Tag Archives: University of Exeter

Colo(u)r-changing bandage for better compression

This is a structural colo(u)r story, from a May 29, 2018 news item on Nanowerk,

Compression therapy is a standard form of treatment for patients who suffer from venous ulcers and other conditions in which veins struggle to return blood from the lower extremities. Compression stockings and bandages, wrapped tightly around the affected limb, can help to stimulate blood flow. But there is currently no clear way to gauge whether a bandage is applying an optimal pressure for a given condition.

Now engineers at MIT {Massachusetts Institute of Technology] have developed pressure-sensing photonic fibers that they have woven into a typical compression bandage. As the bandage is stretched, the fibers change color. Using a color chart, a caregiver can stretch a bandage until it matches the color for a desired pressure, before, say, wrapping it around a patient’s leg.

The photonic fibers can then serve as a continuous pressure sensor — if their color changes, caregivers or patients can use the color chart to determine whether and to what degree the bandage needs loosening or tightening.

A May 29, 2018 MIT news release (also on EurekAlert), which originated the news item, provides more detail,

“Getting the pressure right is critical in treating many medical conditions including venous ulcers, which affect several hundred thousand patients in the U.S. each year,” says Mathias Kolle, assistant professor of mechanical engineering at MIT. “These fibers can provide information about the pressure that the bandage exerts. We can design them so that for a specific desired pressure, the fibers reflect an easily distinguished color.”

Kolle and his colleagues have published their results in the journal Advanced Healthcare Materials. Co-authors from MIT include first author Joseph Sandt, Marie Moudio, and Christian Argenti, along with J. Kenji Clark of the Univeristy of Tokyo, James Hardin of the United States Air Force Research Laboratory, Matthew Carty of Brigham and Women’s Hospital-Harvard Medical School, and Jennifer Lewis of Harvard University.

Natural inspiration

The color of the photonic fibers arises not from any intrinsic pigmentation, but from their carefully designed structural configuration. Each fiber is about 10 times the diameter of a human hair. The researchers fabricated the fiber from ultrathin layers of transparent rubber materials, which they rolled up to create a jelly-roll-type structure. Each layer within the roll is only a few hundred nanometers thick.

In this rolled-up configuration, light reflects off each interface between individual layers. With enough layers of consistent thickness, these reflections interact to strengthen some colors in the visible spectrum, for instance red, while diminishing the brightness of other colors. This makes the fiber appear a certain color, depending on the thickness of the layers within the fiber.

“Structural color is really neat, because you can get brighter, stronger colors than with inks or dyes just by using particular arrangements of transparent materials,” Sandt says. “These colors persist as long as the structure is maintained.”

The fibers’ design relies upon an optical phenomenon known as “interference,” in which light, reflected from a periodic stack of thin, transparent layers, can produce vibrant colors that depend on the stack’s geometric parameters and material composition. Optical interference is what produces colorful swirls in oily puddles and soap bubbles. It’s also what gives peacocks and butterflies their dazzling, shifting shades, as their feathers and wings are made from similarly periodic structures.

“My interest has always been in taking interesting structural elements that lie at the origin of nature’s most dazzling light manipulation strategies, to try recreating and employing them in useful applications,” Kolle says.

A multilayered approach

The team’s approach combines known optical design concepts with soft materials, to create dynamic photonic materials.

While a postdoc at Harvard in the group of Professor Joanna Aizenberg, Kolle was inspired by the work of Pete Vukusic, professor of biophotonics at the University of Exeter in the U.K., on Margaritaria nobilis, a tropical plant that produces extremely shiny blue berries. The fruits’ skin is made up of cells with a periodic cellulose structure, through which light can reflect to give the fruit its signature metallic blue color.

Together, Kolle and Vukusic sought ways to translate the fruit’s photonic architecture into a useful synthetic material. Ultimately, they fashioned multilayered fibers from stretchable materials, and assumed that stretching the fibers would change the individual layers’ thicknesses, enabling them to tune the fibers’ color. The results of these first efforts were published in Advanced Materials in 2013.

When Kolle joined the MIT faculty in the same year, he and his group, including Sandt, improved on the photonic fiber’s design and fabrication. In their current form, the fibers are made from layers of commonly used and widely available transparent rubbers, wrapped around highly stretchable fiber cores. Sandt fabricated each layer using spin-coating, a technique in which a rubber, dissolved into solution, is poured onto a spinning wheel. Excess material is flung off the wheel, leaving a thin, uniform coating, the thickness of which can be determined by the wheel’s speed.

For fiber fabrication, Sandt formed these two layers on top of a water-soluble film on a silicon wafer. He then submerged the wafer, with all three layers, in water to dissolve the water-soluble layer, leaving the two rubbery layers floating on the water’s surface. Finally, he carefully rolled the two transparent layers around a black rubber fiber, to produce the final colorful photonic fiber.

Reflecting pressure

The team can tune the thickness of the fibers’ layers to produce any desired color tuning, using standard optical modeling approaches customized for their fiber design.

“If you want a fiber to go from yellow to green, or blue, we can say, ‘This is how we have to lay out the fiber to give us this kind of [color] trajectory,'” Kolle says. “This is powerful because you might want to have something that reflects red to show a dangerously high strain, or green for ‘ok.’ We have that capacity.”

The team fabricated color-changing fibers with a tailored, strain-dependent color variation using the theoretical model, and then stitched them along the length of a conventional compression bandage, which they previously characterized to determine the pressure that the bandage generates when it’s stretched by a certain amount.

The team used the relationship between bandage stretch and pressure, and the correlation between fiber color and strain, to draw up a color chart, matching a fiber’s color (produced by a certain amount of stretching) to the pressure that is generated by the bandage.

To test the bandage’s effectiveness, Sandt and Moudio enlisted over a dozen student volunteers, who worked in pairs to apply three different compression bandages to each other’s legs: a plain bandage, a bandage threaded with photonic fibers, and a commercially-available bandage printed with rectangular patterns. This bandage is designed so that when it is applying an optimal pressure, users should see that the rectangles become squares.

Overall, the bandage woven with photonic fibers gave the clearest pressure feedback. Students were able to interpret the color of the fibers, and based on the color chart, apply a corresponding optimal pressure more accurately than either of the other bandages.

The researchers are now looking for ways to scale up the fiber fabrication process. Currently, they are able to make fibers that are several inches long. Ideally, they would like to produce meters or even kilometers of such fibers at a time.

“Currently, the fibers are costly, mostly because of the labor that goes into making them,” Kolle says. “The materials themselves are not worth much. If we could reel out kilometers of these fibers with relatively little work, then they would be dirt cheap.”

Then, such fibers could be threaded into bandages, along with textiles such as athletic apparel and shoes as color indicators for, say, muscle strain during workouts. Kolle envisions that they may also be used as remotely readable strain gauges for infrastructure and machinery.

“Of course, they could also be a scientific tool that could be used in a broader context, which we want to explore,” Kolle says.

Here’s what the bandage looks like,

Caption: Engineers at MIT have developed pressure-sensing photonic fibers that they have woven into a typical compression bandage. Credit Courtesy of the researchers

Here’s a link to and a citation for the paper,

Stretchable Optomechanical Fiber Sensors for Pressure Determination in Compressive Medical Textiles by Joseph D. Sandt, Marie Moudio, J. Kenji Clark, James Hardin, Christian Argenti, Matthew Carty, Jennifer A. Lewis, Mathias Kolle. Advanced Healthcare Materials https://doi.org/10.1002/adhm.201800293 First published: 29 May 2018

This paper is behind a paywall.

