Tag Archives: University of Ottawa

Machine learning, neural networks, and knitting

In a recent (Tuesday, March 6, 2018) live stream ‘conversation’ (‘Science in Canada; Investing in Canadian Innovation’ now published on YouTube) between Canadian Prime Minister, Justin Trudeau, and US science communicator, Bill Nye, at the University of Ottawa, they discussed, amongst many other topics, what AI (artificial intelligence) can and can’t do. They seemed to agree that AI can’t be creative, i.e., write poetry, create works of art, make jokes, etc. A conclusion which is both (in my opinion) true and not true.

There are times when I think the joke may be on us (humans). Take for example this March 6, 2018 story by Alexis Madrigal for The Atlantic magazine (Note: Links have been removed),

SkyKnit: How an AI Took Over an Adult Knitting Community

Ribald knitters teamed up with a neural-network creator to generate new types of tentacled, cozy shapes.

Janelle Shane is a humorist [Note: She describes herself as a “Research Scientist in optics. Plays with neural networks. …” in her Twitter bio.] who creates and mines her material from neural networks, the form of machine learning that has come to dominate the field of artificial intelligence over the last half-decade.

Perhaps you’ve seen the candy-heart slogans she generated for Valentine’s Day: DEAR ME, MY MY, LOVE BOT, CUTE KISS, MY BEAR, and LOVE BUN.

Or her new paint-color names: Parp Green, Shy Bather, Farty Red, and Bull Cream.

Or her neural-net-generated Halloween costumes: Punk Tree, Disco Monster, Spartan Gandalf, Starfleet Shark, and A Masked Box.

Her latest project, still ongoing, pushes the joke into a new, physical realm. Prodded by a knitter on the knitting forum Ravelry, Shane trained a type of neural network on a series of over 500 sets of knitting instructions. Then, she generated new instructions, which members of the Ravelry community have actually attempted to knit.

“The knitting project has been a particularly fun one so far just because it ended up being a dialogue between this computer program and these knitters that went over my head in a lot of ways,” Shane told me. “The computer would spit out a whole bunch of instructions that I couldn’t read and the knitters would say, this is the funniest thing I’ve ever read.”

It appears that the project evolved,

The human-machine collaboration created configurations of yarn that you probably wouldn’t give to your in-laws for Christmas, but they were interesting. The user citikas was the first to post a try at one of the earliest patterns, “reverss shawl.” It was strange, but it did have some charisma.

Shane nicknamed the whole effort “Project Hilarious Disaster.” The community called it SkyKnit.

I’m not sure what’s meant by “community” as mentioned in the previous excerpt. Are we talking about humans only, AI only, or both humans and AI?

Here’s some of what underlies Skyknit (Note: Links have been removed),

The different networks all attempt to model the data they’ve been fed by tuning a vast, funky flowchart. After you’ve created a statistical model that describes your real data, you can also roll the dice and generate new, never-before-seen data of the same kind.

How this works—like, the math behind it—is very hard to visualize because values inside the model can have hundreds of dimensions and we are humble three-dimensional creatures moving through time. But as the neural-network enthusiast Robin Sloan puts it, “So what? It turns out imaginary spaces are useful even if you can’t, in fact, imagine them.”

Out of that ferment, a new kind of art has emerged. Its practitioners use neural networks not to attain practical results, but to see what’s lurking in the these vast, opaque systems. What did the machines learn about the world as they attempted to understand the data they’d been fed? Famously, Google released DeepDream, which produced trippy visualizations that also demonstrated how that type of neural network processed the textures and objects in its source imagery.

Madrigal’s article is well worth reading if you have the time. You can also supplement Madrigal’s piece with an August 9, 2017 article about Janelle Shane’s algorithmic experiments by Jacob Brogan for slate.com.

I found some SkyKnit examples on Ravelry including this one from the Dollybird Workshop,

© Chatelaine

SkyKnit fancy addite rifopshent
by SkyKnit
Published in
Dollybird Workshop
SkyKnit
Craft
Knitting
Category
Stitch pattern
Published
February 2018
Suggested yarn
Yarn weight
Fingering (14 wpi) ?
Gauge
24 stitches and 30 rows = 4 inches
in stockinette stitch
Needle size
US 4 – 3.5 mm

written-pattern

This pattern is available as a free Ravelry download

SkyKnit is a type of machine learning algorithm called an artificial neural network. Its creator, Janelle Shane of AIweirdness.com, gave it 88,000 lines of knitting instructions from Stitch-Maps.com and Ravelry, and it taught itself how to make new patterns. Join the discussion!

SkyKnit seems to have created something that has paralell columns, and is reversible. Perhaps a scarf?

Test-knitting & image courtesy of Chatelaine

Patterns may include notes from testknitters; yarn, needles, and gauge are totally at your discretion.

About the designer
SkyKnit’s favorites include lace, tentacles, and totally not the elimination of the human race.
For more information, see: http://aiweirdness.com/

Shane’s website, aiweirdness.com, is where she posts musings such as this (from a March 2, [?] 2018 posting), Note: A link has been removed,

If you’ve been on the internet today, you’ve probably interacted with a neural network. They’re a type of machine learning algorithm that’s used for everything from language translation to finance modeling. One of their specialties is image recognition. Several companies – including Google, Microsoft, IBM, and Facebook – have their own algorithms for labeling photos. But image recognition algorithms can make really bizarre mistakes.

image

Microsoft Azure’s computer vision API [application programming interface] added the above caption and tags. But there are no sheep in the image of above. None. I zoomed all the way in and inspected every speck.

….

I have become quite interested in Shane’s self descriptions such as this one from the aiweirdness.com website,

Portrait/Logo

About

I train neural networks, a type of machine learning algorithm, to write unintentional humor as they struggle to imitate human datasets. Well, I intend the humor. The neural networks are just doing their best to understand what’s going on. Currently located on the occupied land of the Arapahoe Nation.
https://wandering.shop/@janellecshane

As for the joke being on us, I can’t help remembering the Facebook bots that developed their own language (Facebotlish), and were featured in my June 30, 2017 posting, There’s a certain eerieness to it all, which seems an appropriate response in a year celebrating the 200th anniversary of Mary Shelley’s 1818 book, Frankenstein; or, the Modern Prometheus. I’m closing with a video clip from the 1931 movie,

Happy Weekend!

