Tag Archives: University of Cambridge

The song is you: a McGill University, University of Cambridge, and Stanford University research collaboration

These days I’m thinking about sound, music, spoken word, and more as I prepare for a new art/science piece. It’s very early stages so I don’t have much more to say about it but along those lines of thought, there’s a recent piece of research on music and personality that caught my eye. From a May 11, 2016 news item on phys.org,

A team of scientists from McGill University, the University of Cambridge, and Stanford Graduate School of Business developed a new method of coding and categorizing music. They found that people’s preference for these musical categories is driven by personality. The researchers say the findings have important implications for industry and health professionals.

A May 10, 2016 McGill University news release, which originated the news item, provides some fascinating suggestions for new categories for music,

There are a multitude of adjectives that people use to describe music, but in a recent study to be published this week in the journal Social Psychological and Personality Science, researchers show that musical attributes can be grouped into three categories. Rather than relying on the genre or style of a song, the team of scientists led by music psychologist David Greenberg with the help of Daniel J. Levitin from McGill University mapped the musical attributes of song excerpts from 26 different genres and subgenres, and then applied a statistical procedure to group them into clusters. The study revealed three clusters, which they labeled Arousal, Valence, and Depth. Arousal describes intensity and energy in music; Valence describes the spectrum of emotions in music (from sad to happy); and Depth describes intellect and sophistication in music. They also found that characteristics describing music from a single genre (both rock and jazz separately) could be grouped in these same three categories.

The findings suggest that this may be a useful alternative to grouping music into genres, which is often based on social connotations rather than the attributes of the actual music. It also suggests that those in academia and industry (e.g. Spotify and Pandora) that are already coding music on a multitude of attributes might save time and money by coding music around these three composite categories instead.

The researchers also conducted a second study of nearly 10,000 Facebook users who indicated their preferences for 50 musical excerpts from different genres. The researchers were then able to map preferences for these three attribute categories onto five personality traits and 30 detailed personality facets. For example, they found people who scored high on Openness to Experience preferred Depth in music, while Extraverted excitement-seekers preferred high Arousal in music. And those who scored high on Neuroticism preferred negative emotions in music, while those who were self-assured preferred positive emotions in music. As the title from the old Kern and Hammerstein song suggests, “The Song is You”. That is, the musical attributes that you like most reflect your personality. It also provides scientific support for what Joni Mitchell said in a 2013 interview with the CBC: “The trick is if you listen to that music and you see me, you’re not getting anything out of it. If you listen to that music and you see yourself, it will probably make you cry and you’ll learn something about yourself and now you’re getting something out of it.”

The researchers hope that this information will not only be helpful to music therapists but also for health care professions and even hospitals. For example, recent evidence has showed that music listening can increase recovery after surgery. The researchers argue that information about music preferences and personality could inform a music listening protocol after surgery to boost recovery rates.

The article is another in a series of studies that Greenberg and his team have published on music and personality. This past July [2015], they published an article in PLOS ONE showing that people’s musical preferences are linked to thinking styles. And in October [2015], they published an article in the Journal of Research in Personality, identifying the personality trait Openness to Experience as a key predictor of musical ability, even in non-musicians. These series of studies tell us that there are close links between our personality and musical behavior that may be beyond our control and awareness.

Readers can find out how they score on the music and personality quizzes at www.musicaluniverse.org.

David M. Greenberg, lead author from Cambridge University and City University of New York said: “Genre labels are informative but we’re trying to transcend them and move in a direction that points to the detailed characteristics in music that are driving people preferences and emotional reactions.”

Greenberg added: “As a musician, I see how vast the powers of music really are, and unfortunately, many of us do not use music to its full potential. Our ultimate goal is to create science that will help enhance the experience of listening to music. We want to use this information about personality and preferences to increase the day-to-day enjoyment and peak experiences people have with music.”

William Hoffman in a May 11, 2016 article for Inverse describes the work in connection with recently released new music from Radiohead and an upcoming release from Chance the Rapper (along with a brief mention of Drake), Note: Links have been removed,

Music critics regularly scour Thesaurus.com for the best adjectives to throw into their perfectly descriptive melodious disquisitions on the latest works from Drake, Radiohead, or whomever. And listeners of all walks have, since the beginning of music itself, been guilty of lazily pigeonholing artists into numerous socially constructed genres. But all of that can be (and should be) thrown out the window now, because new research suggests that, to perfectly match music to a listener’s personality, all you need are these three scientific measurables [arousal, valence, depth].

This suggests that a slow, introspective gospel song from Chance The Rapper’s upcoming album could have the same depth as a track from Radiohead’s A Moon Shaped Pool. So a system of categorization based on Greenberg’s research would, surprisingly but rightfully, place the rap and rock works in the same bin.

Here’s a link to and a citation for the latest paper,

The Song Is You: Preferences for Musical Attribute Dimensions Reflect Personality by David M. Greenberg, Michal Kosinski, David J. Stillwell, Brian L. Monteiro, Daniel J. Levitin, and Peter J. Rentfrow. Social Psychological and Personality Science, 1948550616641473, first published on May 9, 2016

This paper is behind a paywall.

Here’s a link to and a citation for the October 2015 paper

Personality predicts musical sophistication by David M. Greenberg, Daniel Müllensiefen, Michael E. Lamb, Peter J. Rentfrow. Journal of Research in Personality Volume 58, October 2015, Pages 154–158 doi:10.1016/j.jrp.2015.06.002 Note: A Feb. 2016 erratum is also listed.

