Tag Archives: University of Cambridge

Smartphone battery inspired by your guts?

The conversion of bacteria from an enemy to be vanquished at all costs to a ‘frenemy’, a friendly enemy supplying possible solutions for problems is fascinating. An Oct. 26, 2016 news item on Nanowerk falls into the ‘frenemy’ camp,

A new prototype of a lithium-sulphur battery – which could have five times the energy density of a typical lithium-ion battery – overcomes one of the key hurdles preventing their commercial development by mimicking the structure of the cells which allow us to absorb nutrients.

Researchers have developed a prototype of a next-generation lithium-sulphur battery which takes its inspiration in part from the cells lining the human intestine. The batteries, if commercially developed, would have five times the energy density of the lithium-ion batteries used in smartphones and other electronics.

An Oct. 26, 2016 University of Cambridge press release (also on EurekAlert), which originated the news item, expands on the theme and provides some good explanations of how lithium-ion batteries and lithium-sulphur batteries work (Note: A link has been removed),

The new design, by researchers from the University of Cambridge, overcomes one of the key technical problems hindering the commercial development of lithium-sulphur batteries, by preventing the degradation of the battery caused by the loss of material within it. The results are reported in the journal Advanced Functional Materials.

Working with collaborators at the Beijing Institute of Technology, the Cambridge researchers based in Dr Vasant Kumar’s team in the Department of Materials Science and Metallurgy developed and tested a lightweight nanostructured material which resembles villi, the finger-like protrusions which line the small intestine. In the human body, villi are used to absorb the products of digestion and increase the surface area over which this process can take place.

In the new lithium-sulphur battery, a layer of material with a villi-like structure, made from tiny zinc oxide wires, is placed on the surface of one of the battery’s electrodes. This can trap fragments of the active material when they break off, keeping them electrochemically accessible and allowing the material to be reused.

“It’s a tiny thing, this layer, but it’s important,” said study co-author Dr Paul Coxon from Cambridge’s Department of Materials Science and Metallurgy. “This gets us a long way through the bottleneck which is preventing the development of better batteries.”

A typical lithium-ion battery is made of three separate components: an anode (negative electrode), a cathode (positive electrode) and an electrolyte in the middle. The most common materials for the anode and cathode are graphite and lithium cobalt oxide respectively, which both have layered structures. Positively-charged lithium ions move back and forth from the cathode, through the electrolyte and into the anode.

The crystal structure of the electrode materials determines how much energy can be squeezed into the battery. For example, due to the atomic structure of carbon, each carbon atom can take on six lithium ions, limiting the maximum capacity of the battery.

Sulphur and lithium react differently, via a multi-electron transfer mechanism meaning that elemental sulphur can offer a much higher theoretical capacity, resulting in a lithium-sulphur battery with much higher energy density. However, when the battery discharges, the lithium and sulphur interact and the ring-like sulphur molecules transform into chain-like structures, known as a poly-sulphides. As the battery undergoes several charge-discharge cycles, bits of the poly-sulphide can go into the electrolyte, so that over time the battery gradually loses active material.

The Cambridge researchers have created a functional layer which lies on top of the cathode and fixes the active material to a conductive framework so the active material can be reused. The layer is made up of tiny, one-dimensional zinc oxide nanowires grown on a scaffold. The concept was trialled using commercially-available nickel foam for support. After successful results, the foam was replaced by a lightweight carbon fibre mat to reduce the battery’s overall weight.

“Changing from stiff nickel foam to flexible carbon fibre mat makes the layer mimic the way small intestine works even further,” said study co-author Dr Yingjun Liu.

This functional layer, like the intestinal villi it resembles, has a very high surface area. The material has a very strong chemical bond with the poly-sulphides, allowing the active material to be used for longer, greatly increasing the lifespan of the battery.

“This is the first time a chemically functional layer with a well-organised nano-architecture has been proposed to trap and reuse the dissolved active materials during battery charging and discharging,” said the study’s lead author Teng Zhao, a PhD student from the Department of Materials Science & Metallurgy. “By taking our inspiration from the natural world, we were able to come up with a solution that we hope will accelerate the development of next-generation batteries.”

For the time being, the device is a proof of principle, so commercially-available lithium-sulphur batteries are still some years away. Additionally, while the number of times the battery can be charged and discharged has been improved, it is still not able to go through as many charge cycles as a lithium-ion battery. However, since a lithium-sulphur battery does not need to be charged as often as a lithium-ion battery, it may be the case that the increase in energy density cancels out the lower total number of charge-discharge cycles.

“This is a way of getting around one of those awkward little problems that affects all of us,” said Coxon. “We’re all tied in to our electronic devices – ultimately, we’re just trying to make those devices work better, hopefully making our lives a little bit nicer.”

Here’s a link to and a citation for the paper,

Advanced Lithium–Sulfur Batteries Enabled by a Bio-Inspired Polysulfide Adsorptive Brush by Teng Zhao, Yusheng Ye, Xiaoyu Peng, Giorgio Divitini, Hyun-Kyung Kim, Cheng-Yen Lao, Paul R. Coxon, Kai Xi, Yingjun Liu, Caterina Ducati, Renjie Chen, R. Vasant Kumar. Advanced Functional Materials DOI: 10.1002/adfm.201604069 First published: 26 October 2016

This paper is behind a paywall.

