Tag Archives: University of Toronto

Research2Reality: a science media engagement experience dedicated to Canadian science

As of May 11, 2015, Canadians will be getting an addition to their science media environment (from the May 4, 2015 news release),

Research2Reality to celebrate Canadian research stars

Social media initiative to popularize scientific innovation

May 4, 2015, TORONTO – On Monday, May 11, Research2Reality.com goes live and launches a social media initiative that will make the scientist a star. Following in the footsteps of popular sites like IFLScience and How Stuff Works, Research2Reality uses a video series and website to engage the community in the forefront of scientific discoveries made here in Canada.

The interviews feature some of Canada’s leading researchers such as Dick Peltier – director of the Centre for Global Change Science at the University of Toronto, Sally Aitken – director of the Centre for Forest Conservation Genetics at the University of British Columbia and Raymond Laflamme – executive director of the Institute for Quantum Computing at the University of Waterloo.

“Right now many Canadians don’t understand the scope of cutting-edge work being done in our backyards,” says Research2Reality co-founder and award-winning professor Molly Shoichet. “This initiative will bridge that gap between researchers and the public.”

Also launching Monday, May 11, courtesy of Research2Reality’s official media partner, Discovery Science, is a complementary website www.sciencechannel.ca/Shows/Research2Reality. The new website will feature the exclusive premieres of a collection of interview sessions. In addition, Discovery Science and Discovery will broadcast an imaginative series of public service announcements through the end of the year, while social media accounts will promote Research2Reality, including Discovery’s flagship science and technology program DAILY PLANET.

About Research2Reality:
Research2Reality is a social media initiative designed to popularize the latest Canadian research. It was founded by Molly Shoichet, Professor of Chemical Engineering & Applied Chemistry and Canada Research Chair in Tissue Engineering at the University of Toronto, and Mike MacMillan, founder and producer of Lithium Studios Productions. Research2Reality’s founding partners are leading research-intensive universities – the University of Alberta, the University of British Columbia, McMaster University, the University of Toronto, the University of Waterloo, and Western University – along with the Ontario Government and Discovery Networks. Discovery Science is the official media partner. Research2Reality is also supported by The Globe and Mail.

Research2Reality details

A Valentine of sorts to Canadian science researchers from Molly Shoichet (pronounced shoy [and] quette as in David Arquette)  and her producing partner Mike MacMillan of Lithium Studios, Research2Reality gives Canadians an opportunity to discover online some of the extraordinary work done by scientists of all stripes, including (unusually) social scientists, in this country. The top tier in this effort is the interview video series ‘The Orange Chair Sessions‘  which can be found and shared across

Shoichet and MacMillan are convinced there’s an appetite for more comprehensive science information. Supporting The Orange Chair Sessions is a complementary website operated by Discovery Channel where there are

  • more interviews
  • backgrounders,
  • biographies,
  • blogs, and
  • links to other resources

Discovery Channel is also going to be airing special one minute  public service announcements (PSA) on topics like water, quantum computing, and cancer. Here’s one of the first of those PSAs,

“I’m very excited about this and really hope that other people will be too,” says Shoichet. The audience for the Research2Reality endeavour is for people who like to know more and have questions when they see news items about science discoveries that can’t be answered by investigating mainstream media programmes or trying to read complex research papers.

This is a big undertaking. ” Mike and I thought about this for about two years.” Building on the support they received from the University of Toronto, “We reached out to the vice-presidents of research at the top fifteen universities in the country.” In the end, six universities accepted the invitation to invest in this project,

  • the University of British Columbia,
  • the University of Alberta,
  • Western University (formerly the University of Western Ontario),
  • McMaster University,
  • Waterloo University, and, of course,
  • the University of Toronto

(Unfortunately, Shoichet was not able to answer a question about the cost for an individual episode but perhaps when there’s time that detail and more about the financing will be made available. [ETA May 11, 2015 1625 PDT: Ivan Semeniuk notes this is a $400,000 project in his Globe and Mail May 11, 2015 article.]) As part of their involvement, the universities decide which of their researchers/projects should be profiled then Research2Reality swings into action. “We shoot our own video, that is, we (Mike and I) come out and conduct interviews that take approximately fifteen minutes. We also shoot a b-roll, that is, footage of the laboratories and other relevant sites so it’s not all ‘talking heads’.” Shoichet and MacMillan are interested in the answer to two questions, “What are you doing? and Why do we care?” Neither interviewer/producer is seen or heard on camera as they wanted to keep the focus on the researcher.

Three videos are being released initially with another 67 in the pipeline for a total of 70.  The focus is on research of an international calibre and one of the first interviews to be released (Shoichet’s will be release later) is Raymond Laflamme’s (he’s also featured in the ‘quantum PSA’.

Raymond Laflamme

Who convinces a genius that he’s gotten an important cosmological concept wrong or ignored it? Alongside Don Page, Laflamme accomplished that feat as one of Stephen Hawking’s PhD students at the University of Cambridge. Today (May 11, 2015), Laflamme is (from his Wikipedia entry)

… co-founder and current director of the Institute for Quantum Computing at the University of Waterloo. He is also a professor in the Department of Physics and Astronomy at the University of Waterloo and an associate faculty member at Perimeter Institute for Theoretical Physics. Laflamme is currently a Canada Research Chair in Quantum Information.

Laflamme changed his focus from quantum cosmology to quantum information while at Los Alamos, “To me, it seemed natural. Not much of a change.” It is the difference between being a theoretician and an experimentalist and anyone who’s watched The Big Bang Theory (US television programme) knows that Laflamme made a big leap.

One of his major research interests is quantum cryptography, a means of passing messages you can ensure are private. Laflamme’s team and a team in Vienna (Austria) have enabled two quantum communication systems, one purely terrestrial version, which can exchange messages with another such system up to 100 km. away. There are some problems yet to be solved with terrestrial quantum communication. First, buildings, trees, and other structures provide interference as does the curvature of the earth. Second, fibre optic cables absorb some of the photons en route.

Satellite quantum communication seems more promising as these problems are avoided altogether. The joint Waterloo/Vienna team of researchers has  conducted successful satellite experiments in quantum communication in the Canary Islands.

While there don’t seem to be any practical, commercial quantum applications, Laflamme says that isn’t strictly speaking the truth, “In the last 10  to 15 years many ideas have been realized.” The talk turns to quantum sensing and Laflamme mentions two startups and notes he can’t talk about them yet. But there is Universal Quantum Devices (UQD), a company that produces parts for quantum sensors. It is Laflamme’s startup, one he co-founded with two partners. (For anyone unfamiliar with the Canadian academic scene, Laflamme’s home institution, the University of Waterloo, is one of the most actively ‘innovative’ and business-oriented universities in Canada.)

LaFlamme’s interests extend beyond laboratory work and business. He’s an active science communicator as can be seen in this 2010 TEDxWaterloo presentation where he takes his audience from the discovery of fire to quantum physics concepts such as a ‘quantum superposition’ and the ‘observer effect’ to the question, ‘What is reality?’ in approximately 18 mins.

For anyone who needs a little more information, a quantum superposition is a term referring the ability of a quantum object to inhabit two states simultaneously, e.g., on/off. yes/no, alive/dead, as in Schrödinger’s cat. (You can find out more about quantum superpositions in this Wikipedia essay and about Schrodinger’s cat in this Wikipedia essay.) The observer effect is a phenomenon whereby the observer of a quantum experiment affects that experiment by the act of observing it. (You can find out more about the observer effect in this Wikipedia essay.)

The topic of reality is much trickier to explain. No one has yet been able to offer a viable theory for why the world at the macro scale behaves one way (classical physics) and the world at the quantum scale behaves another way (quantum physics). As Laflamme notes, “There is no such thing as a superposition in classical physics but we can prove in the laboratory that it exists in quantum physics.” He goes on to suggest that children, raised in an environment where quantum physics and its applications are commonplace, will have an utterly different notion as to what constitutes reality.