The paper is behind a paywall and it looks as if you will have to pay for it and for the erratum separately.

Here’s a link to and a citation for the July 2015 paper,

Musical Preferences are Linked to Cognitive Styles by David M. Greenberg, Simon Baron-Cohen, David J. Stillwell, Michal Kosinski, Peter J. Rentfrow. PLOS [Public Library of Science ONE]  http://dx.doi.org/10.1371/journal.pone.0131151 Published: July 22, 2015

This paper is open access.

I tried out the research project’s website: The Musical Universe. by filling out the Musical Taste questionnaire. Unfortunately, I did not receive my results. Since the team’s latest research has just been reported, I imagine there are many people trying do the same thing. It might be worth your while to wait a bit if you want to try this out or you can fill out one of their other questionnaires. Oh, and you might want to allot at least 20 mins.

With over 150 partners from over 20 countries, the European Union’s Graphene Flagship research initiative unveils its work package devoted to biomedical technologies

An April 11, 2016 news item on Nanowerk announces the Graphene Flagship’s latest work package,

With a budget of €1 billion, the Graphene Flagship represents a new form of joint, coordinated research on an unprecedented scale, forming Europe’s biggest ever research initiative. It was launched in 2013 to bring together academic and industrial researchers to take graphene from the realm of academic laboratories into European society in the timeframe of 10 years. The initiative currently involves over 150 partners from more than 20 European countries. The Graphene Flagship, coordinated by Chalmers University of Technology (Sweden), is implemented around 15 scientific Work Packages on specific science and technology topics, such as fundamental science, materials, health and environment, energy, sensors, flexible electronics and spintronics.

Today [April 11, 2016], the Graphene Flagship announced in Barcelona the creation of a new Work Package devoted to Biomedical Technologies, one emerging application area for graphene and other 2D materials. This initiative is led by Professor Kostas Kostarelos, from the University of Manchester (United Kingdom), and ICREA Professor Jose Antonio Garrido, from the Catalan Institute of Nanoscience and Nanotechnology (ICN2, Spain). The Kick-off event, held in the Casa Convalescència of the Universitat Autònoma de Barcelona (UAB), is co-organised by ICN2 (ICREA Prof Jose Antonio Garrido), Centro Nacional de Microelectrónica (CNM-IMB-CSIC, CIBER-BBN; CSIC Tenured Scientist Dr Rosa Villa), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS; ICREA Prof Mavi Sánchez-Vives).

An April 11, 2016 ICN2 press release, which originated the news item, provides more detail about the Biomedical Technologies work package and other work packages,

The new Work Package will focus on the development of implants based on graphene and 2D-materials that have therapeutic functionalities for specific clinical outcomes, in disciplines such as neurology, ophthalmology and surgery. It will include research in three main areas: Materials Engineering; Implant Technology & Engineering; and Functionality and Therapeutic Efficacy. The objective is to explore novel implants with therapeutic capacity that will be further developed in the next phases of the Graphene Flagship.

The Materials Engineering area will be devoted to the production, characterisation, chemical modification and optimisation of graphene materials that will be adopted for the design of implants and therapeutic element technologies. Its results will be applied by the Implant Technology and Engineering area on the design of implant technologies. Several teams will work in parallel on retinal, cortical, and deep brain implants, as well as devices to be applied in the periphery nerve system. Finally, The Functionality and Therapeutic Efficacy area activities will centre on development of devices that, in addition to interfacing the nerve system for recording and stimulation of electrical activity, also have therapeutic functionality.

Stimulation therapies will focus on the adoption of graphene materials in implants with stimulation capabilities in Parkinson’s, blindness and epilepsy disease models. On the other hand, biological therapies will focus on the development of graphene materials as transport devices of biological molecules (nucleic acids, protein fragments, peptides) for modulation of neurophysiological processes. Both approaches involve a transversal innovation environment that brings together the efforts of different Work Packages within the Graphene Flagship.

A leading role for Barcelona in Graphene and 2D-Materials

The kick-off meeting of the new Graphene Flagship Work Package takes place in Barcelona because of the strong involvement of local institutions and the high international profile of Catalonia in 2D-materials and biomedical research. Institutions such as the Catalan Institute of Nanoscience and Nanotechnology (ICN2) develop frontier research in a supportive environment which attracts talented researchers from abroad, such as ICREA Research Prof Jose Antonio Garrido, Group Leader of the ICN2 Advanced Electronic Materials and Devices Group and now also Deputy Leader of the Biomedical Technologies Work Package. Until summer 2015 he was leading a research group at the Technische Universität München (Germany).

Further Graphene Flagship events in Barcelona are planned; in May 2016 ICN2 will also host a meeting of the Spintronics Work Package. ICREA Prof Stephan Roche, Group Leader of the ICN2 Theoretical and Computational Nanoscience Group, is the deputy leader of this Work Package led by Prof Bart van Wees, from the University of Groningen (The Netherlands). Another Work Package, on optoelectronics, is led by Prof Frank Koppens from the Institute of Photonic Sciences (ICFO, Spain), with Prof Andrea Ferrari from the University of Cambridge (United Kingdom) as deputy. Thus a number of prominent research institutes in Barcelona are deeply involved in the coordination of this European research initiative.