Caption: This is a computer visualization of villi-like battery material. Credit: Teng Zhao

Caption: This is a computer visualization of villi-like battery material. Credit: Teng Zhao

Concrete proof that materials at the nanoscale behave differently than materials at any other scale

I hadn’t realized this still needed to be proved but it’s always good to have your misconceptions adjusted. Here’s more about the work from the University of Cambridge in a Sept. 30, 2016 news item on phys.org,

Scientists have long suspected that the way materials behave on the nanoscale – that is when particles have dimensions of about 1–100 nanometres – is different from how they behave on any other scale. A new paper in the journal Chemical Science provides concrete proof that this is the case.

The laws of thermodynamics govern the behaviour of materials in the macro world, while quantum mechanics describes behaviour of particles at the other extreme, in the world of single atoms and electrons.

A Sept. 29, 2016 University of Cambridge press release, which originated the news item, hones in on the peculiarities of the nanoscale,

In the middle, on the order of around 10–100,000 molecules, something different is going on. Because it’s such a tiny scale, the particles have a really big surface-area-to-volume ratio. This means the energetics of what goes on at the surface become very important, much as they do on the atomic scale, where quantum mechanics is often applied.

Classical thermodynamics breaks down. But because there are so many particles, and there are many interactions between them, the quantum model doesn’t quite work either.

And because there are so many particles doing different things at the same time, it’s difficult to simulate all their interactions using a computer. It’s also hard to gather much experimental information, because we haven’t yet developed the capacity to measure behaviour on such a tiny scale.

This conundrum becomes particularly acute when we’re trying to understand crystallisation, the process by which particles, randomly distributed in a solution, can form highly ordered crystal structures, given the right conditions.

Chemists don’t really understand how this works. How do around 1018 molecules, moving around in solution at random, come together to form a micro- to millimetre size ordered crystal? Most remarkable perhaps is the fact that in most cases every crystal is ordered in the same way every time the crystal is formed.

However, it turns out that different conditions can sometimes yield different crystal structures. These are known as polymorphs, and they’re important in many branches of science including medicine – a drug can behave differently in the body depending on which polymorph it’s crystallised in.

What we do know so far about the process, at least according to one widely accepted model, is that particles in solution can come together to form a nucleus, and once a critical mass is reached we see crystal growth. The structure of the nucleus determines the structure of the final crystal, that is, which polymorph we get.

What we have not known until now is what determines the structure of the nucleus in the first place, and that happens on the nanoscale.

In this paper, the authors have used mechanochemistry – that is milling and grinding – to obtain nanosized particles, small enough that surface effects become significant. In other words, the chemistry of the nanoworld – which structures are the most stable at this scale, and what conditions affect their stability, has been studied for the first time with carefully controlled experiments.

And by changing the milling conditions, for example by adding a small amount of solvent, the authors have been able to control which polymorph is the most stable. Professor Jeremy Sanders of the University of Cambridge’s Department of Chemistry, who led the work, said “It is exciting that these simple experiments, when carried out with great care, can unexpectedly open a new door to understanding the fundamental question of how surface effects can control the stability of nanocrystals.”

Joel Bernstein, Global Distinguished Professor of Chemistry at NYU Abu Dhabi, and an expert in crystal growth and structure, explains: “The authors have elegantly shown how to experimentally measure and simulate situations where you have two possible nuclei, say A and B, and determine that A is more stable. And they can also show what conditions are necessary in order for these stabilities to invert, and for B to become more stable than A.”

“This is really news, because you can’t make those predictions using classical thermodynamics, and nor is this the quantum effect. But by doing these experiments, the authors have started to gain an understanding of how things do behave on this size regime, and how we can predict and thus control it. The elegant part of the experiment is that they have been able to nucleate A and B selectively and reversibly.”

One of the key words of chemical synthesis is ‘control’. Chemists are always trying to control the properties of materials, whether that’s to make a better dye or plastic, or a drug that’s more effective in the body. So if we can learn to control how molecules in a solution come together to form solids, we can gain a great deal. This work is a significant first step in gaining that control.

Nicely written!

Here’s a link to and a citation for the paper,

Solvation and surface effects on polymorph stabilities at the nanoscale by A. M. Belenguer, G. I. Lampronti, A. J. Cruz-Cabeza, C. A. Hunter, and J. K. M. Sanders. Chem. Sci., 2016, Advance Article DOI: 10.1039/C6SC03457H First published online 02 Sep 2016

This paper is open access.

Given that the news release mentions crystals, this lovely image illustrates the press release,

 Snow Crystal Landscape Credit: Peter Gorges

Snow Crystal Landscape Credit: Peter Gorges

The Nine Dots Prize competition for creative thinking on social issues

A new prize is being inaugurated, the $US100,000 Nine Dots Prize for creative thinking and it’s open to anyone anywhere in the world. Here’s more from an Oct. 21, 2016 article by Jane Tinkler for the Guardian (Note: Links have been removed),

In the debate over this year’s surprise award to Bob Dylan, it is easy to lose sight of the long history of prizes being used to recognise great writing (in whatever form), great research and other outstanding achievements.

