human biological enhancement, or brain-computer interfaces could be possible causes of the singularity.[3] Futurist Ray Kurzweil cited von Neumann’s use of the term in a foreword to von Neumann’s classic The Computer and the Brain.

Proponents of the singularity typically postulate an “intelligence explosion”,[4][5] where superintelligences design successive generations of increasingly powerful minds, that might occur very quickly and might not stop until the agent’s cognitive abilities greatly surpass that of any human.

Kurzweil predicts the singularity to occur around 2045[6] whereas Vinge predicts some time before 2030.[7] At the 2012 Singularity Summit, Stuart Armstrong did a study of artificial generalized intelligence (AGI) predictions by experts and found a wide range of predicted dates, with a median value of 2040. His own prediction on reviewing the data is that there is an 80% probability that the singularity will occur between 2017 and 2112.[8]

The ‘technological singularity’ is controversial and contested (from the Wikipedia entry).

In addition to general criticisms of the singularity concept, several critics have raised issues with Kurzweil’s iconic chart. One line of criticism is that a log-log chart of this nature is inherently biased toward a straight-line result. Others identify selection bias in the points that Kurzweil chooses to use. For example, biologist PZ Myers points out that many of the early evolutionary “events” were picked arbitrarily.[104] Kurzweil has rebutted this by charting evolutionary events from 15 neutral sources, and showing that they fit a straight line on a log-log chart. The Economist mocked the concept with a graph extrapolating that the number of blades on a razor, which has increased over the years from one to as many as five, will increase ever-faster to infinity.[105]

By the way, this movie is mentioned briefly in the pop culture portion of the Wikipedia entry.

Getting back to Paglen and his screenplay, here’s more from Getlen’s article,

… as Will’s powers grow, he begins to pull off fantastic achievements, including giving a blind man sight, regenerating his own body and spreading his power to the water and the air.

This conjecture was influenced by nanotechnology, the field of manipulating matter at the scale of a nanometer, or one-billionth of a meter. (By comparison, a human hair is around 70,000-100,000 nanometers wide.)

“In some circles, nanotechnology is the holy grail,” says Paglen, “where we could have microscopic, networked machines [emphasis mine] that would be capable of miracles.”

The potential uses of, and implications for, nanotechnology are vast and widely debated, but many believe the effects could be life-changing.

“When I visited MIT,” says Pfister, “I visited a cancer research institute. They’re talking about the ability of nanotechnology to be injected inside a human body, travel immediately to a cancer cell, and deliver a payload of medicine directly to that cell, eliminating [the need to] poison the whole body with chemo.”

“Nanotechnology could help us live longer, move faster and be stronger. It can possibly cure cancer, and help with all human ailments.”

I find the ‘golly gee wizness’ of Paglen’s and Pfister’s take on nanotechnology disconcerting but they can’t be dismissed. There are projects where people are testing retinal implants which allow them to see again. There is a lot of work in the field of medicine designed to make therapeutic procedures that are gentler on the body by making their actions specific to diseased tissue while ignoring healthy tissue (sadly, this is still not possible). As for human enhancement, I have so many pieces that it has its own category on this blog. I first wrote about it in a four-part series starting with this one: Nanotechnology enables robots and human enhancement: part 1, (You can read the series by scrolling past the end of the posting and clicking on the next part or search the category and pick through the more recent pieces.)

