Tag Archives: University of Queensland

Biofuels could be competitive with fossil fuels according to Australians

The University of Queensland’s Australian Institute for Bioengineering & Nanotechnology released a three-year study on biofuels and aviation fuel at a Weds., May 22, 2013 aviation environmental summit hosted by Boeing, according to a May 24, 2013 article by Steve Creedy for The Australian.com.au,

AVIATION biofuels produced in Australia using widely touted feedstocks and existing technology would be competitive only if crude oil was almost three times its present price, a three-year study by universities and industry has found.

The cheapest of three feedstocks studied, sugar cane, would be competitive if crude oil was at $US301 a barrel.

This increased to $US374 for oil-producing seeds from the pongamia tree and a huge $US1343 with microalgae. Brent crude is trading at about $US105 a barrel.

But technological improvements in key areas could significantly lower the price to $US168 for sugarcane, $US255 for pongamia seeds and $US385 for algae.

Peter Hannam’s May 22, 2013 article about the presentation for the Newcastle Herald provides some context for the airlines’ interest in biofuels,

… Nations and carriers continue to wrangle over rules to curb emissions. The European Union earlier this year suspended plans to impose emission permits for any flight arriving or leaving European airspace. The EU backed down after threats of non-compliance or retaliation from China, India and the US, although discussions continue for global restrictions to come into force from 2020.

As Creedy notes in his article, ” … technological improvements in key areas could significantly lower the cost …” and this would require funds. There isn’t any mention in either Creedy’s or Hannam’s article about increased funding.

You can find out more about the Queensland Sustainable Aviation Fuel Initiative here and this is where the group’s latest research study can be found,

Technoeconomic analysis of renewable aviation fuel from microalgae, Pongamia pinnata, and sugarcane by Daniel Klein-Marcuschamer, Christopher Turner, Mark Allen, Peter Gray, Ralf G Dietzgen, Peter M Gresshoff, Ben Hankamer, Kirsten Heimann, Paul T Scott, Evan Stephens, Robert Speight, and Lars K Nielsen.  Biofuels, Bioprod. Bioref.. doi: 10.1002/bbb.1404 Article First published online: 25 APR 2013

This study is behind a paywall.

Legend of the giant squid, a lesson for environmentalists on how to tell a science story

Mark Schrope has written a wonderful piece on the search for the giant squid in his Jan. 25, 2013 posting on Slate.com. It’s a story about adventure, myth, scientific pursuits, and, very cunningly, environmental issues.

I will excerpt a few bits from the piece but I encourage you to read it in its entirety,

Deep-sea biologist Edith Widder was working on a ship positioned off Japan’s Ogasawara Islands when Wen-Sung Chung asked her to step into the lab to see something. Cameras followed her as she got up. This was not unusual, since the Japan Broadcasting Commission (NHK) and the Discovery Channel were funding the expedition, which was being conducted from a research yacht named Alucia leased from a billionaire hedge fund owner. Chung was nonchalant, so it didn’t occur to Widder that she was about to see the culmination of a quest that has driven ocean explorers for more than a century. She thought maybe it was going to be video of a cool shark.

The purpose of the expedition was to capture footage of the enigmatic giant squid in its natural habitat. The animal can grow to 35 feet or longer, and its eye is as big as your head. But it lives about 1,000 feet below the surface and deeper, and it had only been glimpsed a few times at the surface and photographed alive once.

Widder is a world expert on bioluminescence, the light that countless marine animals use to communicate, especially in the dark world of the deep sea.

Schopes introduces a mystery, ‘What is Widder about to see?’, and then doesn’t answer it for several paragraphs while he explains who she is, her area of research, and the legend of the giant squid. Note: A link has been removed.

The giant squid has been the stuff of legend for about as long as people have sailed across oceans. Aristotle and Pliny the Elder described what may have been giant squid, which occasionally wash ashore or end up in fishermen’s nets, and the species is thought to be the origin of the Norwegian kraken myth.

