Tag Archives: University of Reading

How the technology of writing shaped Roman thought

I have two bits about the Romans: the first is noted in the head for this posting and the second is about a chance to experience a Roman style classroom.

Empire of Letters

This January 8, 2019 news item on phys.org announces a book about how the technology of writing influenced how ancient Romans saw the world and provides a counterpoint to the notion that the ancient world (in Europe) was relentlessly oral in nature,

The Roman poet Lucretius’ epic work “De rerum natura,” or “On the Nature of Things,” is the oldest surviving scientific treatise written in Latin. Composed around 55 B.C.E., the text is a lengthy piece of contrarianism. Lucreutius was in the Epicurean school of philosophy: He wanted an account of the world rooted in earthly matter, rather than explanations based on the Gods and religion

Among other things, Lucretius believed in atomism, the idea that the world and cosmos consisted of minute pieces of matter, rather than four essential elements. To explain this point, Lucretius asked readers to think of bits of matter as being like letters of the alphabet. Indeed, both atoms and letters are called “elementa” in Latin—probably derived from the grouping of L,M, and N in the alphabet

To learn these elements of writing, students would copy out tables of letters and syllables, which Lucretius thought also served as a model for understanding the world, since matter and letters could be rearranged in parallel ways. For instance, Lucretius wrote, wood could be turned into fire by adding a little heat, while the word for wood, “lingum,” could be turned into the world for fire, “ignes,” by altering a few letters.

Students taking this analogy to heart would thus learn “the combinatory potential of nature and language,” says Stephanie Frampton, an associate professor of literature at MIT [Massachusetts Institute of Technology], in a new book on writing in the Roman world.

Moreover, Frampton emphasizes, the fact that students were learning all this specifically through writing exercises is a significant and underappreciated point in our understanding of ancient Rome: Writing, and the tools of writing, helped shape the Roman world.

A January 3, 2019 MIT news release, which originated the news item, expands on the theme,

“Everyone says the ancients are really into spoken and performed poetry, and don’t care about the written word,” Frampton says. “But look at Lucretius, who’s the first person writing a scientific text in Latin — the way that he explains his scientific insight is through this metaphor founded upon the written word.”

Frampton explores this and other connections between writing and Roman society in her new work, “Empire of Letters,” published last week by Oxford University Press [according to their webpage, the paper version will be published on February 4, 2019; the e-book is now available for purchase].

The book is a history of technology itself, as Frampton examines the particulars of Roman books — which often existed as scrolls back then — and their evolution over time. But a central focus of the work is how those technologies influenced how the Romans “thought about thought,” as she says.

Moreover, as Frampton notes, she is studying the history of Romans as “literate creatures,” which means studying the tools of writing used not just in completed works, but in education, too. The letter tables detailed by Lucretius are just one example of this. Romans also learned to read and write using wax tablets that they could wipe clean after exercises.

The need to wipe such tablets clean drove the Roman emphasis on learning the art of memory — including the “memory palace” method, which uses visualized locations for items to remember them, and which is still around today. For this reason Cicero, among other Roman writers, called memory and writing “most similar, though in a different medium.”
As Frampton writes in the book, such tablets also produced “an intimate and complex relationship with memory” in the Roman world, and meant that “memory was a fundamental part of literary composition.”  

Tablets also became a common Roman metaphor for how our brains work: They thought “the mind is like a wax tablet where you can write and erase and rewrite,” Frampton says. Understanding this kind of relationship between technology and the intellect, she thinks, helps us get that much closer to life as the Romans lived it

“I think it’s analagous to early computing,” Frampton says. “The way we talk about the mind now is that it’s a computer. … We think about the computer in the same way that [intellectuals] in Rome were thinking about writing on wax tablets.”

As Frampton discusses in the book, she believes the Romans did produce a number of physical innovations to the typical scroll-based back of the classic world, including changes in layout, format, coloring pigments, and possibly even book covers and the materials used as scroll handles, including ivory.

“The Romans were engineers, that’s [one thing] they were famous for,” Frampton says. “They are quite interesting and innovative in material culture.”