Laflamme is also interested in music and consulted on a ‘quantum symphony’. He has this to say about it in an Sept. 20, 2012 piece on the University of Waterlo website,

Science and art share a common goal — to help us understand our universe and ourselves.  Research at IQC [Institute for Quantum Computing] aims to provide important new understanding of nature’s building blocks, and devise methods to turn that understanding into technologies beneficial for society.Since founding IQC a decade ago, I have sought ways to bridge science and the arts, with the belief that scientific discovery itself is a source of beauty and inspiration.  Our collaboration with the Kitchener-Waterloo Symphony was an example — one of many yet to come — of how science and the arts provide different but complementary insights into our universe and ourselves.

I wrote about the IQC and the symphony which debuted at the IQC’s opening in a Sept. 25, 2012 posting.

Music is not the only art which has attracted Laflamme’s talents. He consulted on a documentary, The Quantum Tamers: Revealing our weird and wired future, a co-production between Canada’s Perimeter Institute and Title Entertainment,

From deep inside the sewers of Vienna, site of groundbreaking quantum teleportation experiments, to cutting-edge quantum computing labs, to voyages into the minds of the world’s brightest thinkers, including renowned British scientist Stephen Hawking, this documentary explores the coming quantum technological revolution.

All of this suggests an interest in science not seen since the 19th century when scientists could fill theatres for their lectures. Even Hollywood is capitalizing on this interest. Laflamme, who saw ‘Interstellar’, ‘The Imitation Game’ (Alan Turing), and ‘The Theory of Everything’ (Stephen Hawking) in fall 2014 comments, “I was surprised by how much science there was in The Imitation Game and Interstellar.” As for the Theory of Everything, “I was apprehensive since I know Stephen well. But, the actor, Eddie Redmayne, and the movie surprised me. There were times when he moved his head or did something in a particular way—he was Stephen. Also, most people don’t realize what an incredible sense of humour Stephen has and the movie captured that well.” Laflamme also observed that it was a movie about a relationship and not really concerned with science and its impacts (good and ill) or scientific accomplishments.  Although he allows, “It could have had more science.”

Research2Reality producers

Molly Shoichet

Co-producer Shoichet has sterling scientific credentials of her own. In addition to this science communication project, she runs the Shoichet Lab at the University of Toronto (from the Dr. Molly Shoichet bio page),

Dr. Molly Shoichet holds the Tier 1 Canada Research Chair in Tissue Engineering and is University Professor of Chemical Engineering & Applied Chemistry, Chemistry and Biomaterials & Biomedical Engineering at the University of Toronto. She is an expert in the study of Polymers for Drug Delivery & Regeneration which are materials that promote healing in the body.

Dr. Shoichet has published over to 480 papers, patents and abstracts and has given over 310 lectures worldwide.  She currently leads a laboratory of 25 researchers and has graduated 134 researchers over the past 20 years.  She founded two spin-off companies from research in her laboratory.

Dr. Shoichet is the recipient of many prestigious distinctions and the only person to be a Fellow of Canada’s 3 National Academies: Canadian Academy of Sciences of the Royal Society of Canada, Canadian Academy of Engineering, and Canadian Academy of Health Sciences. Dr. Shoichet holds the Order of Ontario, Ontario’s highest honour and is a Fellow of the American Association for the Advancement of Science. In 2013, her contributions to Canada’s innovation agenda and the advancement of knowledge were recognized with the QEII Diamond Jubilee Award. In 2014, she was given the University of Toronto’s highest distinction, University Professor, a distinction held by less than 2% of the faculty.

Mike MacMillan

MacMIllan’s biography (from the Lithium Studios website About section hints this is his first science-oriented series (Note: Links have been removed),

Founder of Lithium Studios Productions
University of Toronto (‘02)
UCLA’s Professional Producing Program (‘11)

His first feature, the dark comedy / thriller I Put a Hit on You (2014, Telefilm Canada supported), premiered at this year’s Slamdance Film Festival in Park City. Guidance (2014, Telefilm Canada supported, with super producer Alyson Richards over at Edyson), a dark comedy/coming of age story is currently in post-production, expected to join the festival circuit in September 2014.

Mike has produced a dozen short films with Toronto talents Dane Clark and Linsey Stewart (CAN – Long Branch, Margo Lily), Samuel Fluckiger (SWISS – Terminal, Nightlight) and Darragh McDonald (CAN – Love. Marriage. Miscarriage.). They’ve played at the top film fests around the world and won a bunch of awards.

Special skills include kickass hat collection and whiskey. Bam.

Final comments

It’s nice to see the Canadian scene expanding; I’m particularly pleased to learn social scientists will be included.Too often researchers from the physical sciences or natural sciences and researchers from the social sciences remain aloof from each other. In April 2013, I attended a talk by Evelyn Fox Keller, physicist, feminist, and philosopher, who read from a paper she’d written based on a then relatively recent experience in South Africa where researchers had aligned themselves in two different groups and refused to speak to each other. They were all anthropologists but the sticking point was the type of science they practiced. One group were physical anthropologists and the other were cultural anthropologists. That’s an extreme example unfortunately symptomatic of a great divide. Bravo to Research2Reality for bringing the two groups together.

As for the science appetite Shoichet and MacMillan see in Canada, this is not the only country experiencing a resurgence of interest; they’ve been experiencing a science media expansion in the US.  Neil deGrasse Tyson’s Star Talk television talk show, which also exists as a radio podcast, debuted on April 19, 2015 (Yahoo article by Calla Cofield); Public Radio Exchange’s (PRX) Transistor; a STEM (science, technology, engineering, and mathematics) audio project debuted in Feb. 2015; and video podcast Science Goes to the Movies also debuted in Feb. 2015 (more about the last two initiatives in my March 6, 2015 posting [scroll down about 40% of the way]). Finally (for the burgeoning US science media scene) and neither least nor new, David Bruggeman has a series of posts titled, Science and Technology Guests on Late Night, Week of …, on his Pasco Phronesis blog which has been running for many years. Bruggeman’s series is being included here because most people don’t realize that US late night talk shows have jumped into the science scene. You can check  David’s site here as he posts this series on Mondays and this is Monday, May 11, 2015.

It’s early days for Research2Reality and it doesn’t yet have the depth one might wish. The videos are short (the one featured on the Discovery Channel’s complementary website is less than 2 mins. and prepare yourself for ads). They may not be satisfying from an information perspective but what makes The Orange Chair Series fascinating is the peek into the Canadian research scene. Welcome to Research2Reality and I hope to hear more about you in the coming months.

[ETA May 11, 2015 at 1625 PDT: Semeniuk’s May 11, 2015 article mentions a few other efforts to publicize Canadian research (Note: Links have been removed),

For example, Research Matters, a promotional effort by the Council of Ontario Universities, has built up a large bank of short articles on its website that highlight researchers across the province. Similarly, the Canada Foundation for Innovation, which channels federal dollars toward research infrastructure and projects, produces features stories with embedded videos about the scientists who are enabled by their investments.

What makes Research2Reality different, said Dr. Shoichet, is an approach that doesn’t speak for one region, field of research of  [sic] funding stream.

One other aspect which distinguishes Research2Reality from the other science promotion efforts is the attempt to reach out to the audience. The Canada Foundation for Innovation and Council for Ontario Universities are not known for reaching out directly to the general public.]

Frogs: monitoring them, finding new species, and research about the golden ones in Panama

I have three frog-oriented items and while they’re not strictly speaking in my usual range of topics, given this blog’s name and the fact I haven’t posted a frog piece in quite a while, it seems this is a good moment to address that lack.