Kostas Kostarelos, the leader of the Biomedical Technologies Graphene Flagship work package, has been mentioned here before in the context of his blog posts for The Guardian science blog network (see my Aug. 7, 2014 post for a link to his post on metaphors used in medicine).

Sir Mark Welland, nanoscientist, elected as master of St. Catharine’s College in Cambridge (UK)

I first tripped across Mark Welland’s work at the University of Cambridge in 2008 when I was working on my Nanotech Mysteries wiki. a project for my maser’s. While I did not manage to speak to him directly, I did speak with his secretary and got permission to reproduce some images in the wiki. I have mentioned Welland and his work here from time to time, my April 30, 2010 posting (scroll down about 30% of the way) probably offers the best summary of the parts of his work I’ve stumbled across. There’s also a Cambridge video about nanotechnology  featuring Stephen Fry as its host and, if memory serves, an interview with Welland.

Since those days he has become Sir Mark Welland and a Feb. 22, 2016 University of Cambridge press release announces the latest news,

The Fellows of St Catharine’s have elected Professor Sir Mark Welland as the next Master of the College.

Professor Sir Mark Welland is Professor of Nanotechnology and Head of Electrical Engineering at the University of Cambridge, where he has established the purpose-built Nanoscience Centre.

Sir Mark is currently researching into a broad range of both fundamental and applied problems. These include using nanotechnology to both understand and treat human diseases, biologically inspired nanomaterials for green technologies, and nanoelectronics for future generation energy transmission and sensing.

From April 2008 until May 2012, Sir Mark was Chief Scientific Adviser to the UK Government Ministry of Defence.

He was elected a Fellow of the Royal Society, a Fellow of the Royal Academy of Engineering, and a Fellow of the Institute of Physics in 2002, a Foreign Fellow of the National Academy of Sciences of India in 2008, and a Foreign Fellow of the Danish Academy of Sciences in 2010.

Sir Mark was awarded a Knighthood in the Queen’s Birthday Honours list in 2011.

Sir Mark brings to the College unrivalled national and international experience and expertise, as well as a thorough understanding of the University and the way it can engage with the wider world.

Sir Mark said: “I am in equal measures humbled and excited at being elected as Master and am looking forward to supporting the Fellows, students and staff of St Catharine’s over the next years.”

“I am honoured to be following Dame Jean, who has set a very high standard of leadership and intellectual rigour.”

Dame Jean said: “The Fellows have elected a distinguished scientist as the 39th Master to lead the College in the next phase of its 543-year history. Sir Mark will find a welcoming and flourishing community at St Catharine’s. I offer him my warmest congratulations on his election, I wish him well for the future, and I hope he will be as happy at St Catharine’s as I have been for almost ten years.”

A Feb. 22, 2016 news item about Welland’s election as Master of St. Catharine’s College for Cambridge News notes the age of the college,

Prof Sir Mark Welland, the university’s current head of electrical engineering, will take up the role in September, succeeding Prof Dame Jean Thomas, who will step down after nine years in charge.

He will be the 39th master of the college, which was founded in 1473 [emphasis mine] and has a population of nearly 800 current students and nearly 60 fellows.

Congratulations Sir Mark!

I note in passing that Canada will be celebrating its 150th anniversary as a country in 2017.

Combining gold and palladium for catalytic and plasmonic octopods

Hopefully I did not the change meaning when I made the title for this piece more succinct. In any event, this research comes from the always prolific Rice University in Texas, US (from a Nov. 30, 2015 news item on Nanotechnology Now),

Catalysts are substances that speed up chemical reactions and are essential to many industries, including petroleum, food processing and pharmaceuticals. Common catalysts include palladium and platinum, both found in cars’ catalytic converters. Plasmons are waves of electrons that oscillate in particles, usually metallic, when excited by light. Plasmonic metals like gold and silver can be used as sensors in biological applications and for chemical detection, among others.

Plasmonic materials are not the best catalysts, and catalysts are typically very poor for plasmonics. But combining them in the right way shows promise for industrial and scientific applications, said Emilie Ringe, a Rice assistant professor of materials science and nanoengineering and of chemistry who led the study that appears in Scientific Reports.

“Plasmonic particles are magnets for light,” said Ringe, who worked on the project with colleagues in the U.S., the United Kingdom and Germany. “They couple with light and create big electric fields that can drive chemical processes. By combining these electric fields with a catalytic surface, we could further push chemical reactions. That’s why we’re studying how palladium and gold can be incorporated together.”

The researchers created eight-armed specks of gold and coated them with a gold-palladium alloy. The octopods proved to be efficient catalysts and sensors.

A Nov. 30, 2015 Rice University news release (also on EurekAlert), which originated the news item, expands on the theme,

“If you simply mix gold and palladium, you may end up with a bad plasmonic material and a pretty bad catalyst, because palladium does not attract light like gold does,” Ringe said. “But our particles have gold cores with palladium at the tips, so they retain their plasmonic properties and the surfaces are catalytic.”

Just as important, Ringe said, the team established characterization techniques that will allow scientists to tune application-specific alloys that report on their catalytic activity in real time.

The researchers analyzed octopods with a variety of instruments, including Rice’s new Titan Themis microscope, one of the most powerful electron microscopes in the nation. “We confirmed that even though we put palladium on a particle, it’s still capable of doing everything that a similar gold shape would do. That’s really a big deal,” she said.

“If you shine a light on these nanoparticles, it creates strong electric fields. Those fields enhance the catalysis, but they also report on the catalysis and the molecules present at the surface of the particles,” Ringe said.