Looking beyond “Empire of Letters” itself, Frampton will co-teach an MIT undergraduate course in 2019, “Making Books,” that looks at the history of the book and gets students to use old technologies to produce books as they were once made. While that course has previously focused on printing-press technology, Frampton will help students go back even further in time, to the days of the scroll and codex, if they wish. All these reading devices, after all, were important innovations in their day.

“I’m working on old media,” Frampton says, “But those old media were once new.” [emphasis mine]

While the technologies Carolyn Marvin was writing about were not quite as old Frampton’s, she too noted the point about old and new technology in her 1990 book “When Old Technologies Were New” published by the Oxford University Press in 1990.

Getting back to Frampton, she has founded an organization known as the Materia Network, which is focused on (from @materianetwork’s Twitter description) “New Approaches to Material Text in the Roman World is a conference series and network for scholars of books and writing in Classical antiquity.”

You can find Materia here. They do have a Call for Proposals but I believe the deadline should read: December 20, 2018 (not 2019) since the conference will be held in April 2019).

Also, you can purchase the ebook or print version of Frampton’s Empire of Letters from the Oxford University Press here.

I have a couple of final comments. (1) The grand daddy of oral and literate culture discussion is Walter J. Ong and I’m referring specifically to his 1982 book, Orality and Literacy. BTW, in addition to being a English Literature professor, the man was a Jesuit priest.

Reading Ancient Schoolroom

(2) The University of Reading (UK) has organized over the last few years, although they skipped in 2018, a series of events known as Reading Ancient Schoolroom (my August 9, 2018 posting features the ‘schoolroom’). The 2019 event is taking place January 23 – 25, 2019. You can find out more about the 2019 opportunity here. For anyone who can’t get to the UK easily, here’s a video of the Reading Ancient Schoolroom,

According to the description on YouTube,

UniofReading

Published on Feb 22, 2018

The Reading Ancient Schoolroom is a historically accurate reconstruction of an ancient schoolroom. It gives modern children an immersive experience of antiquity, acting the part of ancient children, wearing their clothes and using their writing equipment. It was developed by Eleanor Dickey at the University of Reading. Find out more at: www.readingancientschoolroom.com

There you have it.

Getting chipped

A January 23, 2018 article by John Converse Townsend for Fast Company highlights the author’s experience of ‘getting chipped’ in Wisconsin (US),

I have an RFID, or radio frequency ID, microchip implanted in my hand. Now with a wave, I can unlock doors, fire off texts, login to my computer, and even make credit card payments.

There are others like me: The majority of employees at the Wisconsin tech company Three Square Market (or 32M) have RFID implants, too. Last summer, with the help of Andy “Gonzo” Whitehead, a local body piercer with 17 years of experience, the company hosted a “chipping party” for employees who’d volunteered to test the technology in the workplace.

“We first presented the concept of being chipped to the employees, thinking we might get a few people interested,” CEO [Chief Executive Officer] Todd Westby, who has implants in both hands, told me. “Literally out of the box, we had 40 people out of close to 90 that were here that said, within 10 minutes, ‘I would like to be chipped.’”

Westby’s left hand can get him into the office, make phone calls, and stores his living will and drivers license information, while the chip in his right hand is using for testing new applications. (The CEO’s entire family is chipped, too.) Other employees said they have bitcoin wallets and photos stored on their devices.

The legendary Gonzo Whitehead was waiting for me when I arrived at Three Square Market HQ, located in quiet River Falls, 40 minutes east of Minneapolis. The minutes leading up to the big moment were a bit nervy, after seeing the size of the needle (it’s huge), but the experience was easier than I could have imagined. The RFID chip is the size of a grain of basmati rice, but the pain wasn’t so bad–comparable to a bee sting, and maybe less so. I experienced a bit of bruising afterward (no bleeding), and today the last remaining mark of trauma is a tiny, fading scar between my thumb and index finger. Unless you were looking for it, the chip resting under my skin is invisible.

Truth is, the applications for RFID implants are pretty cool. But right now, they’re also limited. Without a near-field communication (NFC) writer/reader, which powers on a “passive” RFID chip to write and read information to the device’s memory, an implant isn’t of much use. But that’s mostly a hardware issue. As NFC technology becomes available, which is increasingly everywhere thanks to Samsung Pay and Apple Pay and new contactless “tap-and-go” credit cards, the possibilities become limitless. [emphasis mine]

Health and privacy?