Monitoring frogs and amphibians at Trent University (Ontario, Canada)

From a March 23, 2015 Trent University news release,

With the decline of amphibian populations around the world, a team of researchers led by Trent University’s Dr. Dennis Murray will seek to establish environmental DNA (eDNA) monitoring of amphibian occupancy and aquatic ecosystem risk assessment with the help of a significant grant of over $596,000 from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Awarded to Professor Murray, a Canada research chair in integrative wildlife conservation, bioinformatics, and ecological modelling and professor at Trent University along with colleagues Dr. Craig Brunetti of the Biology department, and Dr. Chris Kyle of the Forensic Science program, and partners at Laurentian University, University of Toronto, McGill University, Ontario Ministry of Natural Resources and Forestry and Environment Canada, the grant will support the development of tools that will promote a cleaner aquatic environment.

The project will use amphibian DNA found in natural breeding habitats to determine the presence and abundance of amphibians as well as their pathogens. This new technology capitalizes on Trent University’s expertise and infrastructure in the areas of wildlife DNA and water quality.

“We’re honoured to have received the grant to help us drive the project forward,” said Prof. Murray. “Our plan is to place Canada, and Trent, in a leadership position with respect to aquatic wildlife monitoring and amphibian conservation.”

Amphibian populations are declining worldwide, yet in Canada, amphibian numbers are not monitored closely, meaning changes in their distribution or abundance may be unnoticeable. Amphibian monitoring in Canada is conducted by citizen scientists who record frog breeding calls when visiting bodies of water during the spring. However, the lack of formalized amphibian surveys leaves Canada in a vulnerable position regarding the status of its diverse amphibian community.

Prof. Murray believes that the protocols developed from this project could revolutionize how amphibian populations are monitored in Canada and in turn lead to new insights regarding the population trends for several amphibian species across the country.

Here’s more about NSERC and Trent University from the news release,

About NSERC

NSERC is a federal agency that helps make Canada a country of discoverers and innovators. The agency supports almost 30,000 post-secondary students and postdoctoral fellows in their advanced studies. NSERC promotes discovery by funding approximately 12,000 professors every year and fosters innovation by encouraging over 2,400 Canadian companies to participate and invest in post-secondary research projects.

The NSERC Strategic Project Grants aim to increase research and training in areas that could strongly influence Canada’s economy, society or environment in the next 10 years in four target areas: environmental science and technologies; information and communications technologies; manufacturing; and natural resources and energy.

About Trent University

One of Canada’s top universities, Trent University was founded on the ideal of interactive learning that’s personal, purposeful and transformative. Consistently recognized nationally for leadership in teaching, research and student satisfaction, Trent attracts excellent students from across the country and around the world. Here, undergraduate and graduate students connect and collaborate with faculty, staff and their peers through diverse communities that span residential colleges, classrooms, disciplines, hands-on research, co-curricular and community-based activities. Across all disciplines, Trent brings critical, integrative thinking to life every day. As the University celebrates its 50th anniversary in 2014/15, Trent’s unique approach to personal development through supportive, collaborative community engagement is in more demand than ever. Students lead the way by co-creating experiences rooted in dialogue, diverse perspectives and collaboration. In a learning environment that builds life-long passion for inclusion, leadership and social change, Trent’s students, alumni, faculty and staff are engaged global citizens who are catalysts in developing sustainable solutions to complex issues. Trent’s Peterborough campus boasts award-winning architecture in a breathtaking natural setting on the banks of the Otonabee River, just 90 minutes from downtown Toronto, while Trent University Durham delivers a distinct mix of programming in the GTA.

Trent University’s expertise in water quality could be traced to its proximity to Canada’s Experimental Lakes Area (ELA), a much beleaguered research environment due to federal political imperatives. You can read more about the area and the politics in this Wikipedia entry. BTW, I am delighted to learn that it still exists under the auspices of the International Institute for Sustainable Development (IISD),

Taking this post into nanotechnology territory while mentioning the ELA, Trent University published a Dec. 8, 2014 news release about research into silver nanoparticles,

For several years, Trent University’s Dr. Chris Metcalfe and Dr. Maggie Xenopoulos have dedicated countless hours to the study of aquatic contaminants and the threat they pose to our environment.

Now, through the efforts of the International Institute for Sustainable Development (IISD), their research is reaching a wider audience thanks to a new video (Note: A link has been removed).

The video is one of a five-part series being released by the IISD that looks into environmental issues in Canada. The video entitled “Distilling Science at the Experimental Lakes Area: Nanosilver” and featuring Professors Metcalfe and Xenopoulos profiles their research around nanomaterials at the Experimental Lakes Area.

Prof. Xenopolous’ involvement in the project falls in line with other environmental issues she has tackled. In the past, her research has examined how human activities – including climate change, eutrophication and land use – affect ecosystem structure and function in lakes and rivers. She has also taken an interest in how land use affects the material exported and processed in aquatic ecosystems.

Prof. Metcalfe’s ongoing research on the fate and distribution of pharmaceutical and personal care products in the environment has generated considerable attention both nationally and internationally.

Together, their research into nanomaterials is getting some attention. Nanomaterials are submicroscopic particles whose physical and chemical properties make them useful for a variety of everyday applications. They can be found in certain pieces of clothing, home appliances, paint, and kitchenware. Initial laboratory research conducted at Trent University showed that nanosilver could strongly affect aquatic organisms at the bottom of the food chain, such as bacteria, algae and zooplankton.

To further examine these effects in a real ecosystem, a team of researchers from Trent University, Fisheries and Oceans Canada and Environment Canada has been conducting studies at undisclosed lakes in northwestern Ontario. The Lake Ecosystem Nanosilver (LENS) project has been monitoring changes in the lakes’ ecosystem that occur after the addition of nanosilver.

“In our particular case, we will be able to study and understand the effects of only nanosilver because that is the only variable that is going to change,” says Prof. Xenopoulos. “It’s really the only place in the world where we can do that.”

The knowledge gained from the study will help policy-makers make decisions about whether nanomaterials can be a threat to aquatic ecosystems and whether regulatory action is required to control their release into the environment.

You can find the 13 mins. video here: https://www.youtube.com/watch?v=_nJai_B4YH0#action=share

Shapeshifting frogs, a new species in Ecuador

Caption: This image shows skin texture variation in one individual frog (Pristimantis mutabilis) from Reserva Las Gralarias. Note how skin texture shifts from highly tubercular to almost smooth; also note the relative size of the tubercles on the eyelid, lower lip, dorsum and limbs. Credit: Zoological Journal of the Linnean Society

Caption: This image shows skin texture variation in one individual frog (Pristimantis mutabilis) from Reserva Las Gralarias. Note how skin texture shifts from highly tubercular to almost smooth; also note the relative size of the tubercles on the eyelid, lower lip, dorsum and limbs.
Credit: Zoological Journal of the Linnean Society

Here’s more about the shapeshifting and how the scientists figured out what the frogs were doing (from a March 23, 2015 Case Western Research University news release on EurekAlert; Note: A link has been removed),

A frog in Ecuador’s western Andean cloud forest changes skin texture in minutes, appearing to mimic the texture it sits on.

Originally discovered by a Case Western Reserve University PhD student and her husband, a projects manager at Cleveland Metroparks’ Natural Resources Division, the amphibian is believed to be the first known to have this shape-shifting capability.

But the new species, called Pristimantis mutabilis, or mutable rainfrog, has company. Colleagues working with the couple recently found that a known relative of the frog shares the same texture-changing quality–but it was never reported before.

The frogs are found at Reserva Las Gralarias, a nature reserve originally created to protect endangered birds in the Parish of Mindo, in north-central Ecuador.

The researchers, Katherine and Tim Krynak, and colleagues from Universidad Indoamérica and Tropical Herping (Ecuador) co-authored a manuscript describing the new animal and skin texture plasticity in the Zoological Journal of the Linnean Society this week. They believe their findings have broad implications for how species are and have been identified. The process may now require photographs and longer observations in the field to ensure the one species is not mistakenly perceived as two because at least two species of rain frogs can change their appearance.

Katherine Krynak believes the ability to change skin texture to reflect its surroundings may enable P. mutabilis to help camouflage itself from birds and other predators.