The use of prizes dates back furthest in the sciences. In 1714, the British government famously offered an award of £20,000 (about £2.5 million at today’s value) to the person who could find a way of determining a ship’s longitude. British clockmaker John Harrison won the Longitude Prize and, by doing so, improved the safety of long-distance sea travel.

Prizes are now proliferating. Since 2000, more than sixty prizes of more than $100,000 (US dollars) have been created, and the field of philanthropic prize-giving is estimated to exceed £1 billion each year. Prizes are seen as ways to reward excellence, build networks, support collaboration and direct efforts towards practical and social goals. Those awarding them include philanthropists, governments and companies.

Today [Oct. 21, 2016] sees the launch of the newest kid on the prize-giving block. Drawing its name from a puzzle that can be solved only by lateral thinking, the Nine Dots prize wants to encourage creative thinking and writing that can help to tackle social problems. It is sponsored by the Kadas Prize Foundation, with the support of the Centre for Research in the Arts, Social Sciences and Humanities (CRASSH) at the University of Cambridge, and Cambridge University Press.

The Nine Dots prize is a hybrid of [three types of prizes]. There is a recognition [emphasis mine] aspect, but it doesn’t require an extensive back catalogue. The prize will be judged by a board of twelve renowned scholars, thinkers and writers. They will assess applications on an anonymised basis, so whoever wins will have done so not because of past work, but because of the strength of their ideas, and ability to communicate them effectively.

It is an incentive [emphasis mine] prize in that we ask applicants to respond to a defined question. The inaugural question is: “Are digital technologies making politics impossible?” [emphasis mine]. This is not proscriptive: applicants are encouraged to define what the question means to them, and to respond to that. We expect the submissions to be wildly varied. A new question will be set every two years, always with a focus on pressing issues that affect society. The prize’s disciplinary heartland lies in the social sciences, but responses from all fields, sectors and life experiences are welcome.

Finally, it is a resource [emphasis mine] prize in that it does not expect all the answers at the point of application. Applicants need to provide a 3,000-word summary of how they would approach the question. Board members will assess these, and the winner will then be invited to write their ideas up into a short, accessible book, that will be published by Cambridge University Press. A prize award of $100,000 (£82,000) will support the winner to take time out to think and write over a nine month period. The winner will also have the option of a term’s visiting fellowship at the University of Cambridge, to help with the writing process.

With this mix of elements, we hope the Nine Dots prize will encourage creative thinking about some of today’s most pressing issues. The winner’s book will be made freely accessible online; we hope it will capture the public’s imagination and spark a real debate.

The submission deadline is Jan. 31, 2017 and the winner announcement is May 2017. The winner’s book is to be published May 2018.

Good Luck! You can find out more about the prize and the contest rules on The Nine Dots Prize website.

Capturing neon in an organic environment

Neon observed experimentally within the pores of NiMOF-74 at 100 K and 100 bar of neon gas pressure Courtesy: Cambridge Crystallographic Data Centre (CCDC)

Neon observed experimentally within the pores of NiMOF-74 at 100 K and 100 bar of neon gas pressure Courtesy: Cambridge Crystallographic Data Centre (CCDC)

An Aug. 10, 2016 news item on Nanowerk announces the breakthrough (Note: A link has been removed),

In a new study, researchers from the Cambridge Crystallographic Data Centre (CCDC) and the U.S. Department of Energy’s (DOE’s) Argonne National Laboratory have teamed up to capture neon within a porous crystalline framework. Neon is well known for being the most unreactive element and is a key component in semiconductor manufacturing, but neon has never been studied within an organic or metal-organic framework until now.

The results (Chemical Communications, “Capturing neon – the first experimental structure of neon trapped within a metal–organic environment”), which include the critical studies carried out at the Advanced Photon Source (APS), a DOE Office of Science user facility at Argonne, also point the way towards a more economical and greener industrial process for neon production.

An Aug. 10, 2016 Cambridge Crystallographic Data Centre (CCDC) press release, which originated the news item, explains more about neon and about the new process,

Neon is an element that is well-known to the general public due to its iconic use in neon signs, especially in city centres in the United States from the 1920s to the 1960s. In recent years, the industrial use of neon has become dominated by use in excimer lasers to produce semiconductors. Despite being the fifth most abundant element in the atmosphere, the cost of pure neon gas has risen significantly over the years, increasing the demand for better ways to separate and isolate the gas.

During 2015, CCDC scientists presented a talk at the annual American Crystallographic Association (ACA) meeting on the array of elements that have been studied within an organic or metal-organic environment, challenging the crystallographic community to find the next and possibly last element to be added to the Cambridge Structural Database (CSD). A chance encounter at that meeting with Andrey Yakovenko, a beamline scientist at the Advanced Photon Source, resulted in a collaborative project to capture neon – the 95th element to be observed in the CSD.

Neon’s low reactivity, along with the weak scattering of X-rays due to its relatively low number of electrons, means that conclusive experimental observation of neon captured within a crystalline framework is very challenging. In situ high pressure gas flow experiments performed at X-Ray Science Division beamline 17-BM at the APS using the X-ray powder diffraction technique at low temperatures managed to elucidate the structure of two different metal-organic frameworks with neon gas captured within the materials.