Townsend does cover a few possible downsides to the ‘limitless possibilities’ offered by RFID’s combined with NFC technology,

From a health perspective, the RFID implants are biologically safe–not so different from birth control implants [emphasis mine]. [US Food and Drug Administration] FDA-sanctioned for use in humans since 2004, the chips neither trigger metal detectors nor disrupt [magnetic resonance imaging] MRIs, and their glass casings hold up to pressure testing, whether that’s being dropped from a rooftop or being run over by a pickup truck.

The privacy side of things is a bit more complicated, but the undeniable reality is that privacy isn’t as prized as we’d like to think [emphasis mine]. It’s already a regular concession to convenience.

“Your information’s for sale every day,” McMullen [Patrick McMullen, president, Three Square Market] says. “Thirty-four billion avenues exist for your information to travel down every single day, whether you’re checking Facebook, checking out at the supermarket, driving your car . . . your information’s everywhere.

Townsend may not be fully up-to-date on the subject of birth control implants. I think ‘safeish’ might be a better description in light of this news of almost two years ago (from a March 1, 2016 news item on CBS [Columbia Broadcasting Service] News [online]), Note: Links have been removed,

[US] Federal health regulators plan to warn consumers more strongly about Essure, a contraceptive implant that has drawn thousands of complaints from women reporting chronic pain, bleeding and other health problems.

The Food and Drug Administration announced Monday it would add a boxed warning — its most serious type — to alert doctors and patients to problems reported with the nickel-titanium implant.

But the FDA stopped short of removing the device from the market, a step favored by many women who have petitioned the agency in the last year. Instead, the agency is requiring manufacturer Bayer to conduct studies of the device to further assess its risks in different groups of women.

The FDA is requiring Bayer to conduct a study of 2,000 patients comparing problems like unplanned pregnancy and pelvic pain between patients getting Essure and those receiving traditional “tube tying” surgery. Agency officials said they have reviewed more than 600 reports of women becoming pregnant after receiving Essure. Women are supposed to get a test after three months to make sure Essure is working appropriately, but the agency noted some women do not follow-up for the test.

FDA officials acknowledged the proposed study would take years to complete, but said Bayer would be expected to submit interim results by mid-2017.

According to a Sept. 25, 2017 article by Kerri O’Brien for WRIC.com, Bayer had suspended sales of their device in all countries except the US,

Bayer, the manufacturer of Essure, has announced it’s halting sales of Essure in all countries outside of the U.S. In a statement, Bayer told 8News it’s due to a lack of interest in the product outside of the U.S.

“Bayer made a commercial decision this Spring to discontinue the distribution of Essure® outside of the U.S. where there is not as much patient interest in permanent birth control,” the statement read.

The move also comes after the European Union suspended sales of the device. The suspension was prompted by the National Standards Authority of Ireland declining to renew Essure’s CE marketing. “CE,” according to the European Commission website signifies products sold in the EEA that has been assessed to meet “high safety, health, and environmental protection requirements.”

These excerpts are about the Essure birth control implant. Perhaps others are safer? That noted, it does seem that Townsend was a bit dismissive of safety concerns.

As for privacy, he does investigate further to discover this,

As technology evolves and becomes more sophisticated, the methods to break it also evolve and get more sophisticated, says D.C.-based privacy expert Michelle De Mooy. Even so, McMullen believes that our personal information is safer in our hand than in our wallets. He  says the smartphone you touch 2,500 times a day does 100 times more reporting of data than does an RFID implant, plus the chip can save you from pickpockets and avoid credit card skimmers altogether.