The Krynaks originally spotted the small, spiny frog, nearly the width of a marble, sitting on a moss-covered leaf about a yard off the ground on a misty July night in 2009. The Krynaks had never seen this animal before, though Tim had surveyed animals on annual trips to Las Gralarias since 2001, and Katherine since 2005.

They captured the little frog and tucked it into a cup with a lid before resuming their nightly search for wildlife. They nicknamed it “punk rocker” because of the thorn-like spines covering its body.

The next day, Katherine Krynak pulled the frog from the cup and set it on a smooth white sheet of plastic for Tim to photograph. It wasn’t “punk “–it was smooth-skinned. They assumed that, much to her dismay, she must have picked up the wrong frog.

“I then put the frog back in the cup and added some moss,” she said. “The spines came back… we simply couldn’t believe our eyes, our frog changed skin texture!

“I put the frog back on the smooth white background. Its skin became smooth.”

“The spines and coloration help them blend into mossy habitats, making it hard for us to see them,” she said. “But whether the texture really helps them elude predators still needs to be tested.”

During the next three years, a team of fellow biologists studied the frogs. They found the animals shift skin texture in a little more than three minutes.

Juan M. Guayasamin, from Universidad Tecnológica Indoamérica, Ecuador, the manuscript’s first author, performed morphological and genetic analyses showing that P. mutabilis was a unique and undescribed species. Carl R. Hutter, from the University of Kansas, studied the frog’s calls, finding three songs the species uses, which differentiate them from relatives. The fifth author of the paper, Jamie Culebras, assisted with fieldwork and was able to locate a second population of the species. Culebras is a member of Tropical Herping, an organization committed to discovering, and studying reptiles and amphibians.

Guayasamin and Hutter discovered that Prismantis sobetes, a relative with similar markings but about twice the size of P. mutabilis, has the same trait when they placed a spiny specimen on a sheet and watched its skin turn smooth. P. sobetes is the only relative that has been tested so far.

Because the appearance of animals has long been one of the keys to identifying them as a certain species, the researchers believe their find challenges the system, particularly for species identified by one or just a few preserved specimens. With those, there was and is no way to know if the appearance is changeable.

The Krynaks, who helped form Las Gralarias Foundation to support the conservation efforts of the reserve, plan to return to continue surveying for mutable rain frogs and to work with fellow researchers to further document their behaviors, lifecycle and texture shifting, and estimate their population, all in effort to improve our knowledge and subsequent ability to conserve this paradigm shifting species.

Further, they hope to discern whether more relatives have the ability to shift skin texture and if that trait comes from a common ancestor. If P. mutabilis and P. sobetes are the only species within this branch of Pristimantis frogs to have this capability, they hope to learn whether they retained it from an ancestor while relatives did not, or whether the trait evolved independently in each species.

Golden frog of Panama and its skin microbiome

Caption: Researchers studied microbial communities on the skin of Panamanian golden frogs to learn more about amphibian disease resistance. Panamanian golden frogs live only in captivity. Continued studies may help restore them back to the wild. Credit: B. Gratwicke/Smithsonian Conservation Biology Institute

Caption: Researchers studied microbial communities on the skin of Panamanian golden frogs to learn more about amphibian disease resistance. Panamanian golden frogs live only in captivity. Continued studies may help restore them back to the wild.
Credit: B. Gratwicke/Smithsonian Conservation Biology Institute

Among many of the pressures on frog populations, there’s a lethal fungus which has affected some 200 species of frogs. A March 23, 2015 news item on ScienceDaily describes some recent research into the bacterial communities present on frog skin,

A team of scientists including Virginia Tech researchers is one step closer to understanding how bacteria on a frog’s skin affects its likelihood of contracting disease.

A frog-killing fungus known as Batrachochytrium dendrobatidis, or Bd, has already led to the decline of more than 200 amphibian species including the now extinct-in-the-wild Panamanian golden frog.

In a recent study, the research team attempted to apply beneficial bacteria found on the skin of various Bd-resistant wild Panamanian frog species to Panamanian golden frogs in captivity, to see if this would stimulate a defense against the disease.

A March 23, 2015 Virginia Tech University news release on EurekAlert, which originated the news item, provides a twist and a turn in the story (Note: Links have been removed),

They found that while the treatment with beneficial bacteria was not successful due to its inability to stick to the skin, there were some frogs that survived exposure to the fungus.

These survivors actually had unique bacterial communities on their skin before the experiments started.

The next step is to explore these new bacterial communities.

“We were disappointed that the treatment didn’t work, but glad to have discovered new information about the relationship between these symbiotic microbial communities and amphibian disease resistance,” said Lisa Belden, an associate professor of biological sciences in the College of Science, a Fralin Life Science Institute affiliate, and a faculty member with the new Global Change Center at Virginia Tech. “Every bit of information gets us closer to getting these frogs back into nature.”

Studying the microbial communities of Panamanian golden frogs was the dissertation focus of Belden’s former graduate student Matthew Becker, who graduated with a Ph.D. in biological sciences from Virginia Tech in 2014 and is now a fellow at the Smithsonian Conservation Biology Institute.

“Anything that can help us predict resistance to this disease is very useful because the ultimate goal of this research is to establish healthy populations of golden frogs in their native habitat,” Becker told Smithsonian Science News. “I think identifying alternative probiotic treatment methods that optimize dosages and exposure times will be key for moving forward with the use of probiotics to mitigate chytridiomycosis.”

Here’s a link to and a citation for the paper,

Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus by Matthew H. Becker , Jenifer B. Walke , Shawna Cikanek , Anna E. Savage , Nichole Mattheus , Celina N. Santiago , Kevin P. C. Minbiole , Reid N. Harris , Lisa K. Belden , Brian Gratwicke. April 2015 Volume: 282 Issue: 1805 DOI: 10.1098/rspb.2014.2881 Published 18 March 2015

This is an open access paper.

For anyone curious about the article in the Smithsonian mentioned in the news release, you can find it here.

 

Spray-on solar cells from the University of Toronto (Canada)

It’s been a while since there’s been a solar cell story from the University of Toronto (U of T) and I was starting to wonder if Ted (Edward) Sargent had moved to another educational institution. The drought has ended with the announcement of three research papers being published by researchers from Sargent’s U of T laboratory. From a Dec. 5, 2014 ScienceDaily news item,

Pretty soon, powering your tablet could be as simple as wrapping it in cling wrap.

That’s Illan Kramer’s … hope. Kramer and colleagues have just invented a new way to spray solar cells onto flexible surfaces using miniscule light-sensitive materials known as colloidal quantum dots (CQDs) — a major step toward making spray-on solar cells easy and cheap to manufacture.

A Dec. 4, 2014 University of Toronto news release (also on EurekAlert) by Marit Mitchell, which originated the news item, gives a bit more detail about the technology (Note: Links have been removed),

 Solar-sensitive CQDs printed onto a flexible film could be used to coat all kinds of weirdly-shaped surfaces, from patio furniture to an airplane’s wing. A surface the size of a car roof wrapped with CQD-coated film would produce enough energy to power three 100-watt light bulbs – or 24 compact fluorescents.

He calls his system sprayLD, a play on the manufacturing process called ALD, short for atomic layer deposition, in which materials are laid down on a surface one atom-thickness at a time.

Until now, it was only possible to incorporate light-sensitive CQDs onto surfaces through batch processing – an inefficient, slow and expensive assembly-line approach to chemical coating. SprayLD blasts a liquid containing CQDs directly onto flexible surfaces, such as film or plastic, like printing a newspaper by applying ink onto a roll of paper. This roll-to-roll coating method makes incorporating solar cells into existing manufacturing processes much simpler. In two recent papers in the journals Advanced Materials and Applied Physics Letters, Kramer showed that the sprayLD method can be used on flexible materials without any major loss in solar-cell efficiency.