“This is a really exciting moment representing the latest new element to be added to the CSD and quite possibly the last given the experimental and safety challenges associated with the other elements yet to be studied” said Peter Wood, Senior Research Scientist at CCDC and lead author on the paper published in Chemical Communications. “More importantly, the structures reported here show the first observation of a genuine interaction between neon and a transition metal, suggesting the potential for future design of selective neon capture frameworks”.

The structure of neon captured within the framework known as NiMOF-74, a porous framework built from nickel metal centres and organic linkers, shows clear nickel to neon interactions forming at low temperatures significantly shorter than would be expected from a typical weak contact.

Andrey Yakovenko said “These fascinating results show the great capabilities of the scientific program at 17-BM and the Advanced Photon Source. Previously we have been doing experiments at our beamline using other much heavier, and therefore easily detectable, noble gases such as xenon and krypton. However, after meeting co-authors Pete, Colin, Amy and Suzanna at the ACA meeting, we decided to perform these much more complicated experiments using the very light and inert gas – neon. In fact, only by using a combination of in situ X-ray powder diffraction measurements, low temperature and high pressure have we been able to conclusively identify the neon atom positions beyond reasonable doubt”.

Summarising the findings, Chris Cahill, Past President of the ACA and Professor of Chemistry, George Washington University said “This is a really elegant piece of in situ crystallography research and it is particularly pleasing to see the collaboration coming about through discussions at an annual ACA meeting”.

The paper describing this study is published in the journal Chemical Communications, http://dx.doi.org/10.1039/C6CC04808K. All of the crystal structures reported in the paper are available from the CCDC website: http://www.ccdc.cam.ac.uk/structures?doi=10.1039/C6CC04808K.

Here’s another link to the paper but this time with a citation for the paper,

Capturing neon – the first experimental structure of neon trapped within a metal–organic environment by
Peter A. Wood, Amy A. Sarjeant, Andrey A. Yakovenko, Suzanna C. Ward, and Colin R. Groom. Chem. Commun., 2016,52, 10048-10051 DOI: 10.1039/C6CC04808K First published online 19 Jul 2016

The paper is open access but you need a free Royal Society of Chemistry publishing personal account to access it.

Artificial pancreas in 2018?

According to Dr. Roman Hovorka and Dr. Hood Thabit of the University of Cambridge, UK, there will be an artificial pancreas assuming issues such as cybersecurity are resolved. From a June 30, 2016 Diabetologia press release on EurekAlert,

The artificial pancreas — a device which monitors blood glucose in patients with type 1 diabetes and then automatically adjusts levels of insulin entering the body — is likely to be available by 2018, conclude authors of a paper in Diabetologia (the journal of the European Association for the Study of Diabetes). Issues such as speed of action of the forms of insulin used, reliability, convenience and accuracy of glucose monitors plus cybersecurity to protect devices from hacking, are among the issues that are being addressed.

The press release describes the current technology available for diabetes type 1 patients and alternatives other than an artificial pancreas,

Currently available technology allows insulin pumps to deliver insulin to people with diabetes after taking a reading or readings from glucose meters, but these two components are separate. It is the joining together of both parts into a ‘closed loop’ that makes an artificial pancreas, explain authors Dr Roman Hovorka and Dr Hood Thabit of the University of Cambridge, UK. “In trials to date, users have been positive about how use of an artificial pancreas gives them ‘time off’ or a ‘holiday’ from their diabetes management, since the system is managing their blood sugar effectively without the need for constant monitoring by the user,” they say.

One part of the clinical need for the artificial pancreas is the variability of insulin requirements between and within individuals — on one day a person could use one third of their normal requirements, and on another 3 times what they normally would. This is dependent on the individual, their diet, their physical activity and other factors. The combination of all these factors together places a burden on people with type 1 diabetes to constantly monitor their glucose levels, to ensure they don’t end up with too much blood sugar (hyperglycaemic) or more commonly, too little (hypoglycaemic). Both of these complications can cause significant damage to blood vessels and nerve endings, making complications such as cardiovascular problems more likely.

There are alternatives to the artificial pancreas, with improvements in technology in both whole pancreas transplantation and also transplants of just the beta cells from the pancreas which produce insulin. However, recipients of these transplants require drugs to supress their immune systems just as in other organ transplants. In the case of whole pancreas transplantation, major surgery is required; and in beta cell islet transplantation, the body’s immune system can still attack the transplanted cells and kill off a large proportion of them (80% in some cases). The artificial pancreas of course avoids the need for major surgery and immunosuppressant drugs.

Researchers are working to solve one of the major problems with an artificial pancreas according to the press release,

Researchers globally continue to work on a number of challenges faced by artificial pancreas technology. One such challenge is that even fast-acting insulin analogues do not reach their peak levels in the bloodstream until 0.5 to 2 hours after injection, with their effects lasting 3 to 5 hours. So this may not be fast enough for effective control in, for example, conditions of vigorous exercise. Use of the even faster acting ‘insulin aspart’ analogue may remove part of this problem, as could use of other forms of insulin such as inhaled insulin. Work also continues to improve the software in closed loop systems to make it as accurate as possible in blood sugar management.