2017 proceedings for the Canadian Science Policy Conference

I received (via email) a December 11, 2017 notice from the Canadian Science Policy Centre that the 2017 Proceedings for the ninth annual conference (Nov. 1 – 3, 2017 in Ottawa, Canada) can now be accessed,

The Canadian Science Policy Centre is pleased to present you the Proceedings of CSPC 2017. Check out the reports and takeaways for each panel session, which have been carefully drafted by a group of professional writers. You can also listen to the audio recordings and watch the available videos. The proceedings page will provide you with the opportunity to immerse yourself in all of the discussions at the conference. Feel free to share the ones you like! Also, check out the CSPC 2017 reports, analyses, and stats in the proceedings.

Click here for the CSPC 2017 Proceedings

CSPC 2017 Interviews

Take a look at the 70+ one-on-one interviews with prominent figures of science policy. The interviews were conducted by the great team of CSPC 2017 volunteers. The interviews feature in-depth perspectives about the conference, panels, and new up and coming projects.

Click here for the CSPC 2017 interviews

Amongst many others, you can find a video of Governor General Julie Payette’s notorious remarks made at the opening ceremonies and which I highlighted in my November 3, 2017 posting about this year’s conference.

The proceedings are organized by day with links to individual pages for each session held that day. Here’s a sample of what is offered on Day 1: Artificial Intelligence and Discovery Science: Playing to Canada’s Strengths,

Artificial Intelligence and Discovery Science: Playing to Canada’s Strengths

Conference Day:
Day 1 – November 1st 2017

Organized by: Friends of the Canadian Institutes of Health Research

Keynote: Alan Bernstein, President and CEO, CIFAR, 2017 Henry G. Friesen International Prizewinner

Speakers: Brenda Andrews, Director, Andrew’s Lab, University of Toronto; Doina Precup, Associate Professor, McGill University; Dr Rémi Quirion, Chief Scientist of Quebec; Linda Rabeneck, Vice President, Prevention and Cancer Control, Cancer Care Ontario; Peter Zandstra, Director, School of Biomedical Engineering, University of British Columbia

Discussants: Henry Friesen, Professor Emeritus, University of Manitoba; Roderick McInnes, Acting President, Canadian Institutes of Health Research and Director, Lady Davis Institute, Jewish General Hospital, McGill University; Duncan J. Stewart, CEO and Scientific Director, Ottawa Hospital Research Institute; Vivek Goel, Vice President, Research and Innovation, University of Toronto

Moderators: Eric Meslin, President & CEO, Council of Canadian Academies; André Picard, Health Reporter and Columnist, The Globe and Mail

Takeaways and recommendations:

The opportunity for Canada

  • The potential impact of artificial intelligence (AI) could be as significant as the industrial revolution of the 19th century.
  • Canada’s global advantage in deep learning (a subset of machine learning) stems from the pioneering work of Geoffrey Hinton and early support from CIFAR and NSERC.
  • AI could mark a turning point in Canada’s innovation performance, fueled by the highest levels of venture capital financing in nearly a decade, and underpinned by publicly funded research at the federal, provincial and institutional levels.
  • The Canadian AI advantage can only be fully realized by developing and importing skilled talent, accessible markets, capital and companies willing to adopt new technologies into existing industries.
  • Canada leads in the combination of functional genomics and machine learning which is proving effective for predicting the functional variation in genomes.
  • AI promises advances in biomedical engineering by connecting chronic diseases – the largest health burden in Canada – to gene regulatory networks by understanding how stem cells make decisions.
  • AI can be effectively deployed to evaluate health and health systems in the general population.

The challenges

  • AI brings potential ethical and economic perils and requires a watchdog to oversee standards, engage in fact-based debate and prepare for the potential backlash over job losses to robots.
  • The ethical, environmental, economic, legal and social (GEL3S) aspects of genomics have been largely marginalized and it’s important not to make the same mistake with AI.
  • AI’s rapid scientific development makes it difficult to keep pace with safeguards and standards.
  • The fields of AI’s and pattern recognition are strongly connected but here is room for improvement.
  • Self-learning algorithms such as Alphaville could lead to the invention of new things that humans currently don’t know how to do. The field is developing rapidly, leading to some concern over the deployment of such systems.

Training future AI professionals

  • Young researchers must be given the oxygen to excel at AI if its potential is to be realized.
  • Students appreciate the breadth of training and additional resources they receive from researchers with ties to both academia and industry.
  • The importance of continuing fundamental research in AI is being challenged by companies such as Facebook, Google and Amazon which are hiring away key talent.
  • The explosion of AI is a powerful illustration of how the importance of fundamental research may only be recognized and exploited after 20 or 30 years. As a result, support for fundamental research, and the students working in areas related to AI, must continue.

A couple comments

To my knowledge, this is the first year the proceedings have been made so easily accessible. In fact, I can’t remember another year where they have been open access. Thank you!

Of course, I have to make a comment about the Day 2 session titled: Does Canada have a Science Culture? The answer is yes and it’s in the province of Ontario. Just take a look at the panel,

Organized by: Kirsten Vanstone, Royal Canadian Institute for Science and Reinhart Reithmeier, Professor, University of Toronto [in Ontario]

Speakers: Chantal Barriault, Director, Science Communication Graduate Program, Laurentian University [in Ontario] and Science North [in Ontario]; Maurice Bitran, CEO, Ontario Science Centre [take a wild guess as to where this institution is located?]; Kelly Bronson, Assistant Professor, Faculty of Social Sciences, University of Ottawa [in Ontario]; Marc LePage, President and CEO, Genome Canada [in Ontario]

Moderator: Ivan Semeniuk, Science Reporter, The Globe and Mail [in Ontario]

In fact, all of the institutions are in southern Ontario, even, the oddly named Science North.

I know from bitter experience it’s hard to put together panels but couldn’t someone from another province have participated?

Ah well, here’s hoping for 2018 and for a new location. After Ottawa as the CSPC site for three years in a row, please don’t make it a fourth year in a row.

Announcing Canada’s Chief Science Advisor: Dr. Mona Nemer

Thanks to the Canadian Science Policy Centre’s September 26, 2017 announcement (received via email) a burning question has been answered,

After great anticipation, Prime Minister Trudeau along with Minister Duncan have announced Canada’s Chief Science Advisor, Dr. Mona Nemer, [emphasis mine]  at a ceremony at the House of Commons. The Canadian Science Policy Centre welcomes this exciting news and congratulates Dr. Nemer on her appointment in this role and we wish her the best in carrying out her duties in this esteemed position. CSPC is looking forward to working closely with Dr. Nemer for the Canadian science policy community. Mehrdad Hariri, CEO & President of the CSPC, stated, “Today’s historic announcement is excellent news for science in Canada, for informed policy-making and for all Canadians. We look forward to working closely with the new Chief Science Advisor.”