Well, the first sentence suggests some caution. As for De Mooy, there’s this from her profile page on the Center for Democracy and Technology website (Note: A link has been removed),

Michelle De Mooy is Director of the Privacy & Data Project at the Center for Democracy & Technology. She advocates for data privacy rights and protections in legislation and regulation, works closely with industry and other stakeholders to investigate good data practices and controls, as well as identifying and researching emerging technology that impacts personal privacy. She leads CDT’s health privacy work, chairing the Health Privacy Working Group and focusing on the intersection between individual privacy, health information and technology. Michelle’s current research is focused on ethical and privacy-aware internal research and development in wearables, the application of data analytics to health information found on non-traditional platforms, like social media, and the growing market for genetic data. She has testified before Congress on health policy, spoken about native advertising at the Federal Trade Commission, and written about employee wellness programs for US News & World Report’s “Policy Dose” blog. Michelle is a frequent media contributor, appearing in the New York Times, the Guardian, the Wall Street Journal, Vice, and the Los Angeles Times, as well as on The Today Show, Voice of America, and Government Matters TV programs.

Ethics anyone?

Townsend does raise some ethical issues (Note: A link has been removed),

… Word from CEO Todd Westby is that parents in Wisconsin have been asking whether (and when) they can have their children implanted with GPS-enabled devices (which, incidentally, is the subject of the “Arkangel” episode in the new season of Black Mirror [US television programme]). But that, of course, raises ethical questions: What if a kid refused to be chipped? What if they never knew?

Final comments on implanted RFID chips and bodyhacking

It doesn’t seem that implantable chips have changed much since I first wrote about them in a May 27, 2010 posting titled: Researcher infects self with virus.  In that instance, Dr Mark Gasson, a researcher at the University of Reading. introduced a virus into a computer chip implanted in his body.

Of course since 2010, there are additional implantable items such as computer chips and more making their way into our bodies and it doesn’t seem to be much public discussion (other than in popular culture) about the implications.

Presumably, there are policy makers tracking these developments. I have to wonder if the technology gurus will continue to tout these technologies as already here or having made such inroads that we (the public) are presented with a fait accompli with the policy makers following behind.

Ancient Roman teaching methods for maths education?

I find this delightful (from a July 7,2017 news item on phys.org),

Schoolchildren from across the region have been learning different ways to engage with maths, as part of a series of ancient Roman classroom days held at the University of Reading [UK].

Organised by the University’s Department of Classics, the Reading Ancient Schoolroom event saw pupils undertake a series of ancient-style school exercises, including doing multiplication, division, and calculating compound interest with Roman numerals. A key difference between how maths was taught then and now is that sums were not written down in ancient Roman times – instead an abacus or a counting board with dried beans was used.

In addition, school children in antiquity were taught individually by the teacher and worked on their own assignments, rather than being taught as a whole class. This meant pupils were able to work at their own rate of ability.

A July 6, 2017 University of Reading press release, which originated the news item, expands on the theme,

Professor Eleanor Dickey, who organised the series of events, said: ‘We’ve been running these ancient schoolroom days for a few years now and what we’ve learnt during that time is that the children really engage with the ancient teaching methods, especially when it comes to maths. We’ve found that children who aren’t naturally gifted at maths actually enjoy using the abacus and counting boards and this helps to stimulate their interest and learning of the subject.

“As follow up to the day we provide teachers with a pack of teaching materials they can take back to their own classroom and this includes instructions on how to make a counting board, as well as other maths-related and non-maths-related activities. It is my hope that some of these ancient methods can help to further modern teaching practice.”

Other activities on the day included reading poetry written without word division or punctuation, learning to write with a stylus on a wax tablet and reading from papyrus scrolls. Wearing Roman costumes, students also got to sample some authentic Roman food and handle objects from the University of Reading’s Ure Museum of Greek Archaeology.

Professor Dickey continued: “Ancient education methods, by being very different from our own, help us better appreciate both the advantages and the disadvantages of our own system, and show that doing things our way is neither natural nor inevitable.

“The ancient Roman school days are also a great way to get children interested in history more generally.”

The research which helped determine what a day in an ancient Roman classroom was like came from Professor Dickey’s discovery and translation of a set of ancient textbooks describing what children did in school. Parts of these historical records were published last year in a book by Professor Dickey: Learning Latin the Ancient Way: Latin Textbooks in the Ancient World, published by Cambridge University Press.

In hindsight it seems obvious. Of course an abacus helps with learning as it’s more engaging. You get to make a range of gestures and you make sounds (the clicking of the abacus beads) neither of which are  typically part of the maths experience. Then, there’s the individualized attention and your own special maths problems.