The press release also provides a brief outline of some of the studies being run on one artificial pancreas or another, offers an abbreviated timeline for when the medical device may be found on the market, and notes specific cybersecurity issues,

A number of clinical studies have been completed using the artificial pancreas in its various forms, in various settings such as diabetes camps for children, and real life home testing. Many of these trials have shown as good or better glucose control than existing technologies (with success defined by time spent in a target range of ideal blood glucose concentrations and reduced risk of hypoglycaemia). A number of other studies are ongoing. The authors say: “Prolonged 6- to 24-month multinational closed-loop clinical trials and pivotal studies are underway or in preparation including adults and children. As closed loop devices may be vulnerable to cybersecurity threats such as interference with wireless protocols and unauthorised data retrieval, implementation of secure communications protocols is a must.”

The actual timeline to availability of the artificial pancreas, as with other medical devices, encompasses regulatory approvals with reassuring attitudes of regulatory agencies such as the US Food and Drug Administration (FDA), which is currently reviewing one proposed artificial pancreas with approval possibly as soon as 2017. And a recent review by the UK National Institute of Health Research (NIHR) reported that automated closed-loop systems may be expected to appear in the (European) market by the end of 2018. The authors say: “This timeline will largely be dependent upon regulatory approvals and ensuring that infrastructures and support are in place for healthcare professionals providing clinical care. Structured education will need to continue to augment efficacy and safety.”

The authors say: “Cost-effectiveness of closed-loop is to be determined to support access and reimbursement. In addition to conventional endpoints such as blood sugar control, quality of life is to be included to assess burden of disease management and hypoglycaemia. Future research may include finding out which sub-populations may benefit most from using an artificial pancreas. Research is underway to evaluate these closed-loop systems in the very young, in pregnant women with type 1 diabetes, and in hospital in-patients who are suffering episodes of hyperglycaemia.”

They conclude: “Significant milestones moving the artificial pancreas from laboratory to free-living unsupervised home settings have been achieved in the past decade. Through inter-disciplinary collaboration, teams worldwide have accelerated progress and real-world closed-loop applications have been demonstrated. Given the challenges of beta-cell transplantation, closed-loop technologies are, with continuing innovation potential, destined to provide a viable alternative for existing insulin pump therapy and multiple daily insulin injections.”

Here’s a link to and a citation for the paper,

Coming of age: the artificial pancreas for type 1 diabetes by Hood Thabit, Roman Hovorka. Diabetologia (2016). doi:10.1007/s00125-016-4022-4 First Online: 30 June 2016

This is an open access paper.

‘Getting into’ cellulose walls at the University of Cambridge (UK) and University of Melbourne (Australia)

“Getting into” as used in the headline is slang for exploring a topic in more depth which is what an international team of researchers did when they ‘got into’ cellulose. From a June 9, 2016 news item on phys.org (Note: Links have been removed),

In the search for low emission plant-based fuels, new research may help avoid having to choose between growing crops for food or fuel.

Scientists have identified new steps in the way plants produce cellulose, the component of plant cell walls that provides strength, and forms insoluble fibre in the human diet.

The findings could lead to improved production of cellulose and guide plant breeding for specific uses such as wood products and ethanol fuel, which are sustainable alternatives to fossil fuel-based products.

Published in the journal Nature Communications today, the work was conducted by an international team of scientists, led by the University of Cambridge and the University of Melbourne.

A June 9, 2016 University of Cambridge press release, which originated the news item, provides more detail,

“Our research identified several proteins that are essential in the assembly of the protein machinery that makes cellulose”, said Melbourne’s Prof Staffan Persson.

“We found that these assembly factors control how much cellulose is made, and so plants without them can not produce cellulose very well and the defect substantially impairs plant biomass production. The ultimate aim of this research would be breed plants that have altered activity of these proteins so that cellulose production can be improved for the range of applications that use cellulose including paper, timber and ethanol fuels.”

The newly discovered proteins are located in an intracellular compartment called the Golgi where proteins are sorted and modified.

“If the function of this protein family is abolished the cellulose synthesizing complexes become stuck in the Golgi and have problems reaching the cell surface where they normally are active” said the lead authors of the study, Drs. Yi Zhang (Max-Planck Institute for Molecular Plant Physiology) and Nino Nikolovski (University of Cambridge).

“We therefore named the new proteins STELLO, which is Greek for to set in place, and deliver.”

“The findings are important to understand how plants produce their biomass”, said Professor Paul Dupree from the University of Cambridge’s Department of Biochemistry.

“Greenhouse-gas emissions from cellulosic ethanol, which is derived from the biomass of plants, are estimated to be roughly 85 percent less than from fossil fuel sources. Research to understand cellulose production in plants is therefore an important part of climate change mitigation.”

“In addition, by using cellulosic plant materials we get around the problem of food-versus-fuel scenario that is problematic when using corn as a basis for bioethanol.”

“It is therefore of great importance to find genes and mechanisms that can improve cellulose production in plants so that we can tailor cellulose production for various needs.”

Previous studies by Profs. Persson’s and Dupree’s research groups have, together with other scientists, identified many proteins that are important for cellulose synthesis and for other cell wall polymers.

With the newly presented research they substantially increase our understanding for how the bulk of a plant’s biomass is produced and is therefore of vast importance to industrial applications.