‘Green’ concrete with graphene

It’s thrilling and I hope they are able to commercialize this technology which makes concrete ‘greener’. From an April 23, 2018 news item on ScienceDaily,

A new greener, stronger and more durable concrete that is made using the wonder-material graphene could revolutionise the construction industry.

Experts from the University of Exeter [UK] have developed a pioneering new technique that uses nanoengineering technology to incorporate graphene into traditional concrete production.

The new composite material, which is more than twice as strong and four times more water resistant than existing concretes, can be used directly by the construction industry on building sites. All of the concrete samples tested are according to British and European standards for construction.

Crucially, the new graphene-reinforced concentre material also drastically reduced the carbon footprint of conventional concrete production methods, making it more sustainable and environmentally friendly.

The research team insist the new technique could pave the way for other nanomaterials to be incorporated into concrete, and so further modernise the construction industry worldwide.

I love the image they’ve included with the press materials (if they hadn’t told me I wouldn’t know that this is the ‘new’ concrete; to me, it looks just like the other stuff),

Caption: The new concrete developed using graphene by experts from the University of Exeter (credit: Dimitar Dimov / University of Exeter) Credit: Dimitar Dimov / University of Exeter

An April 23, 2018 University of Exeter press release (also on EurekAlert), which originated the news item,  provides more details about the work, future applications, and its potential impact,

Professor Monica Craciun, co-author of the paper and from Exeter’s engineering department, said: “Our cities face a growing pressure from global challenges on pollution, sustainable urbanization and resilience to catastrophic natural events, amongst others.

“This new composite material is an absolute game-changer in terms of reinforcing traditional concrete to meets these needs. Not only is it stronger and more durable, but it is also more resistant to water, making it uniquely suitable for construction in areas which require maintenance work and are difficult to be accessed .

“Yet perhaps more importantly, by including graphene we can reduce the amount of materials required to make concrete by around 50 per cent — leading to a significant reduction of 446kg/tonne of the carbon emissions.

“This unprecedented range of functionalities and properties uncovered are an important step in encouraging a more sustainable, environmentally-friendly construction industry worldwide.”

Previous work on using nanotechnology has concentrated on modifying existing components of cement, one of the main elements of concrete production.

In the innovative new study, the research team has created a new technique that centres on suspending atomically thin graphene in water with high yield and no defects, low cost and compatible with modern, large scale manufacturing requirements.

Dimitar Dimov, the lead author and also from the University of Exeter added: “This ground-breaking research is important as it can be applied to large-scale manufacturing and construction. The industry has to be modernised by incorporating not only off-site manufacturing, but innovative new materials as well.

“Finding greener ways to build is a crucial step forward in reducing carbon emissions around the world and so help protect our environment as much as possible. It is the first step, but a crucial step in the right direction to make a more sustainable construction industry for the future.”

Here’s a link to and a citation for the paper,

Ultrahigh Performance Nanoengineered Graphene–Concrete Composites for Multifunctional Applications by Dimitar Dimov, Iddo Amit, Olivier Gorrie, Matthew D. Barnes, Nicola J. Townsend, Ana I. S. Neves, Freddie Withers, Saverio Russo, and Monica Felicia Craciun. Advanced Functional Materials https://doi.org/10.1002/adfm.201705183 First published: 23 April 2018

This paper is open access.

Cosmopolitanism and the Local in Science and Nature (a three year Canadian project nearing its end date)

Working on a grant from Canada’s Social Sciences and Humanities Research Council (SSHRC), the  Cosmopolitanism and the Local in Science and Nature project has been establishing a ‘cosmopolitanism’ research network that critiques the eurocentric approach so beloved of Canadian academics and has set up nodes across Canada and in India and Southeast Asia.

I first wrote about the project in a Dec. 12, 2014 posting which also featured a job listing. It seems I was there for the beginning and now for the end. For one of the project’s blog postings in its final months, they’re profiling one of their researchers (Dr. Letitia Meynell, Sept. 6, 2017 posting),

1. What is your current place of research?

I am an associate professor in philosophy at Dalhousie University, cross appointed with gender and women studies.

2. Could you give us some details about your education background?

My 1st degree was in Theater, which I did at York University. I did, however, minor in Philosophy and I have always had a particular interest in philosophy of science. So, my minor was perhaps a little anomalous, comprising courses on philosophy of physics, philosophy of nature, and the philosophy of Karl Popper along with courses on aesthetics and existentialism. After taking a few more courses in philosophy at the University of Calgary, I enrolled there for a Master’s degree, writing a thesis on conceptualization, with a view to its role in aesthetics and epistemology. From there I moved to the University of Western Ontario where I brought these three interests together, writing a thesis on the epistemology of pictures in science. Throughout these studies I maintained a keen interest in feminist philosophy, especially the politics of knowledge, and I have always seen my work on pictures in science as fitting into broader feminist commitments.

3. What projects are you currently working on and what are some projects you’ve worked on in the past?

4. What’s one thing you particularly enjoy about working in your field?

5. How do you relate your work to the broader topic of ‘cosmopolitanism and the local’?

As feminist philosophers have long realized, having perspectives on a topic that are quite different to your own is incredibly powerful for critically assessing both your own views and those of others. So, for instance, if you want to address the exploitation of nonhuman animals in our society it is incredibly powerful to consider how people from, say, South Asian traditions have thought about the differences, similarities, and relationships between humans and other animals. Keeping non-western perspectives in mind, even as one works in a western philosophical tradition, helps one to be both more rigorous in one’s analyses and less dogmatic. Rigor and critical openness are, in my opinion, central virtues of philosophy and, indeed, science.

Dr. Maynell will be speaking at the ‘Bridging the Gap: Scientific Imagination Meets Aesthetic Imagination‘ conference Oct. 5-6, 2017 at the London School of Economics,

On 5–6 October, this 2-day conference aims to connect work on artistic and scientific imagination, and to advance our understanding of the epistemic and heuristic roles that imagination can play.

Why, how, and when do scientists imagine, and what epistemological roles does the imagination play in scientific progress? Over the past few years, many philosophical accounts have emerged that are relevant to these questions. Roman Frigg, Arnon Levy, and Adam Toon have developed theories of scientific models that place imagination at the heart of modelling practice. And James R. Brown, Tamar Gendler, James McAllister, Letitia Meynell, and Nancy Nersessian have developed theories that recognize the indispensable role of the imagination in the performance of thought experiments. On the other hand, philosophers like Michael Weisberg dismiss imagination-based views of scientific modelling as mere “folk ontology”, and John D. Norton seems to claim that thought experiments are arguments whose imaginary components are epistemologically irrelevant.

In this conference we turn to aesthetics for help in addressing issues concerning scientific imagination-use. Aesthetics is said to have begun in 1717 with an essay called “The Pleasures of the Imagination” by Joseph Addison, and ever since imagination has been what Michael Polyani called “the cornerstone of aesthetic theory”. In recent years Kendall Walton has fruitfully explored the fundamental relevance of imagination for understanding literary, visual and auditory fictions. And many others have been inspired to do the same, including Greg Currie, David Davies, Peter Lamarque, Stein Olsen, and Kathleen Stock.