Nanotechnology for better treatment of eye conditions and a perspective on superhuman sight

There are three ‘eye’-related items in this piece, two of them concerning animal eyes and one concerning a camera-eye or the possibility of superhuman sight.

Earlier this week researchers at the University of Reading (UK) announced they have achieved a better understanding of how nanoparticles might be able to bypass some of the eye’s natural barriers in the hopes of making eye drops more effective in an Oct. 7, 2014 news item on Nanowerk,

Sufferers of eye disorders have new hope after researchers at the University of Reading discovered a potential way of making eye drops more effective.

Typically less than 5% of the medicine dose applied as drops actually penetrates the eye – the majority of the dose will be washed off the cornea by tear fluid and lost.

The team, led by Professor Vitaliy Khutoryanskiy, has developed novel nanoparticles that could attach to the cornea and resist the wash out effect for an extended period of time. If these nanoparticles are loaded with a drug, their longer attachment to the cornea will ensure more medicine penetrates the eye and improves drop treatment.

An Oct. 6, 2014 University of Reading press release, which originated the news item, provides more information about the hoped for impact of this work while providing few details about the research (Note: A link has been removed),

The research could also pave the way for new treatments of currently incurable eye-disorders such as Age-related Macular Degeneration (AMD) – the leading cause of visual impairment with around 500,000 sufferers in the UK.

There is currently no cure for this condition but experts believe the progression of AMD could be slowed considerably using injections of medicines into the eye. However, eye-drops with drug-loaded nanoparticles could be a potentially more effective and desirable course of treatment.

Professor Vitaliy Khutoryanskiy, from the University of Reading’s School of Pharmacy, said: “Treating eye disorders is a challenging task. Our corneas allow us to see and serve as a barrier that protects our eyes from microbial and chemical intervention. Unfortunately this barrier hinders the effectiveness of eye drops. Many medicines administered to the eye are inefficient as they often cannot penetrate the cornea barrier. Only the very small molecules in eye drops can penetrate healthy cornea.

“Many recent breakthroughs to treat eye conditions involve the use of drugs incorporated into nano-containers; their role being to promote drug penetration into the eye.  However the factors affecting this penetration remain poorly understood. Our research also showed that penetration of small drug molecules could be improved by adding enhancers such as cyclodextrins. This means eye drops have the potential to be a more effective, and a more comfortable, future treatment for disorders such as AMD.”

The finding is one of a number of important discoveries highlighted in a paper published today in the journal Molecular Pharmaceutics. The researchers revealed fascinating insights into how the structure of the cornea prevents various small and large molecules, as well as nanoparticles, from entering into the eye. They also examined the effects any damage to the eye would have in allowing these materials to enter the body.

Professor Khutoryanskiy continued: “There is increasing concern about the safety of environmental contaminants, pollutants and nanoparticles and their potential impacts on human health. We tested nanoparticles whose sizes ranged between 21 – 69 nm, similar to the size of viruses such as polio, or similar to airborn particles originating from building industry and found that they could not penetrate healthy and intact cornea irrespective of their chemical nature.

“However if the top layer of the cornea is damaged, either after surgical operation or accidentally, then the eye’s natural defence may be compromised and it becomes susceptible to viral attack which could result in eye infections.

“The results show that our eyes are well-equipped to defend us against potential airborne threats that exist in a fast-developing industrialised world. However we need to be aware of the potential complications that may arise if the cornea is damaged, and not treated quickly and effectively.”

Here’s a link to and a citation for the paper,

On the Barrier Properties of the Cornea: A Microscopy Study of the Penetration of Fluorescently Labeled Nanoparticles, Polymers, and Sodium Fluorescein by Ellina A. Mun, Peter W. J. Morrison, Adrian C. Williams, and Vitaliy V. Khutoryanskiy. Mol. Pharmaceutics, 2014, 11 (10), pp 3556–3564 DOI: 10.1021/mp500332m Publication Date (Web): August 28, 2014

Copyright © 2014 American Chemical Society

There’s a little more information to be had in the paper’s abstract, which is, as these things go, is relatively accessible,

[downloaded from http://pubs.acs.org/doi/abs/10.1021/mp500332m]