Here’s a link to and a citation for the paper,

Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis by Yi Zhang, Nino Nikolovski, Mathias Sorieul, Tamara Vellosillo, Heather E. McFarlane, Ray Dupree, Christopher Kesten, René Schneider, Carlos Driemeier, Rahul Lathe, Edwin Lampugnani, Xiaolan Yu, Alexander Ivakov, Monika S. Doblin, Jenny C. Mortimer, Steven P. Brown, Staffan Persson, & Paul Dupree. Nature Communications 7,
Article number: 11656 doi:10.1038/ncomms11656 Published  09 June 2016

This paper is open access.

Squeezing out ‘polymer opals’ for smart clothing and more

Researchers at the University of Cambridge have developed a technology for producing ‘polymer opals’ on industrial scales according to a June 3, 2016 news item on Nanowerk (Note: A link has been removed),

Using a new method called Bend-Induced-Oscillatory-Shearing (BIOS), the researchers are now able to produce hundreds of metres of these materials, known as ‘polymer opals’, on a roll-to-roll process. The results are reported in the journal Nature Communications (“Large-scale ordering of nanoparticles using viscoelastic shear processing”).

A June 3, 2016 University of Cambridge press release (also on EurekAlert), which originated the news item, provides more detail (Note: Links have been removed),

Researchers have devised a new method for stacking microscopic marbles into regular layers, producing intriguing materials which scatter light into intense colours, and which change colour when twisted or stretched.

Some of the brightest colours in nature can be found in opal gemstones, butterfly wings and beetles. These materials get their colour not from dyes or pigments, but from the systematically-ordered microstructures they contain.

The team behind the current research, based at Cambridge’s Cavendish Laboratory, have been working on methods of artificially recreating this ‘structural colour’ for several years, but to date, it has been difficult to make these materials using techniques that are cheap enough to allow their widespread use.

In order to make the polymer opals, the team starts by growing vats of transparent plastic nano-spheres. Each tiny sphere is solid in the middle but sticky on the outside. The spheres are then dried out into a congealed mass. By bending sheets containing a sandwich of these spheres around successive rollers the balls are magically forced into perfectly arranged stacks, by which stage they have intense colour.

By changing the sizes of the starting nano-spheres, different colours (or wavelengths) of light are reflected. And since the material has a rubber-like consistency, when it is twisted and stretched, the spacing between the spheres changes, causing the material to change colour. When stretched, the material shifts into the blue range of the spectrum, and when compressed, the colour shifts towards red. When released, the material returns to its original colour. Such chameleon materials could find their way into colour-changing wallpapers, or building coatings that reflect away infrared thermal radiation.

I always like it when there are quotes which seem spontaneous (from the press release),

“Finding a way to coax objects a billionth of a metre across into perfect formation over kilometre scales is a miracle [emphasis mine],” said Professor Jeremy Baumberg, the paper’s senior author. “But spheres are only the first step, as it should be applicable to more complex architectures on tiny scales.”

In order to make polymer opals in large quantities, the team first needed to understand their internal structure so that it could be replicated. Using a variety of techniques, including electron microscopy, x-ray scattering, rheology and optical spectroscopy, the researchers were able to see the three-dimensional position of the spheres within the material, measure how the spheres slide past each other, and how the colours change.

“It’s wonderful [emphasis mine] to finally understand the secrets of these attractive films,” said PhD student Qibin Zhao, the paper’s lead author.

There’s also the commercialization aspect to this work (from the press release),

Cambridge Enterprise, the University’s commercialisation arm which is helping to commercialise the material, has been contacted by more than 100 companies interested in using polymer opals, and a new spin-out Phomera Technologies has been founded. Phomera will look at ways of scaling up production of polymer opals, as well as selling the material to potential buyers. Possible applications the company is considering include coatings for buildings to reflect heat, smart clothing and footwear, or for banknote security [emphasis mine] and packaging applications.

There is a Canadian company already selling its anti-counterfeiting (banknote security) bioinspired technology. It’s called Opalux and it’s not the only bioinspired anti-counterfeiting Canadian technology company, there’s also NanoTech Security which takes its inspiration from a butterfly (Blue Morpho) wing.

Getting back to Cambridge, here’s a link to and a citation for the research team’s paper,

Large-scale ordering of nanoparticles using viscoelastic shear processing by Qibin Zhao, Chris E. Finlayson, David R. E. Snoswell, Andrew Haines, Christian Schäfer, Peter Spahn, Goetz P. Hellmann, Andrei V. Petukhov, Lars Herrmann, Pierre Burdet, Paul A. Midgley, Simon Butler, Malcolm Mackley, Qixin Guo, & Jeremy J. Baumberg. Nature Communications 7, Article number: 11661  doi:10.1038/ncomms11661 Published 03 June 2016

This paper is open access.

There is a video demonstrating the stretchability of their ‘polymer opal’ film

It was posted on YouTube three years ago when the researchers were first successful. It’s nice to see they’ve been successful at getting the technology to the commercialization stage.

The song is you: a McGill University, University of Cambridge, and Stanford University research collaboration

These days I’m thinking about sound, music, spoken word, and more as I prepare for a new art/science piece. It’s very early stages so I don’t have much more to say about it but along those lines of thought, there’s a recent piece of research on music and personality that caught my eye. From a May 11, 2016 news item on phys.org,

A team of scientists from McGill University, the University of Cambridge, and Stanford Graduate School of Business developed a new method of coding and categorizing music. They found that people’s preference for these musical categories is driven by personality. The researchers say the findings have important implications for industry and health professionals.