This conference aims to connect work on artistic and scientific imagination, and to advance our understanding of the epistemic and heuristic roles that imagination can play. Specific topics may include:

  • What kinds of imagination are involved in science?
  • What is the relation between scientific imagination and aesthetic imagination?
  • What are the structure and limits of knowledge and understanding acquired through imagination?
  • From a methodological point of view, how can aesthetic considerations about imagination play a role in philosophical accounts of scientific reasoning?
  • What can considerations about scientific imagination contribute to our understanding of aesthetic imagination?

The conference will include eight invited talks and four contributed papers. Two of the four slots for contributed papers are being reserved for graduate students, each of whom will receive a travel bursary of £100.

Invited speakers

Margherita Arcangeli (Humboldt University, Berlin)

Andrej Bicanski (Institute of Cognitive Neuroscience, University College London)

Gregory Currie (University of York)

Jim Faeder (University of Pittsburgh School of Medicine)

Tim de Mey (Erasmus University of Rotterdam)

Laetitia Meynell (Dalhousie University, Canada)

Adam Toon (University of Exeter)

Margot Strohminger (Humboldt University, Berlin)

This event is organised by LSE’s Centre for Philosophy of Natural and Social Science and it is co-sponsored by the British Society of Aesthetics, the Mind Association, the Aristotelian Society and the Marie Skłodowska-Curie grant agreement No 654034.

I wonder if they’ll be rubbing shoulders with Angelina Jolie? She is slated to be teaching there in Fall 2017 according to a May 23, 2016 news item in the Guardian (Note: Links have been removed),

The Hollywood actor and director has been appointed a visiting professor at the London School of Economics, teaching a course on the impact of war on women.

From 2017, Jolie will join the former foreign secretary William Hague as a “professor in practice”, the university announced on Monday, as part of a new MSc course on women, peace and security, which LSE says is the first of its kind in the world.

The course, it says, is intended to “[develop] strategies to promote gender equality and enhance women’s economic, social and political participation and security”, with visiting professors playing an active part in giving lectures, participating in workshops and undertaking their own research.

Getting back to ‘Cosmopolitanism’, some of the principals organized a summer 2017 event (from a Sept. 6, 2017 posting titled: Summer Events – 25th International Congress of History of Science and Technology),

CosmoLocal partners Lesley Cormack (University of Alberta, Canada), Gordon McOuat (University of King’s College, Halifax, Canada), and Dhruv Raina (Jawaharlal Nehru University, India) organized a symposium “Cosmopolitanism and the Local in Science and Nature” as part of the 25th International Congress of History of Science and Technology.  The conference was held July 23-29, 2017, in Rio de Janeiro, Brazil.  The abstract of the CosmoLocal symposium is below, and a pdf version can be found here.

Science, and its associated technologies, is typically viewed as “universal”. At the same time we were also assured that science can trace its genealogy to Europe in a period of rising European intellectual and imperial global force, ‘going outwards’ towards the periphery. As such, it is strikingly parochial. In a kind of sad irony, the ‘subaltern’ was left to retell that tale as one of centre-universalism dominating a traditionalist periphery. Self-described ‘modernity’ and ‘the west’ (two intertwined concepts of recent and mutually self-supporting origin) have erased much of the local engagement and as such represent science as emerging sui generis, moving in one direction. This story is now being challenged within sociology, political theory and history.

… Significantly, scholars who study the history of science in Asia and India have been examining different trajectories for the origin and meaning of science. It is now time for a dialogue between these approaches. Grounding the dialogue is the notion of a “cosmopolitical” science. “Cosmopolitics” is a term borrowed from Kant’s notion of perpetual peace and modern civil society, imagining shared political, moral and economic spaces within which trade, politics and reason get conducted.  …

The abstract is a little ‘high falutin’ but I’m glad to see more efforts being made in  Canada to understand science and its history as a global affair.

Gamechanging electronics with new ultrafast, flexible, and transparent electronics

There are two news bits about game-changing electronics, one from the UK and the other from the US.

United Kingdom (UK)

An April 3, 2017 news item on Azonano announces the possibility of a future golden age of electronics courtesy of the University of Exeter,

Engineering experts from the University of Exeter have come up with a breakthrough way to create the smallest, quickest, highest-capacity memories for transparent and flexible applications that could lead to a future golden age of electronics.

A March 31, 2017 University of Exeter press release (also on EurekAlert), which originated the news item, expands on the theme (Note: Links have been removed),

Engineering experts from the University of Exeter have developed innovative new memory using a hybrid of graphene oxide and titanium oxide. Their devices are low cost and eco-friendly to produce, are also perfectly suited for use in flexible electronic devices such as ‘bendable’ mobile phone, computer and television screens, and even ‘intelligent’ clothing.

Crucially, these devices may also have the potential to offer a cheaper and more adaptable alternative to ‘flash memory’, which is currently used in many common devices such as memory cards, graphics cards and USB computer drives.

The research team insist that these innovative new devices have the potential to revolutionise not only how data is stored, but also take flexible electronics to a new age in terms of speed, efficiency and power.

Professor David Wright, an Electronic Engineering expert from the University of Exeter and lead author of the paper said: “Using graphene oxide to produce memory devices has been reported before, but they were typically very large, slow, and aimed at the ‘cheap and cheerful’ end of the electronics goods market.

“Our hybrid graphene oxide-titanium oxide memory is, in contrast, just 50 nanometres long and 8 nanometres thick and can be written to and read from in less than five nanoseconds – with one nanometre being one billionth of a metre and one nanosecond a billionth of a second.”

Professor Craciun, a co-author of the work, added: “Being able to improve data storage is the backbone of tomorrow’s knowledge economy, as well as industry on a global scale. Our work offers the opportunity to completely transform graphene-oxide memory technology, and the potential and possibilities it offers.”

Here’s a link to and a citation for the paper,

Multilevel Ultrafast Flexible Nanoscale Nonvolatile Hybrid Graphene Oxide–Titanium Oxide Memories by V. Karthik Nagareddy, Matthew D. Barnes, Federico Zipoli, Khue T. Lai, Arseny M. Alexeev, Monica Felicia Craciun, and C. David Wright. ACS Nano, 2017, 11 (3), pp 3010–3021 DOI: 10.1021/acsnano.6b08668 Publication Date (Web): February 21, 2017

Copyright © 2017 American Chemical Society

This paper appears to be open access.

United States (US)

Researchers from Stanford University have developed flexible, biodegradable electronics.

A newly developed flexible, biodegradable semiconductor developed by Stanford engineers shown on a human hair. (Image credit: Bao lab)

A human hair? That’s amazing and this May 3, 2017 news item on Nanowerk reveals more,

As electronics become increasingly pervasive in our lives – from smart phones to wearable sensors – so too does the ever rising amount of electronic waste they create. A United Nations Environment Program report found that almost 50 million tons of electronic waste were thrown out in 2017–more than 20 percent higher than waste in 2015.

Troubled by this mounting waste, Stanford engineer Zhenan Bao and her team are rethinking electronics. “In my group, we have been trying to mimic the function of human skin to think about how to develop future electronic devices,” Bao said. She described how skin is stretchable, self-healable and also biodegradable – an attractive list of characteristics for electronics. “We have achieved the first two [flexible and self-healing], so the biodegradability was something we wanted to tackle.”

The team created a flexible electronic device that can easily degrade just by adding a weak acid like vinegar. The results were published in the Proceedings of the National Academy of Sciences (“Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics”).

“This is the first example of a semiconductive polymer that can decompose,” said lead author Ting Lei, a postdoctoral fellow working with Bao.