The researchers used electron energy loss spectroscopy, cathodoluminescence and energy dispersive X-ray spectroscopy to make 3-D maps of the electric fields produced by exciting the plasmons. They found that strong fields were produced at the palladium-rich tips, where plasmons were the least likely to be excited.

Ringe expects further research will produce multifunctional nanoparticles in a variety of shapes that can be greatly refined for applications. Her own Rice lab is working on a metal catalyst to turn inert petroleum derivatives into backbone molecules for novel drugs.

Here’s a link to and a citation for the paper,

Resonances of nanoparticles with poor plasmonic metal tips by Emilie Ringe, Christopher J. DeSantis, Sean M. Collins, Martial Duchamp, Rafal E. Dunin-Borkowski, Sara E. Skrabalak, & Paul A. Midgley.  Scientific Reports 5, Article number: 17431 (2015)  doi:10.1038/srep17431 Published online: 30 November 2015

This is an open access paper,

Policy makers, beware experts! And, evidence too

There is much to admire in this new research but there’s also a troubling conflation.

An Oct. 14, 2015 University of Cambridge press release (also on EurekAlert) cautions policy makers about making use of experts,

The accuracy and reliability of expert advice is often compromised by “cognitive frailties”, and needs to be interrogated with the same tenacity as research data to avoid weak and ill-informed policy, warn two leading risk analysis and conservation researchers in the journal Nature today.

While many governments aspire to evidence-based policy [emphasis mine], the researchers say the evidence on experts themselves actually shows that they are highly susceptible to “subjective influences” – from individual values and mood, to whether they stand to gain or lose from a decision – and, while highly credible, experts often vastly overestimate their objectivity and the reliability of peers.

They appear to be conflating evidence and expertise. Evidence usually means data while expertise is a more ephemeral concept. (Presumably, an expert is someone whose opinion is respected for one reason or another and who has studied the evidence and drawn some conclusions from it.)

The study described in the press release notes that one of the weaknesses of relying on experts is that they are subject to bias. They don’t mention that evidence or data can also be subject to bias but perhaps that’s why they suggest the experts should provide and assess the evidence on which they are basing their advice,

The researchers caution that conventional approaches of informing policy by seeking advice from either well-regarded individuals or assembling expert panels needs to be balanced with methods that alleviate the effects of psychological and motivational bias.

They offer a straightforward framework for improving expert advice, and say that experts should provide and assess [emphasis mine] evidence on which decisions are made – but not advise decision makers directly, which can skew impartiality.

“We are not advocating replacing evidence with expert judgements, rather we suggest integrating and improving them,” write professors William Sutherland and Mark Burgman from the universities of Cambridge and Melbourne respectively.

“Policy makers use expert evidence as though it were data. So they should treat expert estimates with the same critical rigour that must be applied to data,” they write.

“Experts must be tested, their biases minimised, their accuracy improved, and their estimates validated with independent evidence. Put simply, experts should be held accountable for their opinions.”

Sutherland and Burgman point out that highly regarded experts are routinely shown to be no better than novices at making judgements.

However, several processes have been shown to improve performances across the spectrum, they say, such as ‘horizon scanning’ – identifying all possible changes and threats – and ‘solution scanning’ – listing all possible options, using both experts and evidence, to reduce the risk of overlooking valuable alternatives.

To get better answers from experts, they need better, more structured questions, say the authors. “A seemingly straightforward question, ‘How many diseased animals are there in the area?’ for example, could be interpreted very differently by different people. Does it include those that are infectious and those that have recovered? What about those yet to be identified?” said Sutherland, from Cambridge’s Department of Zoology.

“Structured question formats that extract upper and lower boundaries, degrees of confidence and force consideration of alternative theories are important for shoring against slides into group-think, or individuals getting ascribed greater credibility based on appearance or background,” he said.

When seeking expert advice, all parties must be clear about what they expect of each other, says Burgman, Director of the Centre of Excellence for Biosecurity Risk Analysis. “Are policy makers expecting estimates of facts, predictions of the outcome of events, or advice on the best course of action?”

“Properly managed, experts can help with estimates and predictions, but providing advice assumes the expert shares the same values and objectives as the decision makers. Experts need to stick to helping provide and assess evidence on which such decisions are made,” he said.

Sutherland and Burgman have created a framework of eight key ways to improve the advice of experts. These include using groups – not individuals – with diverse, carefully selected members well within their expertise areas.

They also caution against being bullied or “starstruck” by the over-assertive or heavyweight. “People who are less self-assured will seek information from a more diverse range of sources, and age, number of qualifications and years of experience do not explain an expert’s ability to predict future events – a finding that applies in studies from geopolitics to ecology,” said Sutherland.

Added Burgman: “Some experts are much better than others at estimation and prediction. However, the only way to tell a good expert from a poor one is to test them. Qualifications and experience don’t help to tell them apart.”

“The cost of ignoring these techniques – of using experts inexpertly – is less accurate information and so more frequent, and more serious, policy failures,” write the researchers.

Here’s a link to and a citation for the paper,

Policy advice: Use experts wisely by William J. Sutherland & Mark Burgman. Nature 526, 317–318 (15 October 2015) doi:10.1038/526317a

It’s good to see a nuanced attempt to counteract mindless adherence to expert opinion. I hope they will include evidence and data as  needing to be approached cautiously in future work.