Kramer built his sprayLD device using parts that are readily available and rather affordable – he sourced a spray nozzle used in steel mills to cool steel with a fine mist of water, and a few regular air brushes from an art store.

“This is something you can build in a Junkyard Wars fashion, which is basically how we did it,” says Kramer. “We think of this as a no-compromise solution for shifting from batch processing to roll-to-roll.”

“As quantum dot solar technology advances rapidly in performance, it’s important to determine how to scale them and make this new class of solar technologies manufacturable,” said Professor Ted Sargent, vice-dean, research in the Faculty of Applied Science & Engineering at University of Toronto and Kramer’s supervisor. “We were thrilled when this attractively-manufacturable spray-coating process also led to superior performance devices showing improved control and purity.”

In a third paper in the journal ACS Nano, Kramer and his colleagues used IBM’s BlueGeneQ supercomputer to model how and why the sprayed CQDs perform just as well as – and in some cases better than – their batch-processed counterparts. This work was supported by the IBM Canada Research and Development Centre, and by King Abdullah University of Science and Technology.

For those who would like to see the sprayLD device,

Here are links and citation for all three papers,

Efficient Spray-Coated Colloidal Quantum Dot Solar Cells by Illan J. Kramer, James C. Minor, Gabriel Moreno-Bautista, Lisa Rollny, Pongsakorn Kanjanaboos, Damir Kopilovic, Susanna M. Thon, Graham H. Carey, Kang Wei Chou, David Zhitomirsky, Aram Amassian, and Edward H. Sargent. Advanced Materials DOI: 10.1002/adma.201403281 Article first published online: 10 NOV 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Colloidal quantum dot solar cells on curved and flexible substrates by Illan J. Kramer, Gabriel Moreno-Bautista, James C. Minor, Damir Kopilovic, and Edward H. Sargent. Appl. Phys. Lett. 105, 163902 (2014); http://dx.doi.org/10.1063/1.4898635 Published online 21 October 2014

© 2014 AIP Publishing LLC

Electronically Active Impurities in Colloidal Quantum Dot Solids by Graham H. Carey, Illan J. Kramer, Pongsakorn Kanjanaboos, Gabriel Moreno-Bautista, Oleksandr Voznyy, Lisa Rollny, Joel A. Tang, Sjoerd Hoogland, and Edward H. Sargent. ACS Nano, 2014, 8 (11), pp 11763–11769 DOI: 10.1021/nn505343e Publication Date (Web): November 6, 2014

Copyright © 2014 American Chemical Society

All three papers are behind paywalls.

Given the publication dates for the papers, this looks like an attempt to get some previously announced research noticed by sending out a summary news release using a new ‘hook’ to get attention. I hope it works for them as it must be disheartening to have your research sink into obscurity because the announcements were issued during one or more busy news cycles.

One final note, if I understand the news release correctly, this work is still largely theoretical as there don’t seem to have been any field tests.

Canada’s Situating Science in Fall 2014

Canada’s Situating Science cluster (network of humanities and social science researchers focused on the study of science) has a number of projects mentioned and in its Fall 2014 newsletter,

1. Breaking News
It’s been yet another exciting spring and summer with new developments for the Situating Science SSHRC Strategic Knowledge Cluster team and HPS/STS [History of Philosophy of Science/Science and Technology Studies] research. And we’ve got even more good news coming down the pipeline soon…. For now, here’s the latest.

1.1. New 3 yr. Cosmopolitanism Partnership with India and Southeast Asia
We are excited to announce that the Situating Science project has helped to launch a new 3 yr. 200,000$ SSHRC Partnership Development Grant on ‘Cosmopolitanism and the Local in Science and Nature’ with institutions and scholars in Canada, India and Singapore. Built upon relations that the Cluster has helped establish over the past few years, the project will closely examine the actual types of negotiations that go into the making of science and its culture within an increasingly globalized landscape. A recent workshop on Globalizing History and Philosophy of Science at the Asia Research Institute at the National University of Singapore helped to mark the soft launch of the project (see more in this newsletter).

ARI along with Manipal University, Jawaharlal Nehru University, University of King’s College, Dalhousie University, York University, University of Toronto, and University of Alberta, form the partnership from which the team will seek new connections and longer term collaborations. The project’s website will feature a research database, bibliography, syllabi, and event information for the project’s workshops, lecture series, summer schools, and artifact work. When possible, photos, blogs, podcasts and videos from events will be posted online as well. The project will have its own mailing list so be sure to subscribe to that too. Check it all out: www.CosmoLocal.org

2.1. Globalizing History and Philosophy of Science workshop in Singapore August 21-22 2014
On August 21 and 22, scholars from across the globe gathered at the Asia Research Institute at the National University of Singapore to explore key issues in global histories and philosophies of the sciences. The setting next to the iconic Singapore Botanical Gardens provided a welcome atmosphere to examine how and why globalizing the humanities and social studies of science generates intellectual and conceptual tensions that require us to revisit, and possibly rethink, the leading notions that have hitherto informed the history, philosophy and sociology of science.

The keynote by Sanjay Subrahmanyam (UCLA) helped to situate discussions within a larger issue of paradigms of civilization. Workshop papers explored commensurability, translation, models of knowledge exchange, indigenous epistemologies, commercial geography, translation of math and astronomy, transmission and exchange, race, and data. Organizer Arun Bala and participants will seek out possibilities for publishing the proceedings. The event partnered with La Trobe University and Situating Science, and it helped to launch a new 3 yr. Cosmopolitanism project. For more information visit: www.CosmoLocal.org

2.2. Happy Campers: The Summer School Experience

We couldn’t help but feel like we were little kids going to summer camp while our big yellow school bus kicked up dust driving down a dirt road on a hot summer’s day. In this case it would have been a geeky science camp. We were about to dive right into day-long discussions of key pieces from Science and Technology Studies and History and Philosophy of Science and Technology.

Over four and a half days at one of the Queen’s University Biology Stations at the picturesque Elbow Lake Environmental Education Centre, 18 students from across Canada explored the four themes of the Cluster. Each day targeted a Cluster theme, which was introduced by organizer Sergio Sismondo (Sociology and Philosophy, Queen’s). Daryn Lehoux (Classics, Queen’s) explained key concepts in Historical Epistemology and Ontology. Using references of the anti-magnetic properties of garlic (or garlic’s antipathy with the loadstone) from the ancient period, Lehoux discussed the importance and significance of situating the meaning of a thing within specific epistemological contexts. Kelly Bronson (STS, St. Thomas University) explored modes of science communication and the development of the Public Engagement with Science and Technology model from the deficit model of Public Understanding of Science and Technology during sessions on Science Communication and its Publics. Nicole Nelson (University of Wisconsin-Madison) explained Material Culture and Scientific/Technological Practices by dissecting the meaning of animal bodies and other objects as scientific artifacts. Gordon McOuat wrapped up the last day by examining the nuances of the circulation and translation of knowledge and ‘trading zones’ during discussions of Geographies and Sites of Knowledge.

2.3. Doing Science in and on the Oceans
From June 14 to June 17, U. King’s College hosted an international workshop on the place and practice of oceanography in celebration of the work of Dr. Eric Mills, Dalhousie Professor Emeritus in Oceanography and co-creator of the History of Science and Technology program. Leading ocean scientists, historians and museum professionals came from the States, Europe and across Canada for “Place and Practice: Doing Science in and on the Ocean 1800-2012”. The event successfully connected different generations of scholars, explored methodologies of material culture analysis and incorporated them into mainstream historical work. There were presentations and discussions of 12 papers, an interdisciplinary panel discussion with keynote lecture by Dr. Mills, and a presentation at the Maritime Museum of the Atlantic by Canada Science and Technology Museum curator, David Pantalony. Paper topics ranged from exploring the evolving methodology of oceanographic practice to discussing ways that the boundaries of traditional scientific writing have been transcended. The event was partially organized and supported by the Atlantic Node and primary support was awarded by the SSHRC Connection Grant.