A May 1, 2017 Stanford University news release by Sarah Derouin, which originated the news item, provides more detail,

In addition to the polymer – essentially a flexible, conductive plastic – the team developed a degradable electronic circuit and a new biodegradable substrate material for mounting the electrical components. This substrate supports the electrical components, flexing and molding to rough and smooth surfaces alike. When the electronic device is no longer needed, the whole thing can biodegrade into nontoxic components.

Biodegradable bits

Bao, a professor of chemical engineering and materials science and engineering, had previously created a stretchable electrode modeled on human skin. That material could bend and twist in a way that could allow it to interface with the skin or brain, but it couldn’t degrade. That limited its application for implantable devices and – important to Bao – contributed to waste.

Flexible, biodegradable semiconductor on an avacado

The flexible semiconductor can adhere to smooth or rough surfaces and biodegrade to nontoxic products. (Image credit: Bao lab)

Bao said that creating a robust material that is both a good electrical conductor and biodegradable was a challenge, considering traditional polymer chemistry. “We have been trying to think how we can achieve both great electronic property but also have the biodegradability,” Bao said.

Eventually, the team found that by tweaking the chemical structure of the flexible material it would break apart under mild stressors. “We came up with an idea of making these molecules using a special type of chemical linkage that can retain the ability for the electron to smoothly transport along the molecule,” Bao said. “But also this chemical bond is sensitive to weak acid – even weaker than pure vinegar.” The result was a material that could carry an electronic signal but break down without requiring extreme measures.

In addition to the biodegradable polymer, the team developed a new type of electrical component and a substrate material that attaches to the entire electronic component. Electronic components are usually made of gold. But for this device, the researchers crafted components from iron. Bao noted that iron is a very environmentally friendly product and is nontoxic to humans.

The researchers created the substrate, which carries the electronic circuit and the polymer, from cellulose. Cellulose is the same substance that makes up paper. But unlike paper, the team altered cellulose fibers so the “paper” is transparent and flexible, while still breaking down easily. The thin film substrate allows the electronics to be worn on the skin or even implanted inside the body.

From implants to plants

The combination of a biodegradable conductive polymer and substrate makes the electronic device useful in a plethora of settings – from wearable electronics to large-scale environmental surveys with sensor dusts.

“We envision these soft patches that are very thin and conformable to the skin that can measure blood pressure, glucose value, sweat content,” Bao said. A person could wear a specifically designed patch for a day or week, then download the data. According to Bao, this short-term use of disposable electronics seems a perfect fit for a degradable, flexible design.

And it’s not just for skin surveys: the biodegradable substrate, polymers and iron electrodes make the entire component compatible with insertion into the human body. The polymer breaks down to product concentrations much lower than the published acceptable levels found in drinking water. Although the polymer was found to be biocompatible, Bao said that more studies would need to be done before implants are a regular occurrence.

Biodegradable electronics have the potential to go far beyond collecting heart disease and glucose data. These components could be used in places where surveys cover large areas in remote locations. Lei described a research scenario where biodegradable electronics are dropped by airplane over a forest to survey the landscape. “It’s a very large area and very hard for people to spread the sensors,” he said. “Also, if you spread the sensors, it’s very hard to gather them back. You don’t want to contaminate the environment so we need something that can be decomposed.” Instead of plastic littering the forest floor, the sensors would biodegrade away.

As the number of electronics increase, biodegradability will become more important. Lei is excited by their advancements and wants to keep improving performance of biodegradable electronics. “We currently have computers and cell phones and we generate millions and billions of cell phones, and it’s hard to decompose,” he said. “We hope we can develop some materials that can be decomposed so there is less waste.”

Other authors on the study include Ming Guan, Jia Liu, Hung-Cheng Lin, Raphael Pfattner, Leo Shaw, Allister McGuire, and Jeffrey Tok of Stanford University; Tsung-Ching Huang of Hewlett Packard Enterprise; and Lei-Lai Shao and Kwang-Ting Cheng of University of California, Santa Barbara.

The research was funded by the Air Force Office for Scientific Research; BASF; Marie Curie Cofund; Beatriu de Pinós fellowship; and the Kodak Graduate Fellowship.

Here’s a link to and a citation for the team’s latest paper,

Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics by Ting Lei, Ming Guan, Jia Liu, Hung-Cheng Lin, Raphael Pfattner, Leo Shaw, Allister F. McGuire, Tsung-Ching Huang, Leilai Shao, Kwang-Ting Cheng, Jeffrey B.-H. Tok, and Zhenan Bao. PNAS 2017 doi: 10.1073/pnas.1701478114 published ahead of print May 1, 2017

This paper is behind a paywall.

The mention of cellulose in the second item piqued my interest so I checked to see if they’d used nanocellulose. No, they did not. Microcrystalline cellulose powder was used to constitute a cellulose film but they found a way to render this film at the nanoscale. From the Stanford paper (Note: Links have been removed),

… Moreover, cellulose films have been previously used as biodegradable substrates in electronics (28⇓–30). However, these cellulose films are typically made with thicknesses well over 10 μm and thus cannot be used to fabricate ultrathin electronics with substrate thicknesses below 1–2 μm (7, 18, 19). To the best of our knowledge, there have been no reports on ultrathin (1–2 μm) biodegradable substrates for electronics. Thus, to realize them, we subsequently developed a method described herein to obtain ultrathin (800 nm) cellulose films (Fig. 1B and SI Appendix, Fig. S8). First, microcrystalline cellulose powders were dissolved in LiCl/N,N-dimethylacetamide (DMAc) and reacted with hexamethyldisilazane (HMDS) (31, 32), providing trimethylsilyl-functionalized cellulose (TMSC) (Fig. 1B). To fabricate films or devices, TMSC in chlorobenzene (CB) (70 mg/mL) was spin-coated on a thin dextran sacrificial layer. The TMSC film was measured to be 1.2 μm. After hydrolyzing the film in 95% acetic acid vapor for 2 h, the trimethylsilyl groups were removed, giving a 400-nm-thick cellulose film. The film thickness significantly decreased to one-third of the original film thickness, largely due to the removal of the bulky trimethylsilyl groups. The hydrolyzed cellulose film is insoluble in most organic solvents, for example, toluene, THF, chloroform, CB, and water. Thus, we can sequentially repeat the above steps to obtain an 800-nm-thick film, which is robust enough for further device fabrication and peel-off. By soaking the device in water, the dextran layer is dissolved, starting from the edges of the device to the center. This process ultimately releases the ultrathin substrate and leaves it floating on water surface (Fig. 3A, Inset).

Finally, I don’t have any grand thoughts; it’s just interesting to see different approaches to flexible electronics.

Science literacy, science advice, the US Supreme Court, and Britain’s House of Commons

This ‘think’ piece is going to cover a fair bit of ground including science literacy in the general public and in the US Supreme Court, and what that might mean for science advice and UK Members of Parliament (MPs).

Science literacy generally and in the US Supreme Court

A science literacy report for the US National Academy of Sciences (NAS), due sometime from early to mid 2017, is being crafted with an eye to capturing a different perspective according to a March 24, 2016 University of Wisconsin-Madison news release by Terry Dewitt,

What does it mean to be science literate? How science literate is the American public? How do we stack up against other countries? What are the civic implications of a public with limited knowledge of science and how it works? How is science literacy measured?