‘Hotel for cells’ or minuscule artificial scaffolding units for plant tissue engineering

This is the first time I’ve seen an item about tissue engineering which concerns plant life.  An August 27, 2015 news item on Azonano describes the latest development with plant cells,

Miniscule artificial scaffolding units made from nano-fibre polymers and built to house plant cells have enabled scientists to see for the first time how individual plant cells behave and interact with each other in a three-dimensional environment.

These “hotels for cells” mimic the ‘extracellular matrix’ which cells secrete before they grow and divide to create plant tissue. [Note: Human and other cells also have extracellular matrices] This environment allows scientists to observe and image individual plant cells developing in a more natural, multi-dimensional environment than previous ‘flat’ cell cultures.

An August 26, 2015 University of Cambridge press release, which originated the news item, describes the research and mentions the pioneering technologies which made it possible,

The research team were surprised to see individual plant cells clinging to and winding around their fibrous supports; reaching past neighbouring cells to wrap themselves to the artificial scaffolding in a manner reminiscent of vines growing.

Pioneering new in vitro techniques combining recent developments in 3-D scaffold development and imaging, scientists say they observed plants cells taking on growth and structure of far greater complexity than has ever been seen of plant cells before, either in living tissue or cell culture.

“Previously, plant cells in culture had only been seen in round or oblong forms. Now, we have seen 3D cultured cells twisting and weaving around their new supports in truly remarkable ways, creating shapes we never thought possible and never seen before in any plant,” said plant scientist and co-author Raymond Wightman.

“We can use this tool to explore how a whole plant is formed and at the same time to create new materials.”

This ability for single plant cells to attach themselves by growing and spiralling around the scaffolding suggests that cells of land plants have retained the ability of their evolutionary ancestors – aquatic single-celled organisms, such as Charophyta algae – to stick themselves to inert structures.

While similar ‘nano-scaffold’ technology has long been used for mammalian cells, resulting in the advancement of tissue engineering research, this is the first time such technology has been used for plant cells – allowing scientists to glimpse in 3-D the individual cell interactions that lead to the forming of plant tissue.

The scientists say the research “defines a new suite of techniques” for exploring cell-environment interactions, allowing greater understating of fundamental plant biology that could lead to new types of biomaterials and help provide solutions to sustainable biomass growth.

“While we can peer deep inside single cells and understand their functions, when researchers study a ‘whole’ plant, as in fully formed tissue, it is too difficult to disentangle the many complex interactions between the cells, their neighbours, and their behaviour,” said Wightman.

“Until now, nobody had tried to put plant cells in an artificial fibre scaffold that replicates their natural environment and tried to observe their interactions with one or two other cells, or fibre itself,” he said.

Co-author and material scientist Dr Stoyan Smoukov suggests that a possible reason why artificial scaffolding on plant cells had never been done before was the expense of 3D nano-fibre matrices (the high costs have previously been justified in mammalian cell research due to its human medical potential).

However, Smoukov has co-discovered and recently helped commercialise a new method for producing polymer fibres for 3-D scaffolds inexpensively and in bulk. ‘Shear-spinning’ produces masses of fibre, in a technique similar to creating candy-floss in nano-scale. The researchers were able to adapt such scaffolds for use with plant cells.

This approach was combined with electron microscopy imaging technology. In fact, using time-lapse photography, the researchers have even managed to capture 4-D footage of these previously unseen cellular structures. “Such high-resolution moving images allowed us to follow internal processes in the cells as they develop into tissues,” said Smoukov, who is already working on using the methods in this plant study to research mammalian cancer cells.

Here’s an image illustrating the research,

Plant cells twisting and weaving in 3-D cultures Credit: Smoukov/Wightman

Plant cells twisting and weaving in 3-D cultures
Credit: Smoukov/Wightman

Here’s a link to and a citation for the paper,

A 3-dimensional fibre scaffold as an investigative tool for studying the morphogenesis of isolated plant pells [cells?] by CJ Luo, Raymond Wightman, Elliot Meyerowitz, and Stoyan K. Smoukov. BMC Plant Biology 2015, 15:211 doi:10.1186/s12870-015-0581-7

This paper is open access.

Cleaning antennae—ant style

The University of Cambridge (UK) has produced research that could lead to cleaning at the microscale and nanoscale and it’s all due to ants. From a July 28, 2015 news item on Nanowerk (Note: A link has been removed),

For an insect, grooming is a serious business. If the incredibly sensitive hairs on their antennae get too dirty, they are unable to smell food, follow pheromone trails or communicate. So insects spend a significant proportion of their time just keeping themselves clean. Until now, however, no-one has really investigated the mechanics of how they actually go about this.

In a study published in Open Science (“Functional morphology and efficiency of the antenna cleaner in Camponotus rufifemur ants”), Alexander Hackmann and colleagues from the Department of Zoology [University of Cambridge] have undertaken the first biomechanical investigation of how ants use different types of hairs in their cleaning apparatus to clear away dirt from their antennae.

A July 27, 2015 University of Cambridge press release, which originated the news item, expands on the theme,

“Insects have developed ingenious ways of cleaning very small, sensitive structures, so finding out exactly how they work could have fascinating applications for nanotechnology – where contamination of small things, especially electronic devices, is a big problem. Different insects have all kinds of different cleaning devices, but no-one has really looked at their mechanical function in detail before,” explains Hackmann.