A May 10, 2016 McGill University news release, which originated the news item, provides some fascinating suggestions for new categories for music,

There are a multitude of adjectives that people use to describe music, but in a recent study to be published this week in the journal Social Psychological and Personality Science, researchers show that musical attributes can be grouped into three categories. Rather than relying on the genre or style of a song, the team of scientists led by music psychologist David Greenberg with the help of Daniel J. Levitin from McGill University mapped the musical attributes of song excerpts from 26 different genres and subgenres, and then applied a statistical procedure to group them into clusters. The study revealed three clusters, which they labeled Arousal, Valence, and Depth. Arousal describes intensity and energy in music; Valence describes the spectrum of emotions in music (from sad to happy); and Depth describes intellect and sophistication in music. They also found that characteristics describing music from a single genre (both rock and jazz separately) could be grouped in these same three categories.

The findings suggest that this may be a useful alternative to grouping music into genres, which is often based on social connotations rather than the attributes of the actual music. It also suggests that those in academia and industry (e.g. Spotify and Pandora) that are already coding music on a multitude of attributes might save time and money by coding music around these three composite categories instead.

The researchers also conducted a second study of nearly 10,000 Facebook users who indicated their preferences for 50 musical excerpts from different genres. The researchers were then able to map preferences for these three attribute categories onto five personality traits and 30 detailed personality facets. For example, they found people who scored high on Openness to Experience preferred Depth in music, while Extraverted excitement-seekers preferred high Arousal in music. And those who scored high on Neuroticism preferred negative emotions in music, while those who were self-assured preferred positive emotions in music. As the title from the old Kern and Hammerstein song suggests, “The Song is You”. That is, the musical attributes that you like most reflect your personality. It also provides scientific support for what Joni Mitchell said in a 2013 interview with the CBC: “The trick is if you listen to that music and you see me, you’re not getting anything out of it. If you listen to that music and you see yourself, it will probably make you cry and you’ll learn something about yourself and now you’re getting something out of it.”

The researchers hope that this information will not only be helpful to music therapists but also for health care professions and even hospitals. For example, recent evidence has showed that music listening can increase recovery after surgery. The researchers argue that information about music preferences and personality could inform a music listening protocol after surgery to boost recovery rates.

The article is another in a series of studies that Greenberg and his team have published on music and personality. This past July [2015], they published an article in PLOS ONE showing that people’s musical preferences are linked to thinking styles. And in October [2015], they published an article in the Journal of Research in Personality, identifying the personality trait Openness to Experience as a key predictor of musical ability, even in non-musicians. These series of studies tell us that there are close links between our personality and musical behavior that may be beyond our control and awareness.

Readers can find out how they score on the music and personality quizzes at www.musicaluniverse.org.

David M. Greenberg, lead author from Cambridge University and City University of New York said: “Genre labels are informative but we’re trying to transcend them and move in a direction that points to the detailed characteristics in music that are driving people preferences and emotional reactions.”

Greenberg added: “As a musician, I see how vast the powers of music really are, and unfortunately, many of us do not use music to its full potential. Our ultimate goal is to create science that will help enhance the experience of listening to music. We want to use this information about personality and preferences to increase the day-to-day enjoyment and peak experiences people have with music.”

William Hoffman in a May 11, 2016 article for Inverse describes the work in connection with recently released new music from Radiohead and an upcoming release from Chance the Rapper (along with a brief mention of Drake), Note: Links have been removed,

Music critics regularly scour Thesaurus.com for the best adjectives to throw into their perfectly descriptive melodious disquisitions on the latest works from Drake, Radiohead, or whomever. And listeners of all walks have, since the beginning of music itself, been guilty of lazily pigeonholing artists into numerous socially constructed genres. But all of that can be (and should be) thrown out the window now, because new research suggests that, to perfectly match music to a listener’s personality, all you need are these three scientific measurables [arousal, valence, depth].

This suggests that a slow, introspective gospel song from Chance The Rapper’s upcoming album could have the same depth as a track from Radiohead’s A Moon Shaped Pool. So a system of categorization based on Greenberg’s research would, surprisingly but rightfully, place the rap and rock works in the same bin.

Here’s a link to and a citation for the latest paper,

The Song Is You: Preferences for Musical Attribute Dimensions Reflect Personality by David M. Greenberg, Michal Kosinski, David J. Stillwell, Brian L. Monteiro, Daniel J. Levitin, and Peter J. Rentfrow. Social Psychological and Personality Science, 1948550616641473, first published on May 9, 2016

This paper is behind a paywall.

Here’s a link to and a citation for the October 2015 paper

Personality predicts musical sophistication by David M. Greenberg, Daniel Müllensiefen, Michael E. Lamb, Peter J. Rentfrow. Journal of Research in Personality Volume 58, October 2015, Pages 154–158 doi:10.1016/j.jrp.2015.06.002 Note: A Feb. 2016 erratum is also listed.

The paper is behind a paywall and it looks as if you will have to pay for it and for the erratum separately.