Countless groups in past decades have tried to manufacture giant squid encounters, investing millions, getting all the best advice from the experts, only to come back as failed crusaders. One of the other scientists aboard the Alucia, Tsunemi Kubodera of Japan’s National Museum of Nature and Science, has been hunting giant squid in these waters for years. He managed to capture some still images of one giant squid and video of another after it was caught and brought to the surface. But none of that could compare to video of the animal alive in the deep, a view that would finally allow scientists to begin to understand the mysterious animal.

The expedition has not released expense figures, but it must have cost millions. When Chung, a graduate student at the University of Queensland, brought Widder into the lab and started fast-forwarding through the video, the scientists were already a week into a six-week expedition with nothing significant to show. Producer-types were growing tense.

Apparently, giant squid have a good sense of drama,

Now Widder is the first person to capture footage of a giant squid in its natural habitat. But even she admits that the grainy black-and-white footage, by itself, would have been a little unsatisfying. Some high-def footage would be the ultimate satisfaction. The drama-savvy squid would come through again.

Seven days after the first Medusa footage of a giant squid, Kubodera was in the clear sphere of a Triton submersible with pilot Jim Harris and NHK cameraman Tatsuhiko “Magic Man” Sugita when it happened. Kubodera was exploiting a different hypothesis: that the elusive squid find their prey by looking up with those huge eyes to see the faint silhouette of prey.

On Kubodera’s dives, the team tied a smaller, diamondback squid to the front of the sub and wrapped the bait around foam so that it would sink slower. Up and down, up and down the sub had gone for hours, using another low-light camera.

A giant squid latched on at 2,000 feet. As it drifted down, Harris matched the descent to keep the squid in full camera view. After the first few minutes they had flipped on the big lights, thinking the squid would flee, but it was committed to the bait. The sub’s maximum safe depth is 3,300 feet. Had the squid held on that far, Harris would have had to hit the brakes and the squid would have dropped out of view. But instead, at the last minute—3,000 feet—the squid swam off, so they got the entire encounter on film.

“I’ll never forget how beautiful it was,” says Harris. “It looked like it was covered in gold leaf.” That was a surprise to everyone because the dead ones certainly hadn’t looked like that. They were pasty. Kubodera says it was like seeing an entirely different animal.

Once Schrope has established the adventure aspect and revealed a giant squid covered in gold while, incidentally, establishing Widder’s credentials as a scientist and lover of marine life, there’s this,

For Widder, deep exploration remains a delight, but it’s no longer the primary focus of her career. In 2005, she left her longtime research post at the Harbor Branch Oceanographic Institution to found the Ocean Research and Conservation Association [ORCA], headquartered in a scenic old Coast Guard station on the Fort Pierce inlet. She wanted to take a step away from academia, where scientists are expected to stay relatively quiet in public and avoid anything that smacks of activism.

Widder had been growing increasingly overwhelmed by the environmental decline she was seeing, particularly pollution in coastal waters and estuaries, which are plagued by the polluted runoff of a Florida lifestyle dependent on constant growth and lots of fertilizer.

It gets better,

… She wants to wipe away the fallacy that pollution is an amorphous, intractable problem by gathering the information needed to pinpoint key problems. [emphasis mine] The group wants to create the aquatic equivalent of weather maps. Red shows polluted waters, blue the areas in the best shape. If people know the spot their kids swim in is in the red, they’ll take much more notice, she reasons. Perhaps more importantly, tourists would gravitate to cleaner waters if they could, creating a strong motivation for improvements.

Already the project has had success. [emphasis mine] Mapping the pollution in a stretch of Indian River Lagoon—Widder’s home and her office are both on the lagoon—she was surprised to find that two canals came up blue in a field of red. After some checking, the team learned that the golf course on those canals had switched to better environmental practices. They were preventing mowed grass clippings and runoff from the course from making it into the water. It was the perfect example for the local government, and in short order, a new fertilizer ordinance was passed.