Camponotus rufifemur ants possess a specialised cleaning structure on their front legs that is actively used to groom their antennae. A notch and spur covered in different types of hairs form a cleaning device similar in shape to a tiny lobster claw. During a cleaning movement, the antenna is pulled through the device which clears away dirt particles using ‘bristles’, a ‘comb’ and a ‘brush’.

To investigate how the different hairs work, Hackmann painstakingly constructed an experimental mechanism to mimic the ant’s movements and pull antennae through the cleaning structure under a powerful microscope. This allowed him to film the process in extreme close up and to measure the cleaning efficiency of the hairs using fluorescent particles.

What he discovered was that the three clusters of hairs perform a different function in the cleaning process. The dirty antenna surface first comes into contact with the ‘bristles’ (shown in the image in red) which scratch away the largest particles. It is then drawn past the ‘comb’ (shown in the image in blue) which removes smaller particles that get trapped between the comb hairs. Finally, it is drawn through the ‘brush’ (shown in the image in green) which removes the smallest particles.

Scanning electron micrograph of the tarsal notch (Alexander Hackmann). Courtesy: University of Cambridge

Scanning electron micrograph of the tarsal notch (Alexander Hackmann). Courtesy: University of Cambridge

The news release offers more detail about the ‘notch’s’ cleaning properties,

“While the ‘bristles’ and the ‘comb’ scrape off larger particles mechanically, the ‘brush’ seems to attract smaller dirt particles from the antenna by adhesion,” says Hackmann, who works in the laboratory of Dr Walter Federle.

Where the ‘bristles’ and ‘comb’ are rounded and fairly rigid, the ‘brush’ hairs are flat, bendy and covered in ridges – this increases the surface area for contact with the dirt particles, which stick to the hairs. Researchers do not yet know what makes the ‘brush’ hairs sticky – whether it is due to electrostatic forces, sticky secretions, or a combination of factors.

“The arrangement of ‘bristles’, ‘combs’ and ‘brush’ lets the cleaning structure work as a particle filter that can clean different sized dirt particles with a single cleaning stroke,” says Hackmann. “Modern nanofabrication techniques face similar problems with surface contamination, and as a result the fabrication of micron-scale devices requires very expensive cleanroom technology. We hope that understanding the biological system will lead to building bioinspired devices for cleaning on micro and nano scales.”

If you want to see the a video of the ‘cleaning action’, you can check either Nanowerk’s July 28, 2015 news item or the University of Cambridge’s July 27, 2015 press release.

Here’s a link to and citation for the paper,

Functional morphology and efficiency of the antenna cleaner in Camponotus rufifemur ants by Alexander Hackmann, Henry Delacave, Adam Robinson, David Labonte, and Walter Federle. Royal Society Open Science DOI: 10.1098/rsos.150129  Published 22 July 2015

As you may have guessed from the journal’s title, this is an open access paper.

Informal roundup of robot movies and television programmes and a glimpse into our robot future

David Bruggeman has written an informal series of posts about robot movies. The latest, a June 27, 2015 posting on his Pasco Phronesis blog, highlights the latest Terminator film and opines that the recent interest could be traced back to the rebooted Battlestar Galactica television series (Note: Links have been removed),

I suppose this could be traced back to the reboot of Battlestar Galactica over a decade ago, but robots and androids have become an increasing presence on film and television, particularly in the last 2 years.

In the movies, the new Terminator film comes out next week, and the previews suggest we will see a new generation of killer robots traveling through time and space.  Chappie is now out on your digital medium of choice (and I’ll post about any science fiction science policy/SciFiSciPol once I see it), so you can compare its robot police to those from either edition of Robocop or the 2013 series Almost Human.  Robots also have a role …

The new television series he mentions, Humans (click on About) debuted on the US tv channel, AMC, on Sunday, June 28, 2015 (yesterday).

HUMANS is set in a parallel present, where the latest must-have gadget for any busy family is a Synth – a highly-developed robotic servant, eerily similar to its live counterpart. In the hope of transforming the way his family lives, father Joe Hawkins (Tom Goodman-Hill) purchases a Synth (Gemma Chan) against the wishes of his wife (Katharine Parkinson), only to discover that sharing life with a machine has far-reaching and chilling consequences.

Here’s a bit more information from its Wikipedia entry,

Humans (styled as HUM∀NS) is a British-American science fiction television series, debuted in June 2015 on Channel 4 and AMC.[2] Written by the British team Sam Vincent and Jonathan Brackley, based on the award-winning Swedish science fiction drama Real Humans, the series explores the emotional impact of the blurring of the lines between humans and machines. The series is produced jointly by AMC, Channel 4 and Kudos.[3] The series will consist of eight episodes.[4]

David also wrote about Ex Machina, a recent robot film with artistic ambitions, in an April 26, 2015 posting on his Pasco Phronesis blog,

I finally saw Ex Machina, which recently opened in the United States.  It’s a minimalist film, with few speaking roles and a plot revolving around an intelligence test.  Of the robot movies out this year, it has received the strongest reviews, and it may take home some trophies during the next awards season.  Shot in Norway, the film is both lovely to watch and tricky to engage.  I finished the film not quite sure what the characters were thinking, and perhaps that’s a lesson from the film.

Unlike Chappie and Automata, the intelligent robot at the center of Ex Machina is not out in the world. …

He started the series with a Feb. 8, 2015 posting which previews the movies in his later postings but also includes a couple of others not mentioned in either the April or June posting, Avengers: Age of Ultron and Spare Parts.