2.4. Evidence Dead or Alive: The Lives of Evidence National Lecture Series

The 2014 national lecture series on The Lives of Evidence wrapped up on a high note with an interdisciplinary panel discussion of Dr. Stathis Psillos’ exploration of the “Death of Evidence” controversy and the underlying philosophy of scientific evidence. The Canada Research Chair in Philosophy of Science spoke at the University of Toronto with panelists from law, philosophy and HPS. “Evidence: Wanted Dead of Alive” followed on the heels of his talk at the Institute for Science, Society and Policy “From the ‘Bankruptcy of Science’ to the ‘Death of Evidence’: Science and its Value”.

In 6 parts, The Lives of Evidence series examined the cultural, ethical, political, and scientific role of evidence in our world. The series formed as response to the recent warnings about the “Death of Evidence” and “War on Science” to explore what was meant by “evidence”, how it is interpreted, represented and communicated, how trust is created in research, what the relationship is between research, funding and policy and between evidence, explanations and expertise. It attracted collaborations from such groups as Evidence for Democracy, the University of Toronto Evidence Working Group, Canadian Centre for Ethics in Public Affairs, Dalhousie University Health Law Institute, Rotman Institute of Philosophy and many more.

A December [2013] symposium, “Hype in Science”, marked the soft launch of the series. In the all-day public event in Halifax, leading scientists, publishers and historians and philosophers of science discussed several case studies of how science is misrepresented and over-hyped in top science journals. Organized by the recent winner of the Gerhard Herzberg Canada Gold Medal for Science and Engineering, Ford Doolittle, the interdisciplinary talks in “Hype” explored issues of trustworthiness in science publications, scientific authority, science communication, and the place of research in the broader public.

The series then continued to explore issues from the creation of the HIV-Crystal Meth connection (Cindy Patton, SFU), Psychiatric Research Abuse (Carl Elliott, U. Minnesota), Evidence, Accountability and the Future of Canadian Science (Scott Findlay, Evidence for Democracy), Patents and Commercialized Medicine (Jim Brown, UofT), and Clinical Trials (Joel Lexchin, York).

All 6 parts are available to view on the Situating Science YouTube channel.You can read a few blogs from the events on our website too. Some of those involved are currently discussing possibilities of following up on some of the series’ issues.

2.5. Other Past Activities and Events
The Frankfurt School: The Critique of Capitalist Culture (July, UBC)

De l’exclusion à l’innovation théorique: le cas de l’éconophysique ; Prosocial attitudes and patterns of academic entrepreneurship (April, UQAM)

Critical Itineraries Technoscience Salon – Ontologies (April, UofT)

Technologies of Trauma: Assessing Wounds and Joining Bones in Late Imperial China (April, UBC)

For more, check out: www.SituSci.ca

You can find some of the upcoming talks and the complete Fall 2014 Situating Science newsletter here.

About one week after receiving the newsletter, I got this notice (Sept. 11, 2014),

We are ecstatic to announce that the Situating Science SSHRC Strategic Knowledge Cluster is shortlisted for a highly competitive SSHRC Partnership Impact Award!

And what an impact we’ve had over the past seven years: Organizing and supporting over 20 conferences and workshops, 4 national lecture series, 6 summer schools, and dozens of other events. Facilitating the development of 4 new programs of study at partner institutions. Leveraging more than one million dollars from Nodal partner universities plus more than one million dollars from over 200 supporting and partnering organizations. Hiring over 30 students and 9 postdoctoral fellows. Over 60 videos and podcasts as well as dozens of student blogs and over 50 publications. Launching a new Partnership Development Grant between Canada, India and Southeast Asia. Developing a national consortium…And more!

The winners will be presented with their awards at a ceremony in Ottawa on Monday, November 3, 2014.

From the Sept. 11, 2014 Situating Science press release:

University of King’s College [Nova Scotia, Canada] professor Dr. Gordon McOuat has been named one of three finalists for the Social Sciences and Humanities Research Council of Canada’s (SSHRC) Partnership Award, one of five Impact Awards annually awarded by SSHRC.

Congratulations on the nomination and I wish Gordon McQuat and Situating Science good luck in the competition.

Canada’s ‘nano’satellites to gaze upon luminous stars

The launch (from Yasny, Russia) of two car battery-sized satellites happened on June 18, 2014 at 15:11:11 Eastern Daylight Time according to a June 18, 2014 University of Montreal (Université de Montréal) news release (also on EurekAlert).

Together, the satellites are known as the BRITE-Constellation, standing for BRIght Target Explorer. “BRITE-Constellation will monitor for long stretches of time the brightness and colour variations of most of the brightest stars visible to the eye in the night sky. These stars include some of the most massive and luminous stars in the Galaxy, many of which are precursors to supernova explosions. This project will contribute to unprecedented advances in our understanding of such stars and the life cycles of the current and future generations of stars,” said Professor Moffat [Anthony Moffat, of the University of Montreal and the Centre for Research in Astrophysics of Quebec], who is the scientific mission lead for the Canadian contribution to BRITE and current chair of the international executive science team.

Here’s what the satellites (BRITE-Constellatio) are looking for (from the news release),

Luminous stars dominate the ecology of the Universe. “During their relatively brief lives, massive luminous stars gradually eject enriched gas into the interstellar medium, adding heavy elements critical to the formation of future stars, terrestrial planets and organics. In their spectacular deaths as supernova explosions, massive stars violently inject even more crucial ingredients into the mix. The first generation of massive stars in the history of the Universe may have laid the imprint for all future stellar history,” Moffat explained. “Yet, massive stars – rapidly spinning and with radiation fields whose pressure resists gravity itself – are arguably the least understood, despite being the brightest members of the familiar constellations of the night sky.” Other less-massive stars, including stars similar to our own Sun, also contribute to the ecology of the Universe, but only at the end of their lives, when they brighten by factors of a thousand and shed off their tenuous outer layers.

BRITE-Constellation is both a multinational effort and a Canadian bi-provincial effort,

BRITE-Constellation is in fact a multinational effort that relies on pioneering Canadian space technology and a partnership with Austrian and Polish space researchers – the three countries act as equal partners. Canada’s participation was made possible thanks to an investment of $4.07 million by the Canadian Space Agency. The two new Canadian satellites are joining two Austrian satellites and a Polish satellite already in orbit; the final Polish satellite will be launched in August [2014?].

All six satellites were designed by the University of Toronto Institute for Aerospace Studies – Space Flight Laboratory, who also built the Canadian pair. The satellites were in fact named “BRITE Toronto” and “BRITE Montreal” after the University of Toronto and the University of Montreal, who play a major role in the mission.  “BRITE-Constellation will exploit and enhance recent Canadian advances in precise attitude control that have opened up for space science  the domain of very low cost, miniature spacecraft, allowing a scientific return that otherwise would have had price tags 10 to 100 times higher,” Moffat said. “This will actually be the first network of satellites devoted to a fundamental problem in astrophysics.”

Is it my imagination or is there a lot more Canada/Canadian being included in news releases from the academic community these days? In fact, I made a similar comment in my June 10, 2014 posting about TRIUMF, Canada’s National Laboratory for Particle and Nuclear Physics where I noted we might not need to honk our own horns quite so loudly.

One final comment, ‘nano’satellites have been launched before as per my Aug. 6, 2012 posting,

The nanosatellites referred to in the Aug.2, 2012 news release on EurekALert aren’t strictly speaking nano since they are measured in inches and weigh approximately eight pounds. I guess by comparison with a standard-sized satellite, CINEMA, one of 11 CubeSats, seems nano-sized. From the news release,

Eleven tiny satellites called CubeSats will accompany a spy satellite into Earth orbit on Friday, Aug. 3, inaugurating a new type of inexpensive, modular nanosatellite designed to piggyback aboard other NASA missions. [emphasis mine]

One of the 11 will be CINEMA (CubeSat for Ions, Neutrals, Electrons, & MAgnetic fields), an 8-pound, shoebox-sized package which was built over a period of three years by 45 students from the University of California, Berkeley, Kyung Hee University in Korea, Imperial College London, Inter-American University of Puerto Rico, and University of Puerto Rico, Mayaguez.