The pièce de résistance,

They seem a world apart, but to Widder, the deep-sea exploration for fantastic creatures and the coastal environmental work guided by microbes are intimately tied. Not just because it’s all one big sea. Attention from the higher profile deep-sea work gives her a bully pulpit for focusing attention on things people don’t want to hear about, like water pollution. “I don’t want to hear about that stuff either,” she says. “But we’ve got to deal with it.” …

Too often in environmental stories writers and activists, in an attempt to communicate the seriousness of the issues,  project a sense of doom. Necessary in the early days, the time has come to change the tone otherwise there’s a risk of inculcating hopelessness (some might say it’s already happening), which is the last thing we need. As Widder says, ” … we’ve got to deal with it.”

Very nicely done Mr. Schrope and Dr. Widder!

You can find more about ORCA here, by the way, the story has videos of the giant squid, and Discovery Channel (which broadcast the documentary on Jan. 27, 2013) also has information about the giant squid. Canadians are not allowed to view the video on the US website, we are required to visit the .ca website.

ETA Mar. 20, 2013: Danish scientists have determined that all giant squid no matter where they are found are related as per a Mar. 19, 2013 news item on ScienceDaily,

The giant squid is one of the most enigmatic animals on the planet. It is extremely rarely seen, except as the remains of animals that have been washed ashore, and placed in the formalin or ethanol collections of museums. But now, researchers at the University of Copenhagen leading an international team, have discovered that no matter where in the world they are found, the fabled animals are so closely related at the genetic level that they represent a single, global population, and thus despite previous statements to the contrary, a single species worldwide.

Brains in the US Congress

Tomorrow, May 24, 2012, Jean Paul Allain, associate professor of nuclear engineering at Purdue University (Illinois) will be speaking to members of the US Congress about repairing brain injuries using nanotechnology-enabled bioactive coatings for stents. From the May 21, 2012 news item on Nanowerk,

“Stents coated with a bioactive coating might be inserted at the site of an aneurism to help heal the inside lining of the blood vessel,” said Jean Paul Allain, an associate professor of nuclear engineering. “Aneurisms are saclike bulges in blood vessels caused by weakening of artery walls. We’re talking about using a regenerative approach, attracting cells to reconstruct the arterial wall.”

He will speak before Congress on Thursday (May 24) during the first Brain Mapping Day to discuss the promise of nanotechnology in treating brain injury and disease.

The May 21, 2012 news release (by Emil Venere) for Purdue University offers insight into some of the difficulties of dealing with aneurysms using today’s technologies,

Currently, aneurisms are treated either by performing brain surgery, opening the skull and clipping the sac, or by inserting a catheter through an artery into the brain and implanting a metallic coil into the balloon-like sac.

Both procedures risk major complications, including massive bleeding or the formation of potentially fatal blood clots.

“The survival rate is about 50/50 or worse, and those who do survive could be impaired,” said Allain, who holds a courtesy appointment with materials engineering and is affiliated with the Birck Nanotechnology Center in Purdue’s Discovery Park.

Allain goes on to explain how his team’s research addresses these issues (from the May 21, 2012 Purdue University news release),

Cells needed to repair blood vessels are influenced by both the surface texture – features such as bumps and irregular shapes as tiny as 10 nanometers wide – as well as the surface chemistry of the stent materials.

“We are learning how to regulate cell proliferation and growth by tailoring both the function of surface chemistry and topology,” Allain said. “There is correlation between surface chemistry and how cells send signals back and forth for proliferation. So the surface needs to be tailored to promote regenerative healing.”

The facility being used to irradiate the stents – the Radiation Surface Science and Engineering Laboratory in Purdue’s School of Nuclear Engineering – also is used for work aimed at developing linings for experimental nuclear fusion reactors for power generation.

Irradiating materials with the ion beams causes surface features to “self-organize” and also influences the surface chemistry, Allain said.

The stents are made of nonmagnetic materials, such as stainless steel and an alloy of nickel and titanium. Only a certain part of the stents is rendered magnetic to precisely direct the proliferation of cells to repair a blood vessel where it begins bulging to form the aneurism.