I’m not sure if this error is Paglen’s or Getlen’s but nanotechnology is not “microscopic, networked machines” as Paglen’s quote strongly suggests. Some nanoscale devices could be described as machines (often called nanobots) but there are also nanoparticles, nanotubes, nanowires, and more that cannot be described as machines or devices, for that matter. More importantly, it seems Paglen’s main concern is this,

“One of [science-fiction author] Arthur C. Clarke’s laws is that any sufficiently advanced technology is indistinguishable from magic. That very quickly would become the case if this happened, because this artificial intelligence would be evolving technologies that we do not understand, and it would be capable of miracles by that definition,” says Paglen. [emphasis mine]

This notion of “evolving technologies that we do not understand” brings to mind a  project that was announced at the University of Cambridge (from my Nov. 26, 2012 posting),

The idea that robots of one kind or another (e.g. nanobots eating up the world and leaving grey goo, Cylons in both versions of Battlestar Galactica trying to exterminate humans, etc.) will take over the world and find humans unnecessary  isn’t especially new in works of fiction. It’s not always mentioned directly but the underlying anxiety often has to do with intelligence and concerns over an ‘explosion of intelligence’. The question it raises,’ what if our machines/creations become more intelligent than humans?’ has been described as existential risk. According to a Nov. 25, 2012 article by Sylvia Hui for Huffington Post, a group of eminent philosophers and scientists at the University of Cambridge are proposing to found a Centre for the Study of Existential Risk,

While I do have some reservations about how Paglen and Pfister describe the science, I appreciate their interest in communicating the scientific ideas, particularly those underlying Paglen’s screenplay.

For anyone who may be concerned about the likelihood of emulating  a human brain and uploading it to a computer, there’s an April 13, 2014 article by Luke Muehlhauser and Stuart Armstrong for Slate discussing that very possibility (Note 1: Links have been removed; Note 2: Armstrong is mentioned in this posting’s excerpt from the Wikipedia entry on Technological Singularity),

Today scientists can’t even emulate the brain of a tiny worm called C. elegans, which has 302 neurons, compared with the human brain’s 86 billion neurons. Using models of expected technological progress on the three key problems, we’d estimate that we wouldn’t be able to emulate human brains until at least 2070 (though this estimate is very uncertain).

But would an emulation of your brain be you, and would it be conscious? Such questions quickly get us into thorny philosophical territory, so we’ll sidestep them for now. For many purposes—estimating the economic impact of brain emulations, for instance—it suffices to know that the brain emulations would have humanlike functionality, regardless of whether the brain emulation would also be conscious.

Paglen/Pfister seem to be equating intelligence (brain power) with consciousness while Muehlhauser/Armstrong simply sidestep the issue. As they (Muehlhauser/Armstrong) note, it’s “thorny.”

If you consider thinkers like David Chalmers who suggest everything has consciousness, then it follows that computers/robots/etc. may not appreciate having a human brain emulation which takes us back into Battlestar Galactica territory. From my March 19, 2014 posting (one of the postings where I recounted various TED 2014 talks in Vancouver), here’s more about David Chalmers,

Finally, I wasn’t expecting to write about David Chalmers so my notes aren’t very good. A philosopher, here’s an excerpt from Chalmers’ TED biography,

In his work, David Chalmers explores the “hard problem of consciousness” — the idea that science can’t ever explain our subjective experience.

David Chalmers is a philosopher at the Australian National University and New York University. He works in philosophy of mind and in related areas of philosophy and cognitive science. While he’s especially known for his theories on consciousness, he’s also interested (and has extensively published) in all sorts of other issues in the foundations of cognitive science, the philosophy of language, metaphysics and epistemology.

Chalmers provided an interesting bookend to a session started with a brain researcher (Nancy Kanwisher) who breaks the brain down into various processing regions (vastly oversimplified but the easiest way to summarize her work in this context). Chalmers reviewed the ‘science of consciousness’ and noted that current work in science tends to be reductionist, i.e., examining parts of things such as brains and that same reductionism has been brought to the question of consciousness.

Rather than trying to prove consciousness, Chalmers proposes that we consider it a fundamental in the same way that we consider time, space, and mass to be fundamental. He noted that there’s precedence for additions and gave the example of James Clerk Maxwell and his proposal to consider electricity and magnetism as fundamental.

Chalmers next suggestion is a little more outré and based on some thinking (sorry I didn’t catch the theorist’s name) that suggests everything, including photons, has a type of consciousness (but not intelligence).

Have a great time at the movie!