In fulfilling our commitment to keep the community up to date and informed regarding science, technology, and innovation policy issues, CSPC has been compiling all news, publications, and editorials in recognition of the importance of the Federal Chief Science Officer as it has been developing, as you may see by clicking here.

We invite your opinions regarding the new Chief Science Advisor, to be published on our CSPC Featured Editorial page. We will publish your reactions on our website, sciencepolicy.ca on our Chief Science Advisor page.

Please send your opinion pieces to editorial@sciencepolicy.ca.

Here are a few (very few) details from the Prime Minister’s (Justin Trudeau) Sept. 26, 2017 press release making the official announcement,

The Government of Canada is committed to strengthen science in government decision-making and to support scientists’ vital work.

In keeping with these commitments, the Prime Minister, Justin Trudeau, today announced Dr. Mona Nemer as Canada’s new Chief Science Advisor, following an open, transparent, and merit-based selection process.  

We know Canadians value science. As the new Chief Science Advisor, Dr. Nemer will help promote science and its real benefits for Canadians—new knowledge, novel technologies, and advanced skills for future jobs. These breakthroughs and new opportunities form an essential part of the Government’s strategy to secure a better future for Canadian families and to grow Canada’s middle class.

Dr. Nemer is a distinguished medical researcher whose focus has been on the heart, particularly on the mechanisms of heart failure and congenital heart diseases. In addition to publishing over 200 scholarly articles, her research has led to new diagnostic tests for heart failure and the genetics of cardiac birth defects. Dr. Nemer has spent more than ten years as the Vice-President, Research at the University of Ottawa, has served on many national and international scientific advisory boards, and is a Fellow of the Royal Society of Canada, a Member of the Order of Canada, and a Chevalier de l’Ordre du Québec.

As Canada’s new top scientist, Dr. Nemer will provide impartial scientific advice to the Prime Minister and the Minister of Science. She will also make recommendations to help ensure that government science is fully available and accessible to the public, and that federal scientists remain free to speak about their work. Once a year, she will submit a report about the state of federal government science in Canada to the Prime Minister and the Minister of Science, which will also be made public.

Quotes

“We have taken great strides to fulfill our promise to restore science as a pillar of government decision-making. Today, we took another big step forward by announcing Dr. Mona Nemer as our Chief Science Advisor. Dr. Nemer brings a wealth of expertise to the role. Her advice will be invaluable and inform decisions made at the highest levels. I look forward to working with her to promote a culture of scientific excellence in Canada.”
— The Rt. Hon. Justin Trudeau, Prime Minister of Canada

“A respect for science and for Canada’s remarkable scientists is a core value for our government. I look forward to working with Dr. Nemer, Canada’s new Chief Science Advisor, who will provide us with the evidence we need to make decisions about what matters most to Canadians: their health and safety, their families and communities, their jobs, environment and future prosperity.”
— The Honourable Kirsty Duncan, Minister of Science

“I am honoured and excited to be Canada’s Chief Science Advisor. I am very pleased to be representing Canadian science and research – work that plays a crucial role in protecting and improving the lives of people everywhere. I look forward to advising the Prime Minister and the Minister of Science and working with the science community, policy makers, and the public to make science part of government policy making.”
— Dr. Mona Nemer, Chief Science Advisor, Canada

Quick Facts

  • Dr. Nemer is also a Knight of the Order of Merit of the French Republic, and has been awarded honorary doctorates from universities in France and Finland.
  • The Office of the Chief Science Advisor will be housed at Innovation, Science and Economic Development and supported by a secretariat.

Nemers’ Wikipedia entry does not provide much additional information although you can find out a bit more on her University of Ottawa page. Brian Owens in a Sept. 26, 2017 article for the American Association for the Advancement of Science’s (AAAS) Science Magazine provides a bit more detail, about this newly created office and its budget

Nemer’s office will have a $2 million budget, and she will report to both Trudeau and science minister Kirsty Duncan. Her mandate includes providing scientific advice to government ministers, helping keep government-funded science accessible to the public, and protecting government scientists from being muzzled.

Ivan Semeniuk’s Sept. 26, 2017 article for the Globe and Mail newspaper about Nemer’s appointment is the most informative (that I’ve been able to find),

Mona Nemer, a specialist in the genetics of heart disease and a long time vice-president of research at the University of Ottawa, has been named Canada’s new chief science advisor.

The appointment, announced Tuesday [Sept. 26, 2017] by Prime Minister Justin Trudeau, comes two years after the federal Liberals pledged to reinstate the position during the last election campaign and nearly a decade after the previous version of the role was cut by then prime minister Stephen Harper.

Dr. Nemer steps into the job of advising the federal government on science-related policy at a crucial time. Following a landmark review of Canada’s research landscape [Naylor report] released last spring, university-based scientists are lobbying hard for Ottawa to significantly boost science funding, one of the report’s key recommendations. At the same time, scientists and science-advocacy groups are increasingly scrutinizing federal actions on a range of sensitive environment and health-related issues to ensure the Trudeau government is making good on promises to embrace evidence-based decision making.

A key test of the position’s relevance for many observers will be the extent to which Dr. Nemer is able to speak her mind on matters where science may run afoul of political expediency.

Born in 1957, Dr. Nemer grew up in Lebanon and pursued an early passion for chemistry at a time and place where women were typically discouraged from entering scientific fields. With Lebanon’s civil war making it increasingly difficult for her to pursue her studies, her family was able to arrange for her to move to the United States, where she completed an undergraduate degree at Wichita State University in Kansas.

A key turning point came in the summer of 1977 when Dr. Nemer took a trip with friends to Montreal. She quickly fell for the city and, in short order, managed to secure acceptance to McGill University, where she received a PhD in 1982. …

It took a lot of searching to find out that Nemer was born in Lebanon and went to the United States first. A lot of immigrants and their families view Canada as a second choice and Nemer and her family would appear to have followed that pattern. It’s widely believed (amongst Canadians too) that the US is where you go for social mobility. I’m not sure if this is still the case but at one point in the 1980s Israel ranked as having the greatest social mobility in the world. Canada came in second while the US wasn’t even third or fourth ranked.