Researchers will study the stents using blood from pigs during the first phase in collaboration with the Walter Reed National Military Medical Center.

The stent coating’s surface is “functionalized” so that it interacts properly with the blood-vessel tissue. Some of the cells are magnetic naturally, and “magnetic nanoparticles” would be injected into the bloodstream to speed tissue regeneration. Researchers also are aiming to engineer the stents so that they show up in medical imaging to reveal how the coatings hold up in the bloodstream.

The research is led by Allain and co-principal investigator Lisa Reece of the Birck Nanotechnology Center. This effort has spawned new collaborations with researchers around the world including those at Universidad de Antioquía, University of Queensland. The research also involves doctoral students Ravi Kempaiah and Emily Walker.

The work is funded with a three-year, $1.5 million grant from the U.S. Army. Cells needed to repair blood vessels are influenced by both the surface texture – features such as bumps and irregular shapes as tiny as 10 nanometers wide – as well as the surface chemistry of the stent materials.

As I find the international flavour to the pursuit of science quite engaging, I want to highlight this bit in the May 21, 2012 news item on Nanowerk which mentions a few other collaborators on this project,

Purdue researchers are working with Col. Rocco Armonda, Dr. Teodoro Tigno and other neurosurgeons at Walter Reed National Military Medical Center in Bethesda, Md. Collaborations also are planned with research scientists from the University of Queensland in Australia, Universidad de Antioquía and Universidad de Los Andes, both in Colombia.

The US Congress is not the only place to hear about this work, Allain will also be speaking in Toronto at the 9th Annual World Congress of Society for Brain Mapping & Therapeutics (SBMT) being held June 2 – 4, 2012.

Robot ethics at Vancouver’s next Café Scientifique

AJung Moon, a mechanical engineering researcher at the University of British Columbia, will be giving a talk: Roboethics – A discussion on how robots are impacting our society on Tuesday, May 31, 2011, 7:30 pm at the Railway Club,579 Dunsmuir St., Vancouver, BC. From the announcement,

From vacuuming houses to befriending older persons at care facilities, robots are starting to provide convenient and efficient solutions at homes, hospitals, and schools. For decades, numerous works in science fiction have imaginatively warned us that robots can bring catastrophic ethical, legal, and social issues into our society. But is today’s robotics technology advanced enough to the point that we should take these fictional speculations seriously? Roboticists, philosophers, and policymakers agree that we won’t see Terminator or Transformers type robots any time soon, but they also agree that the technology is bringing forth ethical issues needing serious discussions today. In this talk, we will highlight some of the ways robots are already impacting our society, and how the study of human-robot interaction can help put ethics into its design.

Moon has a blog called Roboethic info DataBase, where she posts the latest about robots and ethics.

Here’s a picture of her,

AJung Moon (downloaded from her Roboethics info DataBase blog)

I wonder what she makes of the RoboEarth project where robots will uploading information to something which is the equivalent of the internet and wikipedia (my Feb. 14, 2011 posting, scroll down a few paragraphs) or the lingodroids project where robots are creating a language. From the May 17, 2011 article by Katie Gatto (originally written for the IEEE [Institute of Electrical and Electronics Engineers) on physorg.com,

Communication is a vital part of any task that has to be done by more than one individual. That is why humans in every corner of the world have created their own complex languages that help us share the goal. As it turns out, we are not alone in that need, or in our ability to create a language of our own.

Researchers at the University of Queensland and Queensland University of Technology have created a pair of robots who are creating their own language. The bots, which are being taught how to speak but not given specific languages, are learning to create a lexicon of their own.

The researchers have named these bots, lingodroids and you can read the paper here,

Research paper: Schulz, R., Wyeth, G., & Wiles, J. (In Press) Are we there yet? Grounding temporal concepts in shared journeys, IEEE Transactions on Autonomous Mental Development [PDF]

I hope to get to the talk on Tuesday, May 31, 2011. Meanwhile, Happy Weekend (and for Canadians it’s a long weekend)!