This 2012 project had a very different focus from this Austrian-Canadian-Polish effort. From the University of Montreal news release,

The nanosatellites will be able to explore a wide range of astrophysical questions. “The constellation could detect exoplanetary transits around other stars, putting our own planetary system in context, or the pulsations of red giants, which will enable us to test and refine our models regarding the eventual fate of our Sun,” Moffatt explained.

Good luck!

Canadian researchers develop test for exposure to nanoparticles*

The Canadian Broadcasting Corporation’s online news features a May 21, 2014 article by Emily Chung regarding research from the University of Toronto that may enable a simple skin test for determining nanoparticle exposure,

Canadian researchers have developed the first test for exposure to nanoparticles — new chemical technology found in a huge range of consumer products — that could potentially be used on humans.

Warren Chan, a University of Toronto [U of T] chemistry professor, and his team developed the skin test after noticing that some mice changed colour and others became fluorescent (that is, they glowed when light of certain colours were shone on them) after being exposed to increasing levels of different kinds of nanoparticles. The mice were being used in research to develop cancer treatments involving nanoparticles.

There is some evidence that certain types and levels of exposure may be harmful to human health. But until now, it has been hard to link exposure to health effects, partly due to the challenge of measuring exposure.

“There’s no way to determine how much [sic] nanoparticles you’ve been exposed to,” said Chan in an interview with CBCNews.ca.

There was one way to measure nanoparticle exposure in mice —  but it required the animals to be dead. At that point, they would be cut open and tests could be run on organs such as the liver and spleen where nanoparticles accumulate.

A May 14, 2014 article by Nancy Owano on phys.org provides more details (Note: Links have been removed),

They [researchers] found that different nanoparticles are visible through the skin under ambient or UV light. They found that after intravenous injection of fluorescent nanoparticles, they accumulate and can be observed through the skin. They also found that the concentration of these nanoparticles can be directly correlated to the injected dose and their accumulations in other organs.

In their discussion over selecting nanoparticles used in mouse skin, they said, “Gold nanoparticles are commonly used in molecular diagnostics and drug delivery applications. These nanomaterials were selected for our initial studies as they are easily synthesized, have a distinct ruby color and can be quantified by inductively coupled plasma atomic emission spectroscopy (ICP-AES).”

Work involved in the study included designing and performing experiments, pathological analysis, and data analysis. Their discovery could be used to better predict how nanoparticles behave in the body.

Here’s a link to and a citation for the paper,

Nanoparticle exposure in animals can be visualized in the skin and analysed via skin biopsy by Edward A. Sykes, Qin Dai, Kim M. Tsoi, David M. Hwang & Warren C. W. Chan. Nature Communications 5, Article number: 3796 doi:10.1038/ncomms4796 Published 13 May 2014

This paper is behind a paywall.

* Posting’s head changed from ‘Canadians and exposure to nanoparticles; to the more descriptive ‘Canadian researchers develop test for exposure to nanoparticles’., May 27, 2014.

Institute of Electrical and Electronics Engineers (IEEE) 2014 international nanotechnology conference in Toronto, Canada

August 18 – 21, 2014 are the dates for the IEEE (Institute for Electrical and Electronics Engineers) 14th International Conference on Nanotechnology.  The deadline for submitting abstracts is March 15, 2014. Here’s a bit more about the conference, from the homepage,

IEEE Nano is one of the largest Nanotechnology conferences in the world, bringing together the brightest engineers and scientists through collaboration and the exchange of ideas.

IEEE Nano 2014 will provide researchers and others in the Nanotechnology field the ability to interact and advance their work through various speakers and workshop sessions.

Possible Topics for Papers

Environmental Health and Safety of Nanotechnology
Micro-to-nano-scale bridging
Modeling and Simulation
Nanobiology:
•Nanobiomedicine
•Nanobiosystems
•Applications of Biopolymer Nanoparticles for Drug Delivery
Nanoelectronics:
•Non-Carbon Based
•Carbon Based
•Circuits and Architecture
Nanofabrication and Nanoassemblies
Nanofluidics:
•Modeling and Theory
•Applications
Nanomagnetics
Nanomanufacturing
Nanomaterials:
•2-D Materials beyond Graphene
•Synthesis and Characterization
•Applications and Enabled Systems
Nanometrology and Nanocharacterization
Nanopackaging
Nano-optics, Nano-optoelectronics and Nano-photonics:
•Novel fabrication and integration approaches
•Optical Nano-devices
Nanorobotics and Nanomanipulation
Nanoscale Communication and Networks
Nanosensors and Actuators
Nanotechnology Enabled Energy
NEMS
NEMS/Applications

There is a conference Call For Papers webpage where you can get more information.

Invited speakers include,

John Polanyi
Professor
University of Toronto, Canada

John Polanyi, educated at Manchester University, England, was a postdoctoral fellow at Princeton University and at the National Research Council of Canada. He is a faculty member in the Department of Chemistry at the University of Toronto, a member of the Queen’s Privy Council for Canada (P.C.), and a Companion of the Order of Canada (C.C.). His awards include the 1986 Nobel Prize in Chemistry. He has written extensively on science policy, the control of armaments, peacekeeping and human rights.

Charles Lieber
Professor Charles M. Lieber
Mark Hyman Professor of Chemistry
Department of Chemistry and Chemical Biology
Harvard University

Charles M. Lieber is regarded as a leading chemist worldwide and recognized as a pioneer in the nanoscience and nanotechnology fields. He completed his doctoral studies at Stanford University and currently holds a joint appointment in the Department of Chemistry and Chemical Biology at Harvard University, as the Mark Hyman Professor of Chemistry, and the School of Engineering and Applied Sciences. Lieber is widely known for his contributions to the synthesis, understanding and assembly of nanoscale materials, as well as the founding of two nanotechnology companies: Nanosys and Vista Therapeutics.

Lieber’s achievements have been recognized by a large number of awards, including the Feynman Prize for Nanotechnology (2002), World Technology award in Materials (2003 and 2004) and the Wolf Prize in Chemistry (2012). He has published more than 350 papers in peer-reviewed journals and is the primary inventor on over 35 patents.

Arthur Carty
Professor & Executive Director [Waterloo Institute for Nanotechnology]
University of Waterloo, Canada

Arthur Carty has a PhD in inorganic chemistry from the University of Nottingham in the UK. He is currently the Executive Director of the Waterloo Institute for Nanotechnology and research professor in the Department of Chemistry at the University of Waterloo.

Previously, Dr. Carty served in Canada as the National Science Advisor to the Prime Minister and President of the National Research Council (Canada). He was awarded the Order of Canada and holds 14 honorary doctorates.

His research interests are focused on organometallic chemistry and new materials. [Dr. Carty is chair of The Expert Panel on the State of Canada’s Science Culture; an assessment being conducted by the Canadian Council of Academies as per my Feb. 22, 2013 posting and Dr. Carty is giving a Keynote lecture titled: ‘Small World, Large Impact: Driving a Materials Revolution Through Nanotechnology’ at the 2014 TAPPI (Technical Association for the Pulp, Paper, Packaging and Converting Industries) nanotechnology conference, June 23-26, 2014 in Vancouver, Canada as per my Nov. 14, 2013 posting.]