It’s the second major appointment by Justin Trudeau in the last few months to feature a woman who speaks French. The first was Julie Payette, former astronaut and Québecker, as the upcoming Governor General (there’s more detail and a whiff of sad scandal in this Aug. 21, 2017 Canadian Broadcasting Corporation online news item). Now there’s Dr. Mona Nemer who’s lived both in Québec and Ontario. Trudeau and his feminism, eh? Also, his desire to keep Québeckers happy (more or less).

I’m not surprised by the fact that Nemer has been based in Ottawa for several years. I guess they want someone who’s comfortable with the government apparatus although I for one think a little fresh air might be welcome. After all, the Minister of Science, Kirsty Duncan, is from Toronto which between Nemer and Duncan gives us the age-old Canadian government trifecta (geographically speaking), Ottawa-Montréal-Toronto.

Two final comments, I am surprised that Duncan did not make the announcement. After all, it was in her 2015 mandate letter.But perhaps Paul Wells in his acerbic June 29, 2017 article for Macleans hints at the reason as he discusses the Naylor report (review of fundamental science mentioned in Semeniuk’s article and for which Nemer is expected to provide advice),

The Naylor report represents Canadian research scientists’ side of a power struggle. The struggle has been continuing since Jean Chrétien left office. After early cuts, he presided for years over very large increases to the budgets of the main science granting councils. But since 2003, governments have preferred to put new funding dollars to targeted projects in applied sciences. …

Naylor wants that trend reversed, quickly. He is supported in that call by a frankly astonishingly broad coalition of university administrators and working researchers, who until his report were more often at odds. So you have the group representing Canada’s 15 largest research universities and the group representing all universities and a new group representing early-career researchers and, as far as I can tell, every Canadian scientist on Twitter. All backing Naylor. All fundamentally concerned that new money for research is of no particular interest if it does not back the best science as chosen by scientists, through peer review.

The competing model, the one preferred by governments of all stripes, might best be called superclusters. Very large investments into very large projects with loosely defined scientific objectives, whose real goal is to retain decorated veteran scientists and to improve the Canadian high-tech industry. Vast and sprawling labs and tech incubators, cabinet ministers nodding gravely as world leaders in sexy trendy fields sketch the golden path to Jobs of Tomorrow.

You see the imbalance. On one side, ribbons to cut. On the other, nerds experimenting on tapeworms. Kirsty Duncan, a shaky political performer, transparently a junior minister to the supercluster guy, with no deputy minister or department reporting to her, is in a structurally weak position: her title suggests she’s science’s emissary to the government, but she is not equipped to be anything more than government’s emissary to science.

Second,  our other science minister, Navdeep Bains, Minister of Innovation, Science  and Economic Development does not appear to have been present at the announcement. Quite surprising given where her office will located (from the government’s Sept. 26, 2017 press release in Quick Facts section ) “The Office of the Chief Science Advisor will be housed at Innovation, Science and Economic Development and supported by a secretariat.”

Finally, Wells’ article is well worth reading in its entirety and for those who are information gluttons, I have a three part series on the Naylor report, published June 8, 2017,

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 1 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 2 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 3 of 3

For first time: high-dimensional quantum encryption performed in real world city conditions

Having congratulated China on the world’s first quantum communication network a few weeks ago (August 22, 2017 posting), this quantum encryption story seems timely. From an August 24, 2017 news item on phys.org,

For the first time, researchers have sent a quantum-secured message containing more than one bit of information per photon through the air above a city. The demonstration showed that it could one day be practical to use high-capacity, free-space quantum communication to create a highly secure link between ground-based networks and satellites, a requirement for creating a global quantum encryption network.

Quantum encryption uses photons to encode information in the form of quantum bits. In its simplest form, known as 2D encryption, each photon encodes one bit: either a one or a zero. Scientists have shown that a single photon can encode even more information—a concept known as high-dimensional quantum encryption—but until now this has never been demonstrated with free-space optical communication in real-world conditions. With eight bits necessary to encode just one letter, for example, packing more information into each photon would significantly speed up data transmission.

This looks like donuts on a stick to me,

For the first time, researchers have demonstrated sending messages in a secure manner using high dimensional quantum cryptography in realistic city conditions. Image Credit: SQO team, University of Ottawa.

An Aug. 24, 2017 Optical Society news release (also on EurekAlert), which originated the news item, describes the work done by a team in Ottawa, Canada, (Note: The ‘Congratulate China’ piece (August 22, 2017 posting) includes excerpts from an article that gave a brief survey of various national teams [including Canada] working on quantum communication networks; Links have been removed),

“Our work is the first to send messages in a secure manner using high-dimensional quantum encryption in realistic city conditions, including turbulence,” said research team lead, Ebrahim Karimi, University of Ottawa, Canada. “The secure, free-space communication scheme we demonstrated could potentially link Earth with satellites, securely connect places where it is too expensive to install fiber, or be used for encrypted communication with a moving object, such as an airplane.”

For the first time, researchers have demonstrated sending messages in a secure manner using high dimensional quantum cryptography in realistic city conditions. Image Credit: SQO team, University of Ottawa.

As detailed in Optica, The Optical Society’s journal for high impact research, the researchers demonstrated 4D quantum encryption over a free-space optical network spanning two buildings 0.3 kilometers apart at the University of Ottawa. This high-dimensional encryption scheme is referred to as 4D because each photon encodes two bits of information, which provides the four possibilities of 01, 10, 00 or 11.

In addition to sending more information per photon, high-dimensional quantum encryption can also tolerate more signal-obscuring noise before the transmission becomes unsecure. Noise can arise from turbulent air, failed electronics, detectors that don’t work properly and from attempts to intercept the data. “This higher noise threshold means that when 2D quantum encryption fails, you can try to implement 4D because it, in principle, is more secure and more noise resistant,” said Karimi.

Using light for encryption

Today, mathematical algorithms are used to encrypt text messages, banking transactions and health information. Intercepting these encrypted messages requires figuring out the exact algorithm used to encrypt a given piece of data, a feat that is difficult now but that is expected to become easier in the next decade or so as computers become more powerful.

Given the expectation that current algorithms may not work as well in the future, more attention is being given to stronger encryption techniques such as quantum key distribution, which uses properties of light particles known as quantum states to encode and send the key needed to decrypt encoded data.

Although wired and free-space quantum encryption has been deployed on some small, local networks, implementing it globally will require sending encrypted messages between ground-based stations and the satellite-based quantum communication networks that would link cities and countries. Horizontal tests through the air can be used to simulate sending signals to satellites, with about three horizontal kilometers being roughly equal to sending the signal through the Earth’s atmosphere to a satellite.