It’s interesting to me that these robots  are mostly not related to the benign robots in the movie, ‘Forbidden Planet’, a reworking of Shakespeare’s The Tempest in outer space, in ‘Lost in Space’, a 1960s television programme, and in the Jetsons animated tv series of the 1960s. As far as I can tell not having seen the new movies in question, the only benign robot in the current crop would be ‘Chappie’. It should be mentioned that the ‘Terminator’, in the person of Arnold Schwarzenegger, has over a course of three or four movies evolved from a destructive robot bent on evil to a destructive robot working on behalf of good.

I’ll add one more more television programme and I’m not sure if the robot boy is good or evil but there’s Extant where Halle Berry’s robot son seems to be in a version of the Pinocchio story (an ersatz child want to become human), which is enjoying its second season on US television as of July 1, 2015.

Regardless of one or two ‘sweet’ robots, there seems to be a trend toward ominous robots and perhaps, in addition to Battlestar Galactica, the concerns being raised by prominent scientists such as Stephen Hawking and those associated with the Centre for Existential Risk at the University of Cambridge have something to do with this trend and may partially explain why Chappie did not do as well at the box office as hoped. Thematically, it was swimming against the current.

As for a glimpse into the future, there’s this Children’s Hospital of Los Angeles June 29, 2015 news release,

Many hospitals lack the resources and patient volume to employ a round-the-clock, neonatal intensive care specialist to treat their youngest and sickest patients. Telemedicine–with real-time audio and video communication between a neonatal intensive care specialist and a patient–can provide access to this level of care.

A team of neonatologists at Children’s Hospital Los Angeles investigated the use of robot-assisted telemedicine in performing bedside rounds and directing daily care for infants with mild-to-moderate disease. They found no significant differences in patient outcomes when telemedicine was used and noted a high level of parent satisfaction. This is the first published report of using telemedicine for patient rounds in a neonatal intensive care unit (NICU). Results will be published online first on June 29 in the Journal of Telemedicine and Telecare.

Glimpse into the future?

The part I find most fascinating was that there was no difference in outcomes, moreover, the parents’ satisfaction rate was high when robots (telemedicine) were used. Finally, of the families who completed the after care survey (45%), all indicated they would be comfortable with another telemedicine (robot) experience. My comment, should robots prove to be cheaper in the long run and the research results hold as more studies are done, I imagine that hospitals will introduce them as a means of cost cutting.

Metallic nanoparticles: measuring their discrete quantum states

I tend to forget how new nanotechnology is and unconsciously take for granted stunning feats such as measuring a metallic nanoparticle’s electronic properties. A June 15, 2015 news item on Nanowerk provides a reminder with its description of the difficulties and a new technique to make it easier (Note:  A link has been removed),

How do you measure the electronic properties of individual nanoparticles or molecules that are only a few nanometers in size? Conventional methods using electron transport spectroscopy rely on contacting a material with two contacts, a source and a drain electrode. By applying a small potential difference over the electrodes and monitoring the resulting current, valuable information about the electronic properties are extracted. For example if a material is metallic or semiconducting.
But this becomes quite a challenge if the material is only a few nm in size. Even the most sophisticated fabrication tools such as electron-beam lithography have a resolution of about 10 nm at best, which is not precise enough. Scientists have developed workarounds such as creating small gaps in narrow metallic wires in which a nanoparticle can be trapped if it matches the gap size. However, even though there have been some notable successes using this approach, this method has a low yield and is not very reproducible.

Now an international collaboration including researchers in Japan, the university [sic] of Cambridge and the LCN [London Centre for Nanotechnology] in the UK have approached this in a different way as described in a paper in Nature’s Scientific Reports (“Radio-frequency capacitance spectroscopy of metallic nanoparticles”). Their method only requires a single electrode to be in direct contact with a nanoparticle or molecule, thus significantly simplifying fabrication.

A June 15, 2015 (?) LCN press release, which originated the news item, describes the achievement,

The researchers demonstrated the potential of the radio-frequency reflectometry technique by measurements on Au nanoparticles of only 2.7 nm in diameter. For such small particles, the electronic spectrum is discrete which was indeed observed in the measurements and in very good agreement with theoretical models. The researchers now plan to extend these measurements to other nanoparticles and molecules with applications in a range of areas such as biomedicine, spintronics and quantum information processing.

Here’s a link to and a citation for the paper,

Radio-frequency capacitance spectroscopy of metallic nanoparticles by James C. Frake, Shinya Kano, Chiara Ciccarelli, Jonathan Griffiths, Masanori Sakamoto,  Toshiharu Teranishi, Yutaka Majima, Charles G. Smith & Mark R. Buitelaar. Scientific RepoRts 5:10858 DOi: 10.1038/srep10858 Published June 4, 2015

This is an open access paper.

April 2015 (US) National Math festival; inside story on math tournaments; US tv programme: The Great Math Mystery; and the SET Award (tech women in the movies and on tv)

I have three math items for this posting and one women in technology item, here they are in an almost date order.

X+Y

A British movie titled X+Y provides a fictionalized view of a team member on the British squad competing in an International Mathematics Olympiad.The Guardian’s science blog network hosted a March 11, 2015 review by Adam P. Goucher who also provides an insider’s view (Note: Links have been removed),

As a competition it is brutal and intense.

I speak from experience; I was in the UK team in 2011.

So it was with great expectation that I went to see X+Y, a star-studded British film about the travails of a British IMO hopeful who is struggling against the challenges of romance, Asperger’s and really tough maths.