[downloaded from http://pubs.acs.org/doi/abs/10.1021/mp500332m]

Overcoming the natural defensive barrier functions of the eye remains one of the greatest challenges of ocular drug delivery. Cornea is a chemical and mechanical barrier preventing the passage of any foreign bodies including drugs into the eye, but the factors limiting penetration of permeants and nanoparticulate drug delivery systems through the cornea are still not fully understood. In this study, we investigate these barrier properties of the cornea using thiolated and PEGylated (750 and 5000 Da) nanoparticles, sodium fluorescein, and two linear polymers (dextran and polyethylene glycol). Experiments used intact bovine cornea in addition to bovine cornea de-epithelialized or tissues pretreated with cyclodextrin. It was shown that corneal epithelium is the major barrier for permeation; pretreatment of the cornea with β-cyclodextrin provides higher permeation of low molecular weight compounds, such as sodium fluorescein, but does not enhance penetration of nanoparticles and larger molecules. Studying penetration of thiolated and PEGylated (750 and 5000 Da) nanoparticles into the de-epithelialized ocular tissue revealed that interactions between corneal surface and thiol groups of nanoparticles were more significant determinants of penetration than particle size (for the sizes used here). PEGylation with polyethylene glycol of a higher molecular weight (5000 Da) allows penetration of nanoparticles into the stroma, which proceeds gradually, after an initial 1 h lag phase.

The paper is behind a paywall. No mention is made in the abstract or in the press release as to how the bovine (ox, cow, or buffalo) eyes were obtained but I gather these body parts are often harvested from animals that have been previously slaughtered for food.

This next item also concerns research about eye drops but this time the work comes from the University of Waterloo (Ontario, Canada). From an Oct. 8, 2014 news item on Azonano,

For the millions of sufferers of dry eye syndrome, their only recourse to easing the painful condition is to use drug-laced eye drops three times a day. Now, researchers from the University of Waterloo have developed a topical solution containing nanoparticles that will combat dry eye syndrome with only one application a week.

An Oct. 8, 2014 University of Waterloo news release (also on EurekAlert), which originated the news item, describes the results of the work without providing much detail about the nanoparticles used to deliver the treatment via eye drops,

The eye drops progressively deliver the right amount of drug-infused nanoparticles to the surface of the eyeball over a period of five days before the body absorbs them.  One weekly dose replaces 15 or more to treat the pain and irritation of dry eyes.

The nanoparticles, about 1/1000th the width of a human hair, stick harmlessly to the eye’s surface and use only five per cent of the drug normally required.

“You can’t tell the difference between these nanoparticle eye drops and water,” said Shengyan (Sandy) Liu, a PhD candidate at Waterloo’s Faculty of Engineering, who led the team of researchers from the Department of Chemical Engineering and the Centre for Contact Lens Research. “There’s no irritation to the eye.”

Dry eye syndrome is a more common ailment for people over the age of 50 and may eventually lead to eye damage. More than six per cent of people in the U.S. have it. Currently, patients must frequently apply the medicine three times a day because of the eye’s ability to self-cleanse—a process that washes away 95 per cent of the drug.

“I knew that if we focused on infusing biocompatible nanoparticles with Cyclosporine A, the drug in the eye drops, and make them stick to the eyeball without irritation for longer periods of time, it would also save patients time and reduce the possibility of toxic exposure due to excessive use of eye drops,” said Liu.

The research team is now focusing on preparing the nanoparticle eye drops for clinical trials with the hope that this nanoparticle therapy could reach the shelves of drugstores within five years.

Here’s a link to and a citation for the paper,

Phenylboronic acid modified mucoadhesive nanoparticle drug carriers facilitate weekly treatment of experimentallyinduced dry eye syndrome by Shengyan Liu, Chu Ning Chang, Mohit S. Verma, Denise Hileeto, Alex Muntz, Ulrike Stahl, Jill Woods, Lyndon W. Jones, and Frank X. Gu. Nano Research (October 2014) DOI: 10.1007/s12274-014-0547-3

This paper is behind a paywall. There is a partial preview available for free. As per the paper’s abstract, research was performed on healthy rabbit eyes.