Before trying a three-kilometer test, the researchers wanted to see if it was even possible to perform 4D quantum encryption outside. This was thought to be so challenging that some other scientists in the field said that the experiment would not work. One of the primary problems faced during any free-space experiment is dealing with air turbulence, which distorts the optical signal.

Real-world testing

For the tests, the researchers brought their laboratory optical setups to two different rooftops and covered them with wooden boxes to provide some protection from the elements. After much trial and error, they successfully sent messages secured with 4D quantum encryption over their intracity link. The messages exhibited an error rate of 11 percent, below the 19 percent threshold needed to maintain a secure connection. They also compared 4D encryption with 2D, finding that, after error correction, they could transmit 1.6 times more information per photon with 4D quantum encryption, even with turbulence.

“After bringing equipment that would normally be used in a clean, isolated lab environment to a rooftop that is exposed to the elements and has no vibration isolation, it was very rewarding to see results showing that we could transmit secure data,” said Alicia Sit, an undergraduate student in Karimi’s lab.

As a next step, the researchers are planning to implement their scheme into a network that includes three links that are about 5.6 kilometers apart and that uses a technology known as adaptive optics to compensate for the turbulence. Eventually, they want to link this network to one that exists now in the city. “Our long-term goal is to implement a quantum communication network with multiple links but using more than four dimensions while trying to get around the turbulence,” said Sit.

Here’s a link to and a citation for the paper,

High-dimensional intracity quantum cryptography with structured photons by Alicia Sit, Frédéric Bouchard, Robert Fickler, Jérémie Gagnon-Bischoff, Hugo Larocque, Khabat Heshami, Dominique Elser, Christian Peuntinger, Kevin Günthner, Bettina Heim, Christoph Marquardt, Gerd Leuchs, Robert W. Boyd, and Ebrahim Karimi. Optica Vol. 4, Issue 9, pp. 1006-1010 (2017) •https://doi.org/10.1364/OPTICA.4.001006

This is an open access paper.

Emerging technology and the law

I have three news bits about legal issues that are arising as a consequence of emerging technologies.

Deep neural networks, art, and copyright

Caption: The rise of automated art opens new creative avenues, coupled with new problems for copyright protection. Credit: Provided by: Alexander Mordvintsev, Christopher Olah and Mike Tyka

Presumably this artwork is a demonstration of automated art although they never really do explain how in the news item/news release. An April 26, 2017 news item on ScienceDaily announces research into copyright and the latest in using neural networks to create art,

In 1968, sociologist Jean Baudrillard wrote on automatism that “contained within it is the dream of a dominated world […] that serves an inert and dreamy humanity.”

With the growing popularity of Deep Neural Networks (DNN’s), this dream is fast becoming a reality.

Dr. Jean-Marc Deltorn, researcher at the Centre d’études internationales de la propriété intellectuelle in Strasbourg, argues that we must remain a responsive and responsible force in this process of automation — not inert dominators. As he demonstrates in a recent Frontiers in Digital Humanities paper, the dream of automation demands a careful study of the legal problems linked to copyright.

An April 26, 2017 Frontiers (publishing) news release on EurekAlert, which originated the news item, describes the research in more detail,

For more than half a century, artists have looked to computational processes as a way of expanding their vision. DNN’s are the culmination of this cross-pollination: by learning to identify a complex number of patterns, they can generate new creations.

These systems are made up of complex algorithms modeled on the transmission of signals between neurons in the brain.

DNN creations rely in equal measure on human inputs and the non-human algorithmic networks that process them.

Inputs are fed into the system, which is layered. Each layer provides an opportunity for a more refined knowledge of the inputs (shape, color, lines). Neural networks compare actual outputs to expected ones, and correct the predictive error through repetition and optimization. They train their own pattern recognition, thereby optimizing their learning curve and producing increasingly accurate outputs.

The deeper the layers are, the higher the level of abstraction. The highest layers are able to identify the contents of a given input with reasonable accuracy, after extended periods of training.

Creation thus becomes increasingly automated through what Deltorn calls “the arcane traceries of deep architecture”. The results are sufficiently abstracted from their sources to produce original creations that have been exhibited in galleries, sold at auction and performed at concerts.

The originality of DNN’s is a combined product of technological automation on one hand, human inputs and decisions on the other.

DNN’s are gaining popularity. Various platforms (such as DeepDream) now allow internet users to generate their very own new creations . This popularization of the automation process calls for a comprehensive legal framework that ensures a creator’s economic and moral rights with regards to his work – copyright protection.

Form, originality and attribution are the three requirements for copyright. And while DNN creations satisfy the first of these three, the claim to originality and attribution will depend largely on a given country legislation and on the traceability of the human creator.

Legislation usually sets a low threshold to originality. As DNN creations could in theory be able to create an endless number of riffs on source materials, the uncurbed creation of original works could inflate the existing number of copyright protections.

Additionally, a small number of national copyright laws confers attribution to what UK legislation defines loosely as “the person by whom the arrangements necessary for the creation of the work are undertaken.” In the case of DNN’s, this could mean anybody from the programmer to the user of a DNN interface.

Combined with an overly supple take on originality, this view on attribution would further increase the number of copyrightable works.

The risk, in both cases, is that artists will be less willing to publish their own works, for fear of infringement of DNN copyright protections.

In order to promote creativity – one seminal aim of copyright protection – the issue must be limited to creations that manifest a personal voice “and not just the electric glint of a computational engine,” to quote Deltorn. A delicate act of discernment.

DNN’s promise new avenues of creative expression for artists – with potential caveats. Copyright protection – a “catalyst to creativity” – must be contained. Many of us gently bask in the glow of an increasingly automated form of technology. But if we want to safeguard the ineffable quality that defines much art, it might be a good idea to hone in more closely on the differences between the electric and the creative spark.

This research is and be will part of a broader Frontiers Research Topic collection of articles on Deep Learning and Digital Humanities.

Here’s a link to and a citation for the paper,

Deep Creations: Intellectual Property and the Automata by Jean-Marc Deltorn. Front. Digit. Humanit., 01 February 2017 | https://doi.org/10.3389/fdigh.2017.00003

This paper is open access.

Conference on governance of emerging technologies

I received an April 17, 2017 notice via email about this upcoming conference. Here’s more from the Fifth Annual Conference on Governance of Emerging Technologies: Law, Policy and Ethics webpage,

The Fifth Annual Conference on Governance of Emerging Technologies:

Law, Policy and Ethics held at the new

Beus Center for Law & Society in Phoenix, AZ

May 17-19, 2017!