These and other questions are under the microscope of a 12-member National Academy of Sciences (NAS) panel — including University of Wisconsin—Madison Life Sciences Communication Professor Dominique Brossard and School of Education Professor Noah Feinstein — charged with sorting through the existing data on American science and health literacy and exploring the association between knowledge of science and public perception of and support for science.

The committee — composed of educators, scientists, physicians and social scientists — will take a hard look at the existing data on the state of U.S. science literacy, the questions asked, and the methods used to measure what Americans know and don’t know about science and how that knowledge has changed over time. Critically for science, the panel will explore whether a lack of science literacy is associated with decreased public support for science or research.

Historically, policymakers and leaders in the scientific community have fretted over a perceived lack of knowledge among Americans about science and how it works. A prevailing fear is that an American public unequipped to come to terms with modern science will ultimately have serious economic, security and civic consequences, especially when it comes to addressing complex and nuanced issues like climate change, antibiotic resistance, emerging diseases, environment and energy choices.

While the prevailing wisdom, inspired by past studies, is that Americans don’t stack up well in terms of understanding science, Brossard is not so convinced. Much depends on what kinds of questions are asked, how they are asked, and how the data is analyzed.

It is very easy, she argues, to do bad social science and past studies may have measured the wrong things or otherwise created a perception about the state of U.S. science literacy that may or may not be true.

“How do you conceptualize scientific literacy? What do people need to know? Some argue that scientific literacy may be as simple as an understanding of how science works, the nature of science, [emphasis mine]” Brossard explains. “For others it may be a kind of ‘civic science literacy,’ where people have enough knowledge to be informed and make good decisions in a civics context.”

Science literacy may not be just for the public, it would seem that US Supreme Court judges may not have a basic understanding of how science works. David Bruggeman’s March 24, 2016 posting (on his Pasco Phronesis blog) describes a then current case before the Supreme Court (Justice Antonin Scalia has since died), Note: Links have been removed,

It’s a case concerning aspects of the University of Texas admissions process for undergraduates and the case is seen as a possible means of restricting race-based considerations for admission.  While I think the arguments in the case will likely revolve around factors far removed from science and or technology, there were comments raised by two Justices that struck a nerve with many scientists and engineers.

Both Justice Antonin Scalia and Chief Justice John Roberts raised questions about the validity of having diversity where science and scientists are concerned [emphasis mine].  Justice Scalia seemed to imply that diversity wasn’t esential for the University of Texas as most African-American scientists didn’t come from schools at the level of the University of Texas (considered the best university in Texas).  Chief Justice Roberts was a bit more plain about not understanding the benefits of diversity.  He stated, “What unique perspective does a black student bring to a class in physics?”

To that end, Dr. S. James Gates, theoretical physicist at the University of Maryland, and member of the President’s Council of Advisers on Science and Technology (and commercial actor) has an editorial in the March 25 [2016] issue of Science explaining that the value of having diversity in science does not accrue *just* to those who are underrepresented.

Dr. Gates relates his personal experience as a researcher and teacher of how people’s background inform their practice of science, and that two different people may use the same scientific method, but think about the problem differently.

I’m guessing that both Scalia and Roberts and possibly others believe that science is the discovery and accumulation of facts. In this worldview science facts such as gravity are waiting for discovery and formulation into a ‘law’. They do not recognize that most science is a collection of beliefs and may be influenced by personal beliefs. For example, we believe we’ve proved the existence of the Higgs boson but no one associated with the research has ever stated unequivocally that it exists.

For judges who are under the impression that scientific facts are out there somewhere waiting to be discovered diversity must seem irrelevant. It is not. Who you are affects the questions you ask and how you approach science. The easiest example is to look at how women were viewed when they were subjects in medical research. The fact that women’s physiology is significantly different (and not just in child-bearing ways) was never considered relevant when reporting results. Today, researchers consider not only gender, but age (to some extent), ethnicity, and more when examining results. It’s still not a perfect but it was a step forward.

So when Brossard included “… an understanding of how science works, the nature of science …” as an aspect of science literacy, the judges seemed to present a good example of how not understanding science can have a major impact on how others live.

I’d almost forgotten this science literacy piece as I’d started the draft some months ago but then I spotted a news item about a science advice/MP ‘dating’ service in the UK.

Science advice and UK MPs

First, the news, then, the speculation (from a June 6, 2016 news item on ScienceDaily),

MPs have expressed an overwhelming willingness to use a proposed new service to swiftly link them with academics in relevant areas to help ensure policy is based on the latest evidence.

A June 6, 2016 University of Exeter press release, which originated the news item, provides more detail about the proposed service and the research providing the supporting evidence (Note: A link has been removed),

The government is pursuing a drive towards evidence-based policy, yet policy makers still struggle to incorporate evidence into their decisions. One reason for this is limited easy access to the latest research findings or to academic experts who can respond to questions about evidence quickly.

Researchers at Cardiff University, the University of Exeter and University College London have today published results of the largest study to date reporting MPs’ attitudes to evidence in policy making and their reactions to a proposed Evidence Information Service (EIS) – a rapid match-making advisory service that would work alongside existing systems to put MPs in touch with relevant academic experts.

Dr Natalia Lawrence, of the University of Exeter, said: “It’s clear from our study that politicians want to ensure their decisions incorporate the most reliable evidence, but it can sometimes be very difficult for them to know how to access the latest research findings. This new matchmaking service could be a quick and easy way for them to seek advice from cutting-edge researchers and to check their understanding and facts. It could provide a useful complement to existing highly-valued information services.”

The research, published today in the journal Evidence and Policy, reports the findings of a national consultation exercise between politicians and the public. The researchers recruited members of the public to interview their local parliamentary representative. In total 86, politicians were contacted with 56 interviews completed. The MPs indicated an overwhelming willingness to use a service such as the EIS, with 85% supporting the idea, but noted a number of potential reservations related to the logistics of the EIS such as response time and familiarity with the service. Yet, the MPs indicated that their logistical reservations could be overcome by accessing the EIS via existing highly-valued parliamentary information services such as those provided by the House of Commons and Lords Libraries. Furthermore prior to rolling out the EIS on a nationwide basis it would first need to be piloted.

Developing the proposed EIS in line with feedback from this consultation of MPs would offer the potential to provide policy makers with rapid, reliable and confidential evidence from willing volunteers from the research community.

Professor Chris Chambers, of Cardiff University, said: “The government has given a robust steer that MPs need to link in more with academics to ensure decisions shaping the future of the country are evidence-based. It’s heartening to see that there is a will to adopt this system and we now need to move into a phase of developing a service that is both simple and effective to meet this need.”

The next steps for the project are parallel consultations of academics and members of the public and a pilot of the EIS, using funding from GW4 alliance of universities, made up of Bath, Bristol, Cardiff and Exeter.

What this study shows:
• The consultation shows that politicians recognise the importance of evidence-based policy making and agree on the need for an easier and more direct linkage between academic experts and policy makers.
• Politicians would welcome the creation of the EIS as a provider of rapid, reliable and confidential evidence.

What this study does not show:
• This study does not show how academics would provide evidence. This was a small-scale study which consulted politicians and has not attempted to give voice to the academic community.
• This study does not detail the mechanism of an operational EIS. Instead it indicates the need for a service such as the EIS and suggests ways in which the EIS can be operationalized.