Here’s a link to and a citation for the July 2015 paper,

Musical Preferences are Linked to Cognitive Styles by David M. Greenberg, Simon Baron-Cohen, David J. Stillwell, Michal Kosinski, Peter J. Rentfrow. PLOS [Public Library of Science ONE]  http://dx.doi.org/10.1371/journal.pone.0131151 Published: July 22, 2015

This paper is open access.

I tried out the research project’s website: The Musical Universe. by filling out the Musical Taste questionnaire. Unfortunately, I did not receive my results. Since the team’s latest research has just been reported, I imagine there are many people trying do the same thing. It might be worth your while to wait a bit if you want to try this out or you can fill out one of their other questionnaires. Oh, and you might want to allot at least 20 mins.

With over 150 partners from over 20 countries, the European Union’s Graphene Flagship research initiative unveils its work package devoted to biomedical technologies

An April 11, 2016 news item on Nanowerk announces the Graphene Flagship’s latest work package,

With a budget of €1 billion, the Graphene Flagship represents a new form of joint, coordinated research on an unprecedented scale, forming Europe’s biggest ever research initiative. It was launched in 2013 to bring together academic and industrial researchers to take graphene from the realm of academic laboratories into European society in the timeframe of 10 years. The initiative currently involves over 150 partners from more than 20 European countries. The Graphene Flagship, coordinated by Chalmers University of Technology (Sweden), is implemented around 15 scientific Work Packages on specific science and technology topics, such as fundamental science, materials, health and environment, energy, sensors, flexible electronics and spintronics.

Today [April 11, 2016], the Graphene Flagship announced in Barcelona the creation of a new Work Package devoted to Biomedical Technologies, one emerging application area for graphene and other 2D materials. This initiative is led by Professor Kostas Kostarelos, from the University of Manchester (United Kingdom), and ICREA Professor Jose Antonio Garrido, from the Catalan Institute of Nanoscience and Nanotechnology (ICN2, Spain). The Kick-off event, held in the Casa Convalescència of the Universitat Autònoma de Barcelona (UAB), is co-organised by ICN2 (ICREA Prof Jose Antonio Garrido), Centro Nacional de Microelectrónica (CNM-IMB-CSIC, CIBER-BBN; CSIC Tenured Scientist Dr Rosa Villa), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS; ICREA Prof Mavi Sánchez-Vives).

An April 11, 2016 ICN2 press release, which originated the news item, provides more detail about the Biomedical Technologies work package and other work packages,

The new Work Package will focus on the development of implants based on graphene and 2D-materials that have therapeutic functionalities for specific clinical outcomes, in disciplines such as neurology, ophthalmology and surgery. It will include research in three main areas: Materials Engineering; Implant Technology & Engineering; and Functionality and Therapeutic Efficacy. The objective is to explore novel implants with therapeutic capacity that will be further developed in the next phases of the Graphene Flagship.

The Materials Engineering area will be devoted to the production, characterisation, chemical modification and optimisation of graphene materials that will be adopted for the design of implants and therapeutic element technologies. Its results will be applied by the Implant Technology and Engineering area on the design of implant technologies. Several teams will work in parallel on retinal, cortical, and deep brain implants, as well as devices to be applied in the periphery nerve system. Finally, The Functionality and Therapeutic Efficacy area activities will centre on development of devices that, in addition to interfacing the nerve system for recording and stimulation of electrical activity, also have therapeutic functionality.

Stimulation therapies will focus on the adoption of graphene materials in implants with stimulation capabilities in Parkinson’s, blindness and epilepsy disease models. On the other hand, biological therapies will focus on the development of graphene materials as transport devices of biological molecules (nucleic acids, protein fragments, peptides) for modulation of neurophysiological processes. Both approaches involve a transversal innovation environment that brings together the efforts of different Work Packages within the Graphene Flagship.

A leading role for Barcelona in Graphene and 2D-Materials

The kick-off meeting of the new Graphene Flagship Work Package takes place in Barcelona because of the strong involvement of local institutions and the high international profile of Catalonia in 2D-materials and biomedical research. Institutions such as the Catalan Institute of Nanoscience and Nanotechnology (ICN2) develop frontier research in a supportive environment which attracts talented researchers from abroad, such as ICREA Research Prof Jose Antonio Garrido, Group Leader of the ICN2 Advanced Electronic Materials and Devices Group and now also Deputy Leader of the Biomedical Technologies Work Package. Until summer 2015 he was leading a research group at the Technische Universität München (Germany).

Further Graphene Flagship events in Barcelona are planned; in May 2016 ICN2 will also host a meeting of the Spintronics Work Package. ICREA Prof Stephan Roche, Group Leader of the ICN2 Theoretical and Computational Nanoscience Group, is the deputy leader of this Work Package led by Prof Bart van Wees, from the University of Groningen (The Netherlands). Another Work Package, on optoelectronics, is led by Prof Frank Koppens from the Institute of Photonic Sciences (ICFO, Spain), with Prof Andrea Ferrari from the University of Cambridge (United Kingdom) as deputy. Thus a number of prominent research institutes in Barcelona are deeply involved in the coordination of this European research initiative.

Kostas Kostarelos, the leader of the Biomedical Technologies Graphene Flagship work package, has been mentioned here before in the context of his blog posts for The Guardian science blog network (see my Aug. 7, 2014 post for a link to his post on metaphors used in medicine).