Call for Abstracts – Now Closed

The conference will consist of plenary and session presentations and discussions on regulatory, governance, legal, policy, social and ethical aspects of emerging technologies, including (but not limited to) nanotechnology, synthetic biology, gene editing, biotechnology, genomics, personalized medicine, human enhancement technologies, telecommunications, information technologies, surveillance technologies, geoengineering, neuroscience, artificial intelligence, and robotics. The conference is premised on the belief that there is much to be learned and shared from and across the governance experience and proposals for these various emerging technologies.

Keynote Speakers:

Gillian HadfieldRichard L. and Antoinette Schamoi Kirtland Professor of Law and Professor of Economics USC [University of Southern California] Gould School of Law

Shobita Parthasarathy, Associate Professor of Public Policy and Women’s Studies, Director, Science, Technology, and Public Policy Program University of Michigan

Stuart Russell, Professor at [University of California] Berkeley, is a computer scientist known for his contributions to artificial intelligence

Craig Shank, Vice President for Corporate Standards Group in Microsoft’s Corporate, External and Legal Affairs (CELA)

Plenary Panels:

Innovation – Responsible and/or Permissionless

Ellen-Marie Forsberg, Senior Researcher/Research Manager at Oslo and Akershus University College of Applied Sciences

Adam Thierer, Senior Research Fellow with the Technology Policy Program at the Mercatus Center at George Mason University

Wendell Wallach, Consultant, ethicist, and scholar at Yale University’s Interdisciplinary Center for Bioethics

 Gene Drives, Trade and International Regulations

Greg Kaebnick, Director, Editorial Department; Editor, Hastings Center Report; Research Scholar, Hastings Center

Jennifer Kuzma, Goodnight-North Carolina GlaxoSmithKline Foundation Distinguished Professor in Social Sciences in the School of Public and International Affairs (SPIA) and co-director of the Genetic Engineering and Society (GES) Center at North Carolina State University

Andrew Maynard, Senior Sustainability Scholar, Julie Ann Wrigley Global Institute of Sustainability Director, Risk Innovation Lab, School for the Future of Innovation in Society Professor, School for the Future of Innovation in Society, Arizona State University

Gary Marchant, Regents’ Professor of Law, Professor of Law Faculty Director and Faculty Fellow, Center for Law, Science & Innovation, Arizona State University

Marc Saner, Inaugural Director of the Institute for Science, Society and Policy, and Associate Professor, University of Ottawa Department of Geography

Big Data

Anupam Chander, Martin Luther King, Jr. Professor of Law and Director, California International Law Center, UC Davis School of Law

Pilar Ossorio, Professor of Law and Bioethics, University of Wisconsin, School of Law and School of Medicine and Public Health; Morgridge Institute for Research, Ethics Scholar-in-Residence

George Poste, Chief Scientist, Complex Adaptive Systems Initiative (CASI) (http://www.casi.asu.edu/), Regents’ Professor and Del E. Webb Chair in Health Innovation, Arizona State University

Emily Shuckburgh, climate scientist and deputy head of the Polar Oceans Team at the British Antarctic Survey, University of Cambridge

 Responsible Development of AI

Spring Berman, Ira A. Fulton Schools of Engineering, Arizona State University

John Havens, The IEEE [Institute of Electrical and Electronics Engineers] Global Initiative for Ethical Considerations in Artificial Intelligence and Autonomous Systems

Subbarao Kambhampati, Senior Sustainability Scientist, Julie Ann Wrigley Global Institute of Sustainability, Professor, School of Computing, Informatics and Decision Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University

Wendell Wallach, Consultant, Ethicist, and Scholar at Yale University’s Interdisciplinary Center for Bioethics

Existential and Catastrophic Ricks [sic]

Tony Barrett, Co-Founder and Director of Research of the Global Catastrophic Risk Institute

Haydn Belfield,  Academic Project Administrator, Centre for the Study of Existential Risk at the University of Cambridge

Margaret E. Kosal Associate Director, Sam Nunn School of International Affairs, Georgia Institute of Technology

Catherine Rhodes,  Academic Project Manager, Centre for the Study of Existential Risk at CSER, University of Cambridge

These were the panels that are of interest to me; there are others on the homepage.

Here’s some information from the Conference registration webpage,

Early Bird Registration – $50 off until May 1! Enter discount code: earlybirdGETs50

New: Group Discount – Register 2+ attendees together and receive an additional 20% off for all group members!

Click Here to Register!

Conference registration fees are as follows:

  • General (non-CLE) Registration: $150.00
  • CLE Registration: $350.00
  • *Current Student / ASU Law Alumni Registration: $50.00
  • ^Cybsersecurity sessions only (May 19): $100 CLE / $50 General / Free for students (registration info coming soon)

There you have it.

Neuro-techno future laws

I’m pretty sure this isn’t the first exploration of potential legal issues arising from research into neuroscience although it’s the first one I’ve stumbled across. From an April 25, 2017 news item on phys.org,

New human rights laws to prepare for advances in neurotechnology that put the ‘freedom of the mind’ at risk have been proposed today in the open access journal Life Sciences, Society and Policy.

The authors of the study suggest four new human rights laws could emerge in the near future to protect against exploitation and loss of privacy. The four laws are: the right to cognitive liberty, the right to mental privacy, the right to mental integrity and the right to psychological continuity.

An April 25, 2017 Biomed Central news release on EurekAlert, which originated the news item, describes the work in more detail,

Marcello Ienca, lead author and PhD student at the Institute for Biomedical Ethics at the University of Basel, said: “The mind is considered to be the last refuge of personal freedom and self-determination, but advances in neural engineering, brain imaging and neurotechnology put the freedom of the mind at risk. Our proposed laws would give people the right to refuse coercive and invasive neurotechnology, protect the privacy of data collected by neurotechnology, and protect the physical and psychological aspects of the mind from damage by the misuse of neurotechnology.”

Advances in neurotechnology, such as sophisticated brain imaging and the development of brain-computer interfaces, have led to these technologies moving away from a clinical setting and into the consumer domain. While these advances may be beneficial for individuals and society, there is a risk that the technology could be misused and create unprecedented threats to personal freedom.