Here’s a link to and a citation for the paper,

Service as a new platform for supporting evidence-based policy: a consultation of UK parliamentarians by Natalia Lawrence, Jemma Chambers, Sinead Morrison, Sven Bestmann, Gerard O’Grady, Christopher Chambers, Andrew Kythreotis. Evidence & Policy: A Journal of Research, Debate and Practice DOI: http://dx.doi.org/10.1332/174426416X14643531912169 Appeared or available online: June 6, 2016

This paper is behind a paywall open access. *Corrected June 17, 2016.*

It’s an interesting idea and I can understand the appeal. However, operationalizing this ‘dating’ or ‘matchmaking’ service could prove quite complex. I appreciate the logistics issues but I’m a little more concerned about the MPs’ science literacy. Are they going to be like the two US justices who believe that science is the pursuit of immutable facts? What happens if two MPs are matched up with a different scientist and those two scientists didn’t agree about what the evidence says. Or, what happens if one scientist is more cautious than the other. There are all kinds of pitfalls. I’m not arguing against the idea but it’s going to require a lot of careful consideration.

Fully textile-embedded transparent and flexible technology?

There are a lot of research teams jockeying for position in the transparent, flexible electrodes stakes (for anyone unfamiliar with the slang, I’m comparing the competition between various research teams to a horse race). A May 11, 2015 news item on Nanowerk describes work from an international collaboration at the University of Exeter (UK), Note: A link has been removed,

An international team of scientists, including Professor Monica Craciun from the University of Exeter, have pioneered a new technique to embed transparent, flexible graphene electrodes into fibres commonly associated with the textile industry.

The discovery could revolutionise the creation of wearable electronic devices, such as clothing containing computers, phones and MP3 players, which are lightweight, durable and easily transportable.

The international collaborative research, which includes experts from the Centre for Graphene Science at the University of Exeter, the Institute for Systems Engineering and Computers, Microsystems and Nanotechnology (INESC-MN) in Lisbon, the Universities of Lisbon and Aveiro in Portugal and the Belgian Textile Research Centre (CenTexBel), is published in the leading scientific journal Scientific Reports (“Transparent conductive graphene textile fibers”).

A May 11, 2015 University of Exeter press release (also on EurekAlert*), which originated the news item,  describes the current situation regarding transparent and flexible electrodes in textiles and how the research at Exeter improves the situation,

Professor Craciun, co-author of the research said: “This is a pivotal point in the future of wearable electronic devices. The potential has been there for a number of years, and transparent and flexible electrodes are already widely used in plastics and glass, for example. But this is the first example of a textile electrode being truly embedded in a yarn. The possibilities for its use are endless, including textile GPS systems, to biomedical monitoring, personal security or even communication tools for those who are sensory impaired.  The only limits are really within our own imagination.”

At just one atom thick, graphene is the thinnest substance capable of conducting electricity. It is very flexible and is one of the strongest known materials. The race has been on for scientists and engineers to adapt graphene for the use in wearable electronic devices in recent years.

This new research has identified that ‘monolayer graphene’, which has exceptional electrical, mechanical and optical properties, make it a highly attractive proposition as a transparent electrode for applications in wearable electronics. In this work graphene was created by a growth method called chemical vapour deposition (CVD) onto copper foil, using a state-of-the-art nanoCVD system recently developed by Moorfield.

The collaborative team established a technique to transfer graphene from the copper foils to a polypropylene fibre already commonly used in the textile industry.

Dr Helena Alves who led the research team from INESC-MN and the University of Aveiro said: “The concept of wearable technology is emerging, but so far having fully textile-embedded transparent and flexible technology is currently non-existing. Therefore, the development of processes and engineering for the integration of graphene in textiles would give rise to a new universe of commercial applications. “

Dr Ana Neves, Associate Research Fellow in Prof Craciun’s team from Exeter’s Engineering Department and former postdoctoral researcher at INESC added: “We are surrounded by fabrics, the carpet floors in our homes or offices, the seats in our cars, and obviously all our garments and clothing accessories. The incorporation of electronic devices on fabrics would certainly be a game-changer in modern technology.

“All electronic devices need wiring, so the first issue to be address in this strategy is the development of conducting textile fibres while keeping the same aspect, comfort and lightness. The methodology that we have developed to prepare transparent and conductive textile fibres by coating them with graphene will now open way to the integration of electronic devices on these textile fibres.”

Dr Isabel De Schrijver,an expert of smart textiles from CenTexBel said: “Successful manufacturing of wearable electronics has the potential for a disruptive technology with a wide array of potential new applications. We are very excited about the potential of this breakthrough and look forward to seeing where it can take the electronics industry in the future.”

Professor Saverio Russo, co-author and also from the University of Exeter, added: “This breakthrough will also nurture the birth of novel and transformative research directions benefitting a wide range of sectors ranging from defence to health care. “

In 2012 Professor Craciun and Professor Russo, from the University of Exeter’s Centre for Graphene Science, discovered GraphExeter – sandwiched molecules of ferric chloride between two graphene layers which makes a whole new system that is the best known transparent material able to conduct electricity.  The same team recently discovered that GraphExeter is also more stable than many transparent conductors commonly used by, for example, the display industry.

Here’s a link to and a citation for the paper,

Electron transport of WS2 transistors in a hexagonal boron nitride dielectric environment by Freddie Withers, Thomas Hardisty Bointon, David Christopher Hudson, Monica Felicia Craciun, & Saverio Russo. Scientific Reports 4, Article number: 4967 doi:10.1038/srep04967 Published 15 May 2014

Did they wait a year to announce the research or is this a second-go-round? In any event, it is an open access paper.

* Added EurekAlert link 1120 hours PDT on May 12, 2015.

The age of the ‘nano-pixel’

As mentioned here before, ‘The Diamond Age: Or, A Young Lady’s Illustrated Primer’, a 1985 novel by Neal Stephenson featured in its opening chapter a flexible, bendable, rollable, newspaper screen. It’s one of those devices promised by ‘nano evangelists’ that never quite seems to come into existence. However, ‘hope springs eternally’ as they say and a team from the University of Oxford claims to be bringing us one step closer.

From a July 10, 2014 University of Oxford press release (also on EurekAlert but dated July 9, 2014 and on Azoanano as a July 10, 2014 news item),

A new discovery will make it possible to create pixels just a few hundred nanometres across that could pave the way for extremely high-resolution and low-energy thin, flexible displays for applications such as ‘smart’ glasses, synthetic retinas, and foldable screens.

A team led by Oxford University scientists explored the link between the electrical and optical properties of phase change materials (materials that can change from an amorphous to a crystalline state). They found that by sandwiching a seven nanometre thick layer of a phase change material (GST) between two layers of a transparent electrode they could use a tiny current to ‘draw’ images within the sandwich ‘stack’.

Here’s a series of images the researchers have created using this technology,

Still images drawn with the technology: at around 70 micrometres across each image is smaller than the width of a human hair.  Courtesy University of Oxford

Still images drawn with the technology: at around 70 micrometres across each image is smaller than the width of a human hair. Courtesy University of Oxford

The press release offers a technical description,

Initially still images were created using an atomic force microscope but the team went on to demonstrate that such tiny ‘stacks’ can be turned into prototype pixel-like devices. These ‘nano-pixels’ – just 300 by 300 nanometres in size – can be electrically switched ‘on and off’ at will, creating the coloured dots that would form the building blocks of an extremely high-resolution display technology.