Obviously, there were a few oversimplifications and departures from reality necessary for a coherent storyline. There were other problems too, but we’ll get to them later.

In order to get chosen for the UK IMO team, you must sit the first round test of the British Mathematical Olympiad (BMO1). About 1200 candidates take this test around the country.

I sat BMO1 on a cold December day at my sixth form, Netherthorpe School in Chesterfield. Apart from the invigilator and me, the room was completely empty, although the surroundings became irrelevant as soon as I was captivated by the problems. The test comprises six questions over the course of three and a half hours. As is the case with all Olympiad problems, there are often many distinct ways to solve them, and correct complete solutions are maximally rewarded irrespective of the elegance or complexity of the proof.

The highest twenty scorers are invited to another training camp at Trinity College, Cambridge, and the top six are selected to represent the UK at an annual competition in Romania.

In Romania, there was much maths, but we also enjoyed a snowball fight against the Italian delegation and sampled the delights of Romanian rum-endowed chocolate. Since I was teetotal at this point in time, the rum content was sufficient to alter my perception in such a way that I decided to attack a problem using Cartesian coordinates (considered by many to be barbaric and masochistic). Luckily my recklessness paid off, enabling me to scrape a much-coveted gold medal by the narrowest of margins.

The connection between the UK and Eastern Europe is rather complicated to explain, being intimately entangled with the history of the IMO. The inaugural Olympiad was held in Romania in 1959, with the competition being only open to countries under the Soviet bloc. A Hungarian mathematician, Béla Bollobás, competed in the first three Olympiads, seizing a perfect score on the third. After his PhD, Bollobás moved to Trinity College, Cambridge, to continue his research, where he fertilised Cambridge with his contributions in probabilistic and extremal combinatorics (becoming a Fellow of the Royal Society in the process). Consequently, there is a close relationship between Hungarian and Cantabrigian mathematics.

Rafe Spall’s character was very convincing, and his eccentricities injected some much-needed humour into the film. Similarly, Asa Butterfield’s portrayal of a “typical mathmo” was realistic. On the other hand, certain characters such as Richard (the team leader) were unnatural and exaggerated. In particular, I was disappointed that all of the competitors were portrayed as being borderline-autistic, when in reality there is a much more diverse mixture of individuals.

X+Y is also a love story, and one based on a true story covered in Morgan Matthews’ earlier work, the documentary Beautiful Young Minds. This followed the 2006 IMO, in China, where one of the members of the UK team fell in love and married the receptionist of the hotel the team were staying at. They have since separated, although his enamourment with China persisted – he switched from studying Mathematics to Chinese Studies.

It is common for relationships to develop during maths Olympiads. Indeed after a member of our team enjoyed a ménage-a-trois at an IMO in the 1980s, the committee increased the security and prohibited boys and girls from entering each others’ rooms.

The film was given a general release March 13, 2015 in the UK and is on the festival circuit elsewhere. Whether or not you can get to see the film, I recommend Goucher’s engaging review/memoir.

The Great Math Mystery and the SET award for the Portrayal of a Female in Technology

David Bruggeman in a March 13, 2015 post on his Pasco Phronesis blog describes the upcoming première of a maths installment in the NOVA series presented on the US PBS (Public Broadcasting Service), Note: Links have been removed,

… PBS has announced a new math special.  Mario Livio will host a NOVA special called The Great Math Mystery, premiering April 15.  Livio is an astrophysicist, science and math writer, and fan of science/culture mashups.  The mystery of the title is whether math(s) is invented or was discovered.

You can find out more about The Great Math Mystery here.

David also mentions this,

The Entertainment Industries Council is seeking votes for its first SET Award for Portrayal of a Female in Technology. … Voting on the award is via a Google form, so you will need a Google account to participate.  The nominees appear to be most of the women playing characters with technical jobs in television programs or recent films.  They are:

  • Annedroids on Amazon
  • Arrow: “Felicity Smoak” played by Emily Bett Rickards
  • Bones: “Angela Montenegro” played by Michaela Conlin

Here’s a video describing the competition and the competitors,

More details about the competition are available in David’s March 13, 2015 post or here or here. The deadline for voting is April 6, 2015. Here’s one more link, this one’s to the SET Awards website.

(US) National Math Festival

H/t to David Bruggeman again. This time it’s a Feb. 6, 2015 post on his Pasco Phronesis blog which announces (Note: Links have been removed),

On April 18 [2015], the Smithsonian Institution will host the first National Math Festival in Washington, D.C.  It will be the culmination of a weekend of events in the city to recognize outstanding math research, educators and books.

On April 16 there will be a morning breakfast briefing on Capitol Hill to discuss mathematics education.  It will be followed by a policy seminar in the Library of Congress and an evening gala to support basic research in mathematics and science.

You can find out more about the 2015 National Math Festival here (from the homepage),

On Saturday, April 18th, experience mathematics like never before, when the first-of-its-kind National Math Festival comes to Washington, D.C. As the country’s first national festival dedicated to discovering the delight and power of mathematics, this free and public celebration will feature dozens of activities for every age—from hands-on magic and Houdini-like getaways to lectures with some of the most influential mathematicians of our time.

The National Math Festival is organized by the Mathematical Sciences Research Institute (MSRI) and the Institute for Advanced Study (IAS) in cooperation with the Smithsonian Institution.

There you have it.