The last ‘sight’ item I’m featuring here comes from the Massachusetts Institute of Technology (MIT) and does not appear to have been occasioned by the publication of a research paper or some other event. From an Oct. 7, 2014 news item on Azonano,

All through his childhood, Ramesh Raskar wished fervently for eyes in the back of his head. “I had the notion that the world did not exist if I wasn’t looking at it, so I would constantly turn around to see if it was there behind me.” Although this head-spinning habit faded during his teen years, Raskar never lost the desire to possess the widest possible field of vision.

Today, as director of the Camera Culture research group and associate professor of Media Arts and Sciences at the MIT Media Lab, Raskar is realizing his childhood fantasy, and then some. His inventions include a nanocamera that operates at the speed of light and do-it-yourself tools for medical imaging. His scientific mission? “I want to create not just a new kind of vision, but superhuman vision,” Raskar says.

An Oct. 6, 2014 MIT news release, which originated the news item, provides more information about Raskar and his research,

He avoids research projects launched with a goal in mind, “because then you only come up with the same solutions as everyone else.” Discoveries tend to cascade from one area into another. For instance, Raskar’s novel computational methods for reducing motion blur in photography suggested new techniques for analyzing how light propagates. “We do matchmaking; what we do here can be used over there,” says Raskar.

Inspired by the famous microflash photograph of a bullet piercing an apple, created in 1964 by MIT professor and inventor Harold “Doc” Edgerton, Raskar realized, “I can do Edgerton millions of times faster.” This led to one of the Camera Culture group’s breakthrough inventions, femtophotography, a process for recording light in flight.

Manipulating photons into a packet resembling Edgerton’s bullet, Raskar and his team were able to “shoot” ultrashort laser pulses through a Coke bottle. Using a special camera to capture the action of these pulses at half a trillion frames per second with two-trillionths of a second exposure times, they captured moving images of light, complete with wave-like shadows lapping at the exterior of the bottle.

Femtophotography opened up additional avenues of inquiry, as Raskar pondered what other features of the world superfast imaging processes might reveal. He was particularly intrigued by scattered light, the kind in evidence when fog creates the visual equivalent of “noise.”

In one experiment, Raskar’s team concealed an object behind a wall, out of camera view. By firing super-short laser bursts onto a surface nearby, and taking millions of exposures of light bouncing like a pinball around the scene, the group rendered a picture of the hidden object. They had effectively created a camera that peers around corners, an invention that might someday help emergency responders safely investigate a dangerous environment.

Raskar’s objective of “making the invisible visible” extends as well to the human body. The Camera Culture group has developed a technique for taking pictures of the eye using cellphone attachments, spawning inexpensive, patient-managed vision and disease diagnostics. Conventional photography has evolved from time-consuming film development to instantaneous digital snaps, and Raskar believes “the same thing will happen to medical imaging.” His research group intends “to break all the rules and be at the forefront. I think we’ll get there in the next few years,” he says.

Ultimately, Raskar predicts, imaging will serve as a catalyst of transformation in all dimensions of human life — change that can’t come soon enough for him. “I hate ordinary cameras,” he says. “They record only what I see. I want a camera that gives me a superhuman perspective.”

Following the link to the MIT news release will lead you to more information about Raskar and his work. You can also see and hear Raskar talk about his femtophotography in a 2012 TEDGlobal talk here.

NanoCelluComp; a European Commission-funded nanocellulose project

It was a bit of a surprise to find out there’s yet another nanocellulose fibre project but here it is in a Mar. 7, 2013 news item on Nanowerk,

The overall aim of the NanoCelluComp project is to develop a technology to utilise the high mechanical performance of cellulose nanofibres, obtained from food processing waste streams, combined with bioderived matrix materials, for the manufacture of 100% bio-derived high performance composite materials that will replace randomly oriented and unidirectional glass and carbon fibre reinforced plastics in a range of applications including transportation, wind turbines, biomedical, sport and consumer goods. More specifically, the project aims to develop a manufacturing process to form a 100% bio-composites with controlled alignment of the native modified cellulose nanofibres and evaluate these process with regard to the physical and mechanical performance of produced materials and suitability for use by industry via existing composite processing technologies. The project will also study the sustainability of the process and materials (nanocellulose bio-composites) in terms of environmental impacts and cost compared to existing materials, namely, carbon fibre reinforced plastics and glass fibre reinforced plastics.