‘We didn’t set out to invent a new kind of display,’ said Professor Harish Bhaskaran of Oxford University’s Department of Materials, who led the research. ‘We were exploring the relationship between the electrical and optical properties of phase change materials and then had the idea of creating this GST ‘sandwich’ made up of layers just a few nanometres thick. We found that not only were we able to create images in the stack but, to our surprise, thinner layers of GST actually gave us better contrast. We also discovered that altering the size of the bottom electrode layer enabled us to change the colour of the image.’

The layers of the GST sandwich are created using a sputtering technique where a target is bombarded with high energy particles so that atoms from the target are deposited onto another material as a thin film.

‘Because the layers that make up our devices can be deposited as thin films they can be incorporated into very thin flexible materials – we have already demonstrated that the technique works on flexible Mylar sheets around 200 nanometres thick,’ said Professor Bhaskaran. ‘This makes them potentially useful for ‘smart’ glasses, foldable screens, windshield displays, and even synthetic retinas that mimic the abilities of photoreceptor cells in the human eye.’

Peiman Hosseini of Oxford University’s Department of Materials, first author of the paper, said: ‘Our models are so good at predicting the experiment that we can tune our prototype ‘pixels’ to create any colour we want – including the primary colours needed for a display. One of the advantages of our design is that, unlike most conventional LCD screens, there would be no need to constantly refresh all pixels, you would only have to refresh those pixels that actually change (static pixels remain as they were). This means that any display based on this technology would have extremely low energy consumption.’

The research suggests that flexible paper-thin displays based on the technology could have the capacity to switch between a power-saving ‘colour e-reader mode’, and a backlit display capable of showing video. Such displays could be created using cheap materials and, because they would be solid-state, promise to be reliable and easy to manufacture. The tiny ‘nano-pixels’ make it ideal for applications, such as smart glasses, where an image would be projected at a larger size as, even enlarged, they would offer very high-resolution.

Professor David Wright of the Department of Engineering at the University of Exeter, co-author of the paper, said: ‘Along with many other researchers around the world we have been looking into the use of these GST materials for memory applications for many years, but no one before thought of combining their electrical and optical functionality to provide entirely new kinds of non-volatile, high-resolution, electronic colour displays – so our work is a real breakthrough.’

The phase change material used was the alloy Ge2Sb2Te5 (Germanium-Antimony-Tellurium or GST) sandwiched between electrode layers made of indium tin oxide (ITO).

I gather the researchers are looking for investors (from the press release),

Whilst the work is still in its early stages, realising its potential, the Oxford team has filed a patent on the discovery with the help of Isis Innovation, Oxford University’s technology commercialisation company. Isis is now discussing the displays with companies who are interested in assessing the technology, and with investors.

Here’s a link to and a citation for the paper,

An optoelectronic framework enabled by low-dimensional phase-change films by Peiman Hosseini, C. David Wright, & Harish Bhaskaran. Nature 511, 206–211 (10 July 2014) doi:10.1038/nature13487 Published online 09 July 2014

This paper is behind a paywall.

Journal of Responsible Innovation is launched and there’s a nanotechnology connection

According to an Oct. 30, 2013 news release from the Taylor & Francis Group, there’s a new journal being launched, which is good news for anyone looking to get their research or creative work (which retains scholarly integrity) published in a journal focused on emerging technologies and innovation,

Journal of Responsible Innovation will focus on intersections of ethics, societal outcomes, and new technologies: New to Routledge for 2014 [Note: Routledge is a Taylor & Francis Group brand]

Scholars and practitioners in the emerging interdisciplinary field known as “responsible innovation” now have a new place to publish their work. The Journal of Responsible Innovation (JRI) will offer an opportunity to articulate, strengthen, and critique perspectives about the role of responsibility in the research and development process. JRI will also provide a forum for discussions of ethical, social and governance issues that arise in a society that places a great emphasis on innovation.

Professor David Guston, director of the Center for Nanotechnology in Society at Arizona State University and co-director of the Consortium for Science, Policy and Outcomes, is the journal’s founding editor-in-chief. [emphasis mine] The Journal will publish three issues each year, beginning in early 2014.

“Responsible innovation isn’t necessarily a new concept, but a research community is forming and we’re starting to get real traction in the policy world,” says Guston. “It is our hope that the journal will help solidify what responsible innovation can mean in both academic and industrial laboratories as well as in governments.”

“Taylor & Francis have been working with the scholarly community for over two centuries and over the past 20 years, we have launched more new journals than any other publisher, all offering peer-reviewed, cutting-edge research,” adds Editorial Director Richard Steele. “We are proud to be working with David Guston and colleagues to create a lively forum in which to publish and debate research on responsible technological innovation.”

An emerging and interdisciplinary field

The term “responsible innovation” is often associated with emerging technologies—for example, nanotechnology, synthetic biology, geoengineering, and artificial intelligence—due to their uncertain but potentially revolutionary influence on society. [emphasis mine] Responsible innovation represents an attempt to think through the ethical and social complexities of these technologies before they become mainstream. And due to the broad impacts these technologies may have, responsible innovation often involves people working in a variety of roles in the innovation process.

Bearing this interdisciplinarity in mind, the Journal of Responsible Innovation (JRI) will publish not only traditional journal articles and research reports, but also reviews and perspectives on current political, technical, and cultural events. JRI will publish authors from the social sciences and the natural sciences, from ethics and engineering, and from law, design, business, and other fields. It especially hopes to see collaborations across these fields, as well.

“We want JRI to help organize a research network focused around complex societal questions,” Guston says. “Work in this area has tended to be scattered across many journals and disciplines. We’d like to bring those perspectives together and start sharing our research more effectively.”

Now accepting manuscripts

JRI is now soliciting submissions from scholars and practitioners interested in research questions and public issues related to responsible innovation. [emphasis mine] The journal seeks traditional research articles; perspectives or reviews containing opinion or critique of timely issues; and pedagogical approaches to teaching and learning responsible innovation. More information about the journal and the submission process can be found at www.tandfonline.com/tjri.

About The Center for Nanotechnology in Society at ASU

The Center for Nanotechnology in Society at ASU (CNS-ASU) is the world’s largest center on the societal aspects of nanotechnology. CNS-ASU develops programs that integrate academic and societal concerns in order to better understand how to govern new technologies, from their birth in the laboratory to their entrance into the mainstream.

—————————————–
About Taylor & Francis Group

—————————————–

Taylor & Francis Group partners with researchers, scholarly societies, universities and libraries worldwide to bring knowledge to life.  As one of the world’s leading publishers of scholarly journals, books, ebooks and reference works our content spans all areas of Humanities, Social Sciences, Behavioural Sciences, Science, and Technology and Medicine.

From our network of offices in Oxford, New York, Philadelphia, Boca Raton, Boston, Melbourne, Singapore, Beijing, Tokyo, Stockholm, New Delhi and Johannesburg, Taylor & Francis staff provide local expertise and support to our editors, societies and authors and tailored, efficient customer service to our library colleagues.

You can find out more about the Journal of Responsible Innovation here, including information for would-be contributors,

JRI invites three kinds of written contributions: research articles of 6,000 to 10,000 words in length, inclusive of notes and references, that communicate original theoretical or empirical investigations; perspectives of approximately 2,000 words in length that communicate opinions, summaries, or reviews of timely issues, publications, cultural or social events, or other activities; and pedagogy, communicating in appropriate length experience in or studies of teaching, training, and learning related to responsible innovation in formal (e.g., classroom) and informal (e.g., museum) environments.