Professor Roberto Andorno, co-author of the research, explained: “Brain imaging technology has already reached a point where there is discussion over its legitimacy in criminal court, for example as a tool for assessing criminal responsibility or even the risk of reoffending. Consumer companies are using brain imaging for ‘neuromarketing’, to understand consumer behaviour and elicit desired responses from customers. There are also tools such as ‘brain decoders’ which can turn brain imaging data into images, text or sound. All of these could pose a threat to personal freedom which we sought to address with the development of four new human rights laws.”

The authors explain that as neurotechnology improves and becomes commonplace, there is a risk that the technology could be hacked, allowing a third-party to ‘eavesdrop’ on someone’s mind. In the future, a brain-computer interface used to control consumer technology could put the user at risk of physical and psychological damage caused by a third-party attack on the technology. There are also ethical and legal concerns over the protection of data generated by these devices that need to be considered.

International human rights laws make no specific mention to neuroscience, although advances in biomedicine have become intertwined with laws, such as those concerning human genetic data. Similar to the historical trajectory of the genetic revolution, the authors state that the on-going neurorevolution will force a reconceptualization of human rights laws and even the creation of new ones.

Marcello Ienca added: “Science-fiction can teach us a lot about the potential threat of technology. Neurotechnology featured in famous stories has in some cases already become a reality, while others are inching ever closer, or exist as military and commercial prototypes. We need to be prepared to deal with the impact these technologies will have on our personal freedom.”

Here’s a link to and a citation for the paper,

Towards new human rights in the age of neuroscience and neurotechnology by Marcello Ienca and Roberto Andorno. Life Sciences, Society and Policy201713:5 DOI: 10.1186/s40504-017-0050-1 Published: 26 April 2017

©  The Author(s). 2017

This paper is open access.

Canadian Science Policy Conference inaugurates Lecture Series: Science Advice in a Troubled World

The Canadian Science Policy Centre (CSPC) launched a lecture series on Monday, Jan. 16, 2017 with Sir Peter Gluckman as the first speaker in a talk titled, Science Advice in a Troubled World. From a Jan. 18, 2017 CSPC announcement (received via email),

The inaugural session of the Canadian Science Policy Lecture Series was hosted by ISSP [University of Ottawa’s Institute for Science Society and Policy (ISSP)] on Monday January 16th [2017] at the University of Ottawa. Sir Peter Gluckman, Chief Science Advisor to the Prime Minister of New Zealand gave a presentation titled “Science Advise [sic] in a troubled world”. For a summary of the event, video and pictures please visit the event page.  

The session started with speeches by Monica Gattiner, Director, Institute for Science, Society and Policy, Jacques Frémont, President of the University of Ottawa as well as Mehrdad Hariri, CEO and President of the Canadian Science Policy Centre (CSPC).

The talk itself is about 50 mins. but there are lengthy introductions, including a rather unexpected (by me) reference to the recent US election from the president of the University of Ottawa, Jacques Frémont (formerly the head of Québec’s Human Rights Commission, where the talk was held. There was also a number of questions after the talk. So, the running time for the video 1 hr. 12 mins.

Here’s a bit more information about Sir Peter, from the Science Advice in a Troubled World event page on the CSPC website,

Sir Peter Gluckman ONZ FRS is the first Chief Science Advisor to the Prime Minister of New Zealand, having been appointed in 2009. He is also science envoy and advisor to the Ministry of Foreign Affairs and Trade. He is chair of the International Network of Government Science Advice (INGSA), which operates under the aegis of the international Council of Science (ICSU). He chairs the APEC Chief Science Advisors and Equivalents group and is the coordinator of the secretariat of Small Advanced Economies Initiative.  In 2016 he received the AAAS award in Science Diplomacy. He trained as a pediatric and biomedical scientist and holds a Distinguished University Professorship at the Liggins Institute of the University of Auckland. He has published over 700 scientific papers and several technical and popular science books. He has received the highest scientific (Rutherford medal) and civilian (Order of New Zealand, limited to 20 living persons) honours in NZ and numerous international scientific awards. He is a Fellow of the Royal Society of London, a member of the National Academy of Medicine (USA) and a fellow of the Academy of Medical Sciences (UK).

I listened to the entire video and Gluckman presented a thoughtful, nuanced lecture in which he also mentioned Calestous Juma and his 2016 book, Innovation and Its Enemies (btw, I will be writing a commentary about Juma’s extraordinary effort). He also referenced the concepts of post-truth and post-trust, and made an argument for viewing evidence-based science as part of the larger policymaking process rather than the dominant or only factor. From the Science Advice in a Troubled World event page,

Lecture Introduction

The world is facing many challenges from environmental degradation and climate change to global health issues, and many more.  Societal relationships are changing; sources of information, reliable and otherwise, and their transmission are affecting the nature of public policy.

Within this context the question arises; how can scientific advice to governments help address these emerging issues in a more unstable and uncertain world?
The relationship between science and politics is complex and the challenges at their interface are growing. What does scientific advice mean within this context?
How can science better inform policy where decision making is increasingly made against a background of post-truth polemic?

I’m not in perfect agreement with Gluckman with regard to post-truth as I have been influenced by an essay of Steve Fuller’s suggesting that science too can be post-truth. (Fuller’s essay was highlighted in my Jan. 6, 2017 posting.)

Gluckman seems to be wielding a fair amount of influence on the Canadian scene. This is his second CSPC visit in the last few months. He was an invited speaker at the Eighth Annual CSPC conference in November 2016 and, while he’s here in Jan. 2017, he’s chairing the Canadian Institutes of Health Research (CIHR) International Panel on Peer Review. (The CIHR is one of Canada’s three major government funding agencies for the sciences.)

In other places too, he’s going to be a member of a panel at the University of Oxford Martin School in later January 2017. From the “Is a post-truth world a post-expert world?” event page on the Oxford Martin webspace,

Winston Churchill advised that “experts should be on tap but never on top”. In 2017, is a post-truth world a post-expert world? What does this mean for future debates on difficult policy issues? And what place can researchers usefully occupy in an academic landscape that emphasises policy impact but a political landscape that has become wary of experts? Join us for a lively discussion on academia and the provision of policy advice, examining the role of evidence and experts and exploring how gaps with the public and politicians might be bridged.

This event will be chaired by Achim Steiner, Director of the Oxford Martin School and former Executive Director of the United Nations Environment Programme, with panellists including Oxford Martin Visiting Fellow Professor Sir Peter Gluckman, Chief Science Advisor to the Prime Minister of New Zealand and Chair of the International Network for Government Science Advice; Dr Gemma Harper, Deputy Director for Marine Policy and Evidence and Chief Social Scientist in the Department for Environment, Food and Rural Affairs (Defra), and Professor Stefan Dercon, Chief Economist of the Department for International Development (DFID) and Professor of Economic Policy at the Blavatnik School of Government.