It’s a project funded by the European Commission’s 7th Framework Programme whose funding runs out in Feb. 2014. Their fourth newsletter (PDF) is available for viewing. The most interesting bit of news in the publication (for me) is the announcement of a fifth meeting. From the 4th newsletter,

The consortium will next meet on the 14th and 15th of March at the facilities of KTH in Stockholm for its fifth meeting. The Project Technical Adviser, Prof Maria Tomoaia-Cotisel will also be in attendance. (p. 1)

The NanoCelluComp consortium is an amalgam of academic, government, and business agencies, from the NanoCelluComp website’s Consortium page,

Institute of Nanotechnology

The Institute of Nanotechnology (IoN) is one of the global leaders in providing nanotechnology information. It supplies industry and governments with intelligence on nanotechnology and its applications and has produced several important milestone publications. …

CelluComp

CelluComp is a composite materials technology company founded in 2004 by two expert materials scientists, Dr David Hepworth and Dr Eric Whale. …

University of Strathclyde

The University of Strathclyde (USTRATH) will be represented by the research group of Dr Simon Shilton. Dr Shilton’s group at Strathclyde has pioneered the use of rheological factors in hollow fibre membrane spinning. …

University of Copenhagen

The University of Copenhagen team (UCPH) comprises of research groups from the Department of Plant Biology and Biotechnology, the Department of Agriculture and Ecology and the Department of Food science at the Faculty of Life Sciences representing the complete repertoire of expertise and analytical methods required for the project. Prof. Peter Ulvskov will lead the team. …

Royal Institute of Technology (Sweden)

The Royal Institute of Technology (KTH) team is represented in the project by the cellulose-based nanomaterials group of the Division of Glycoscience led by Prof. Qi Zhou. The current research program of the group is centred on the construction of self-assembled composite materials with multi-functionalities and well-defined architectures using cellulose nanofibers, native and modified carbohydrate polymers.  …

University of Reading

The University of Reading team (UREAD) is represented by researchers from the department of Chemistry led by Dr Fred Davis. …

SweTree Technologies

SweTree Technologies (STT) is a plant and forest biotechnology company providing products and technologies to improve the productivity and performance properties of plants, wood and fibre for forestry, pulp & paper, packaging, hygiene, textile and other fibre related industries. …

AL.P.A.S. S.r.l.

AL.P.A.S. S.r.l. (ALPAS) is a manufacturer of Epoxy Resin, Polyurethane, PVC and other adhesive systems based in Northern Italy. The company has over 30 years experience in supplying these products to the Automotive, Electric/Electronics, Marble, Building and other industries. …

Swiss Federal Laboratories for Materials Science and Technology (EMPA)

Swiss Federal Laboratories for Materials Science and Technology (EMPA) is a materials science and technology research institution. …

Novozymes

Novozymes (NZ) is a world leader in bioinnovation and the world’s largest producer of industrial enzymes, with a market share of approximately 45%. …

Biovelop

Biovelop (BV) is an innovative Life Science company with production facilites in Kimstad, Sweden. The company specializes in the development and scaling up of cornerstone technologies in the area of extraction of functional ingredients from cereal grains and brans. …

I wish there was a bit more information in the fourth newsletter about what has been accomplished, from  the newsletter,

Work packages 1 and 2 are now completed (with feasibility studies on alternative vegetable waste streams performed, and methods for liberating and stabilizing nanocellulose achieved).

Work package 3 will conclude shortly with a better understanding of how to improve the mechanical properties of the liberated nanocelulose.

Activities in work package 4 are also nearing completion, with novel production processes achieved and resultant fibres now being tested.

Work package 5 activities to integrate all project research results have been slightly delayed, however initial test composites have been made. Following successful testing of these, the process will be scaled up to industrially relevant amounts.

Work package 6 has produced a report describing environment, health and safety (EHS) aspects and initial findings on end- user acceptability criteria for the developed composites. (p. 3)

Perhaps there’ll be something more in their mid-term report, assuming it gets published.