JRI is open to alternative styles or genres of writing beyond the traditional research paper or report, including creative or narrative nonfiction, dialogue, and first-person accounts, provided that scholarly completeness and integrity are retained.[emphases mine] As the journal’s online environment evolves, JRI intends to invite other kinds of contributions that could include photo-essays, videos, etc. [emphasis mine]

I like to check out the editorial board for these things (from the JRI’s Editorial board webpage; Note: Links have been removed),,

Editor-in-Chief

David. H. Guston , Arizona State University, USA

Associate Editors

Erik Fisher , Arizona State University, USA
Armin Grunwald , ITAS , Karlsruhe Institute of Technology, Germany
Richard Owen , University of Exeter, UK
Tsjalling Swierstra , Maastricht University, the Netherlands
Simone van der Burg, University of Twente, the Netherlands

Editorial Board

Wiebe Bijker , University of Maastricht, the Netherlands
Francesca Cavallaro, Fundacion Tecnalia Research & Innovation, Spain
Heather Douglas , University of Waterloo, Canada
Weiwen Duan , Chinese Academy of Social Sciences, China
Ulrike Felt, University of Vienna, Austria
Philippe Goujon , University of Namur, Belgium
Jonathan Hankins , Bassetti Foundation, Italy
Aharon Hauptman , University of Tel Aviv, Israel
Rachelle Hollander , National Academy of Engineering, USA
Maja Horst , University of Copenhagen, Denmark
Noela Invernizzi , Federal University of Parana, Brazil
Julian Kinderlerer , University of Cape Town, South Africa
Ralf Lindner , Frauenhofer Institut, Germany
Philip Macnaghten , Durham University, UK
Andrew Maynard , University of Michigan, USA
Carl Mitcham , Colorado School of Mines, USA
Sachin Chaturvedi , Research and Information System for Developing Countries, India
René von Schomberg, European Commission, Belgium
Doris Schroeder , University of Central Lancashire, UK
Kevin Urama , African Technology Policy Studies Network, Kenya
Frank Vanclay , University of Groningen, the Netherlands
Jeroen van den Hoven, Technical University, Delft, the Netherlands
Fern Wickson , Genok Center for Biosafety, Norway
Go Yoshizawa , Osaka University, Japan

Good luck to the publishers and to those of you who will be making submissions. As for anyone who may be as curious as I was about the connection between Routledge and Francis & Taylor, go here and scroll down about 75% of the page (briefly, Routledge is a brand).

The brain and poetry; congratulations to Alice Munro on her 2013 Nobel prize

There’s an intriguing piece of research from the University of Exeter (UK) about poetry and the brain. From an Oct. 9, 2013 University of Exeter news release (also on EurekAlert),

New brain imaging technology is helping researchers to bridge the gap between art and science by mapping the different ways in which the brain responds to poetry and prose.

Scientists at the University of Exeter used state-of-the-art functional magnetic resonance imaging (fMRI) technology, which allows them to visualise which parts of the brain are activated to process various activities. No one had previously looked specifically at the differing responses in the brain to poetry and prose.

In research published in the Journal of Consciousness Studies, the team found activity in a “reading network” of brain areas which was activated in response to any written material. But they also found that more emotionally charged writing aroused several of the regions in the brain which respond to music. These areas, predominantly on the right side of the brain, had previously been shown as to give rise to the “shivers down the spine” caused by an emotional reaction to music. .

When volunteers read one of their favourite passages of poetry, the team found that areas of the brain associated with memory were stimulated more strongly than ‘reading areas’, indicating that reading a favourite passage is a kind of recollection.

In a specific comparison between poetry and prose, the team found evidence that poetry activates brain areas, such as the posterior cingulate cortex and medial temporal lobes, which have been linked to introspection.

I did find the Journal of Consciousness Studies in two places (here [current issues] and here [archived issues]) but can’t find the article in my admittedly speedy searches on the website and via Google. Unfortunately the university news release did not include a citation (as so many of them now do); presumably the research will be published soon.

I’d like to point out a couple of things about the research, the sample was small (13) and not randomized (faculty and students from the English department). From the news release,

Professor Adam Zeman, a cognitive neurologist from the University of Exeter Medical School, worked with colleagues across Psychology and English to carry out the study on 13 volunteers, all faculty members and senior graduate students in English. Their brain activity was scanned and compared when reading literal prose such as an extract from a heating installation manual, evocative passages from novels, easy and difficult sonnets, as well as their favourite poetry.

Professor Zeman said: “Some people say it is impossible to reconcile science and art, but new brain imaging technology means we are now seeing a growing body of evidence about how the brain responds to the experience of art. This was a preliminary study, but it is all part of work that is helping us to make psychological, biological, anatomical sense of art.”

Arguably, people who’ve spent significant chunks of their lives studying and reading poetry and prose might have developed capacities the rest of us have not. For a case in point, there’s a Sept. 26, 2013 news item on ScienceDaily about research on ballet dancers’ brains and their learned ability to suppress dizziness,

The research suggests that years of training can enable dancers to suppress signals from the balance organs in the inner ear.

Normally, the feeling of dizziness stems from the vestibular organs in the inner ear. These fluid-filled chambers sense rotation of the head through tiny hairs that sense the fluid moving. After turning around rapidly, the fluid continues to move, which can make you feel like you’re still spinning.

Ballet dancers can perform multiple pirouettes with little or no feeling of dizziness. The findings show that this feat isn’t just down to spotting, a technique dancers use that involves rapidly moving the head to fix their gaze on the same spot as much as possible.

Researchers at Imperial College London recruited 29 female ballet dancers and, as a comparison group, 20 female rowers whose age and fitness levels matched the dancers’.

The volunteers were spun around in a chair in a dark room. They were asked to turn a handle in time with how quickly they felt like they were still spinning after they had stopped. The researchers also measured eye reflexes triggered by input from the vestibular organs. Later, they examined the participants’ brain structure with MRI scans.

In dancers, both the eye reflexes and their perception of spinning lasted a shorter time than in the rowers.

Yes, they too have a small sample. Happily, you can find a citation and a link to the research at the end of the ScienceDaily news item.

ETA Oct. 10, 2013 at 1:10 pm PDT: The ballet dancer research was not randomized but  that’s understandable as researchers were trying to discover why these dancers don’t experience dizziness. It should be noted the researchers did test the ballet dancers against a control group. By contrast, the researchers at the University of Exeter seemed to be generalizing results from a specialized sample to a larger population.

Alice Munro news

It was announced today (Thursday, Oct. 10, 2013) that Canada’s Alice Munro has been awarded the 2013 Nobel Prize for Literature. Here’s more from an Oct. 10, 2013 news item on the Canadian Broadcasting Corporation (CBC) news website,

Alice Munro wins the 2013 Nobel Prize in Literature, becoming the first Canadian woman to take the award since its launch in 1901.

Munro, 82, only the 13th woman given the award, was lauded by the Swedish Academy during the Nobel announcement in Stockholm as the “master of the contemporary short story.”

“We’re not saying just that she can say a lot in just 20 pages — more than an average novel writer can — but also that she can cover ground. She can have a single short story that covers decades, and it works,” said Peter Englund, permanent secretary of the Swedish Academy.

Reached in British Columbia by CBC News on Thursday morning, Munro said she always viewed her chances of winning the Nobel as “one of those pipe dreams” that “might happen, but it probably wouldn’t.”

Congratulations Ms. Munro! For the curious, there’s a lot more about Alice Munro and about her work in the CBC news item.