This discussion will be followed by a drinks reception, all welcome.

Here are the logistics should you be lucky enough to be able to attend (from the event page),

25 January 2017 17:00 – 18:15

Lecture Theatre, Oxford Martin School

34 Broad Street (corner of Holywell and Catte Streets)
Oxford
OX1 3BD

Registration ((right hand column) is free.

Finally, Gluckman has published a paper on the digital economy as of Nov. 2016, which can be found here (PDF).

Council of Canadian Academies and science policy for Alberta

The Council of Canadian Academies (CCA) has expanded its approach from assembling expert panels to report on questions posed by various Canadian government agencies (assessments) to special reports from a three-member panel and, now, to a workshop on the province of Alberta’s science policy ideas. From an Oct. 27, 2016 CCA news release (received via email),

The Council of Canadian Academies (CCA) is pleased to announce that it is undertaking an expert panel workshop on science policy ideas under development in Alberta. The workshop will engage national and international experts to explore various dimensions of sub-national science systems and the role of sub-national science policy.

“We are pleased to undertake this project,” said Eric M. Meslin, PhD, FCAHS, President and CEO of the CCA. “It is an assessment that could discuss strategies that have applications in Alberta, across Canada, and elsewhere.”

A two-day workshop, to be undertaken in November 2016, will bring together a multidisciplinary and multi-sectoral group of leading Canadian and international experts to review, validate, and advance work being done on science policy in Alberta. The workshop will explore the necessary considerations when creating science policy at the sub-national level. Specifically it will:

  • Debate and validate the main outcomes of a sub-national science enterprise, particularly in relation to knowledge, human, and social capital.
  • Identify the key elements and characteristics of a successful science enterprise (e.g., funding, trust, capacity, science culture, supporting interconnections and relationships) with a particular focus at a sub-national level.
  • Explore potential intents of a sub-national science policy, important features of such a policy, and the role of the policy in informing investment decisions.

To lead the design of the workshop, complete the necessary background research, and develop the workshop summary report, the CCA has appointed a five member Workshop Steering Committee, chaired by Joy Johnson, FCAHS, Vice President, Research, Simon Fraser University. The other Steering Committee members are: Paul Dufour, Adjunct Professor, Institute for Science, Society and Policy; University of Ottawa, Principal, Paulicy Works; Janet Halliwell, Principal, J.E. Halliwell Associates, Inc.; Kaye Husbands Fealing, Chair and Professor, School of Public Policy, Georgia Tech; and Marc LePage, President and CEO, Genome Canada.

The CCA, under the guidance of its Scientific Advisory Committee, and in collaboration with the Workshop Steering Committee, is now assembling a multidisciplinary, multi-sectoral, group of experts to participate in the two-day workshop. The CCA’s Member Academies – the Royal Society of Canada, the Canadian Academy of Engineering, and the Canadian Academy of Health Sciences – are a key source of membership for expert panels. Many experts are also Fellows of the Academies.

The workshop results will be published in a final summary report in spring 2017. This workshop assessment is supported by a grant from the Government of Alberta.

By comparison with the CCA’s last assessment mentioned here in a July 1, 2016 posting (The State of Science and Technology and Industrial Research and Development in Canada), this workshop has a better balance. The expert panel is being chaired by a woman (the first time I’ve seen that in a few years) and enough female members to add up to 60% representation. No representation from Québec (perhaps not a surprise given this is Alberta) but there is 40% from the western provinces given there is representation from both BC and Alberta. Business can boast 30% (?) with Paul Dufour doing double duty as both academic and business owner. It’s good to see international representation and one day I hope to see it from somewhere other than the US, the UK, and/or the Europe Union. Maybe Asia?

You can find contact information on the CCA’s Towards a Science Policy in Alberta webpage.

One comment, I find the lack of a specific date for the workshop interesting. It suggests either they were having difficulty scheduling or they wanted to keep the ‘unwashed’ away.

Legal Issues and Intellectual Property Rights in Citizen Science (Dec. 10, 2015 event in Washington, DC)

Surprisingly (to me anyway), two of the speakers are Canadian.

Here’s more about the event from a Nov. 30, 2015 email notice,

Legal Issues and Intellectual Property Rights in Citizen Science

Capitalizing on the momentum from the recent White House event — which appointed citizen science coordinators in Federal agencies, highlighted legislation introduced in Congress concerning funding mechanisms and clarifying legal and administrative issues to using citizen science, and launched a new Federal toolkit on citizen science and crowdsourcing —  the Commons Lab is hosting a panel examining the legal issues affecting federal citizen science and the potential intellectual property rights that could arise from using citizen science.

This panel corresponds with the launch of two new Commons Lab Publications:
•    Managing Intellectual Property Rights in Citizen Science, by Teresa Scassa and Haewon Chung
•    Crowdsourcing, Citizen Science, and the Law: Legal Issues Affecting Federal Agencies, by Robert Gellman

As a project manager or researcher conducting citizen science, either at the federal level or in partnership with governmental agencies, there are certain issues like the Information Quality Act that will impact citizen science and crowdsourcing project design. Being aware of these issues prior to initiating projects will save time and provide avenues for complying with or “lawfully evading” potential barriers. The Commons Lab web-enabled policy tool will also be demonstrated at the event. This tool helps users navigate the complicated laws discussed in Robert Gellman’s report on legal issues affecting citizen science.
Intellectual property rights in the age of open source, open data, open science and also, citizen science, are complicated and require significant forethought before embarking on a citizen science project.  Please join us to hear from two experts on the legal barriers and intellectual property rights issues in citizen science and collect a hard copy of the reports.

Speakers

Teresa Scassa, Canada Research Chair in Information Law and Professor in the Faculty of Law, University of Ottawa
Haewon Chung, Doctoral Candidate in Law, University of Ottawa
Robert Gellman, Privacy and Information Policy Consultant in Washington, DC

Moderator

Jay Benforado, Office of Research and Development, U.S. Environmental Protection Agency

Here are the logistics, from the email,

Thursday, December 10th, 2015
11:00am – 12:30pm

6th Floor Auditorium

Directions

Wilson Center
Ronald Reagan Building and
International Trade Center
One Woodrow Wilson Plaza
1300 Pennsylvania, Ave., NW
Washington, D.C. 20004

Phone: 202.691.4000

You can register here for the event should you be attending or check this page for the webcast.