William Milne
Professor
University of Cambridge, UK

Bill Milne FREng,FIET,FIMMM has been Head of Electrical Engineering at Cambridge University since 1999 and Director of the Centre for Advanced Photonics and Electronics (CAPE) since 2005. In 1996 he was appointed to the ‘‘1944 Chair in Electrical Engineering’’. He obtained his BSc from St Andrews University in Scotland in 1970 and then went on to read for a PhD in Electronic Materials at Imperial College London. He was awarded his PhD and DIC in 1973 and, in 2003, a D.Eng (Honoris Causa) from University of Waterloo, Canada. He was elected a Fellow of The Royal Academy of Engineering in 2006. He was awarded the J.J. Thomson medal from the IET in 2008 and the NANOSMAT prize in 2010 for excellence in nanotechnology. His research interests include large area Si and carbon based electronics, graphene, carbon nanotubes and thin film materials. Most recently he has been investigating MEMS, SAW and FBAR devices and SOI based micro heaters for ( bio) sensing applications. He has published/presented ~ 800 papers in these areas, of which ~ 150 were invited. He co-founded Cambridge Nanoinstruments with 3 colleagues from the Department and this was bought out by Aixtron in 2008 and in 2009 co-founded Cambridge CMOS Sensors with Julian Gardner from Warwick Univ. and Florin Udrea from Cambridge Univ.

Shuit-Tong Lee
Institute of Functional Nano & Soft Materials (FUNSOM)
Collaboration Innovation Center of Suzhou Nano Science and Technology
College of Nano Science and Technology (CNST)
Soochow University, China
Email: [email protected]

Prof. Lee is the member (academician) of Chinese Academy of Sciences and the fellow of TWAS (the academy of sciences for the developing world). He is a distinguished scientist in material science and engineering. Prof. Lee is the Founding Director of Functional Nano & Soft Materials Laboratory (FUNSOM) and Director of the College of Chemistry, Chemical Engineering and Materials Science at Soochow University. He is also a Chair Professor of Materials Science and Founding Director of the Center of Super-Diamond and Advanced Films (COSDAF) at City University of Hong Kong and the Founding Director of Nano-Organic Photoelectronic Laboratory at the Technical Institute of Physics and Chemistry, CAS. He was the Senior Research Scientist and Project Manager at the Research Laboratories of Eastman Kodak Company in the US before he joined City University of Hong Kong in 1994. He won the Humboldt Senior Research Award (Germany) in 2001 and a Croucher Senior Research Fellowship from the Croucher Foundation (HK) in 2002 for the studies of “Nucleation and growth of diamond and new carbon based materials” and “Oxide assisted growth and applications of semiconducting nanowires”, respectively. He also won the National Natural Science Award of PRC (second class) in 2003 and 2005 for the above research achievements. Recently, he was awarded the 2008 Prize for Scientific and Technological Progress of Ho Leung Ho Lee Foundation. Prof. Lee’s research work has resulted in more than 650 peer-reviewed publications in prestigious chemistry, physics and materials science journals, 6 book chapters and over 20 US patents, among them 5 papers were published in Science and Nature (London) and some others were selected as cover papers. His papers have more than 10,000 citations by others, which is ranked within world top 25 in the materials science field according to ESI and ISI citation database.

Sergej Fatikow
Full Professor, Dr.-Ing. habil.
Head, Division for Microrobotics & Control Engineering (AMiR)
University of Oldenburg, Germany

Professor Sergej Fatikow studied electrical engineering and computer science at the Ufa Aviation Technical University in Russia, where he received his doctoral degree in 1988 with work on fuzzy control of complex non-linear systems. After that he worked until 1990 as a lecturer at the same university. During his work in Russia he published over 30 papers and successfully applied for over 50 patents in intelligent control and mechatronics. In 1990 he moved to the Institute for Process Control and Robotics at the University of Karlsruhe in Germany, where he worked as a postdoctoral scientific researcher and since 1994 as Head of the research group “Microrobotics and Micromechatronics”. He became an assistant professor in 1996 and qualified for a full faculty position by habilitation at the University of Karlsruhe in 1999. In 2000 he accepted a faculty position at the University of Kassel, Germany. A year later, he was invited to establish a new Division for Microrobotics and Control Engineering (AMiR) at the University of Oldenburg, Germany. Since 2001 he is a full professor in the Department of Computing Science and Head of AMiR. His research interests include micro- and nanorobotics, automated robot-based nanohandling in SEM, AFM-based nanohandling, sensor feedback at nanoscale, and neuro-fuzzy robot control. He is author of three books on microsystem technology, microrobotics and microassembly, robot-based nanohandling, and automation at nanoscale, published by Springer in 1997, Teubner in 2000, and Springer in 2008. Since 1990 he published over 100 book chapters and journal papers and over 200 conference papers. Prof. Fatikow is Founding Chair of the International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) and Europe- Chair of IEEE-RAS Technical Committee on Micro/Nano Robotics and Automation.

Seiji Samukawa
Distinguished Professor
Innovative Energy Research Center, Institute of Fluid Science, Tohoku University
World Premier International Center Initiative, Advanced Institute for Materials Research, Tohoku University, Sendai, Japan

Dr. Seiji Samukawa received a BSc in 1981 from the Faculty of Technology of Keio University and joined NEC Corporation the same year. At NEC Microelectronics Research Laboratories, he was the lead researcher of a group performing fundamental research on advanced plasma etching processes for technology under 0.1 μm. While there, he received the Ishiguro Award—given by NEC’s R&D Group and Semiconductor Business Group— for his work in applying a damage-free plasma etching process to a mass-production line. After spending several years in the business world, however, he returned to Keio University, obtaining a PhD in engineering in 1992. Since 2000, he has served as professor at the Institute of Fluid Science at Tohoku University and developed ultra-low-damage microfabrication techniques that tap into the essential nature of nanomaterials and developed innovative nanodevices. He is also carrying out pioneering, creative research on bio-template technologies, which are based on a completely new concept of treating the super-molecules of living organisms. His motto when conducting research is to “always aim toward eventual practical realization.”

In recognition of his excellent achievements outlined above, he has been elected as a Distinguished Professor of Tohoku University and has been a Fellow of the Japan Society of Applied Physics since 2008 and a Fellow of the American Vacuum Society since 2009. His significant scientific achievements earned him the Outstanding Paper Award at the International Conference on Micro and Nanotechnology (1997), Best Review Paper Award (2001), Japanese Journal of Applied Physics (JJAP) Editorial Contribution Award (2003), Plasma Electronics Award (2004), Fellow Award (2008), JJAP Paper Award (2008) from the Japan Society of Applied Physics, Distinguished Graduate Award (2005) from Keio University, Ichimura Award (2008) from the New Technology Development Foundation, Commendation for Science and Technology from the Minister of Education, Culture, Sports, Science and Technology (2009), Fellow Award of American Vacuum Society (2009), Plasma Electronics Award from the Japan Society of Applied Physics (2010), Best Paper Award from the Japan Society of Applied Physics (2010), and Plasma Prize from the Plasma Science and Technology Division of American Vacuum Society (2010).

Haixia (Alice) Zhang
Professor
Institute of Microelectronics
Peking University, China

Haixia(Alice) Zhang, Professor, Institute of Microelectronics, Peking Universituy. She was served on the general chair of IEEE NEMS 2013 Conference, the organizing chair of Transducers’11. As the founder of the International Contest of Applications in Network of things (iCAN), she organized this world-wide event since 2007. She was elected the director of Integrated Micro/Nano System Engineering Center in 2006, the deputy secretary-general of Chinese Society of Micro-Nano Technology in 2005, the Co-chair of Chinese International NEMS Network (CINN) and serves as the chair of IEEE NTC Beijing Chapter. At 2006, Dr. Zhang won National Invention Award of Science & Technology. Her research fields include MEMS Design and Fabrication Technology, SiC MEMS and Micro Energy Technology.

Alice’s Wonderlab: http://www.ime.pku.edu.cn/alice

I wonder if the organizers will be including an Open Forum as they did at the 13th IEEE nanotechnology conference in China. It sounds a little more dynamic and fun than any of the sessions currently listed for the Toronto conference but these things are sometimes best organized in a relatively spontaneous fashion rather than as one of the more formal conference events (from the 13th conference Open Forum),

This Open Forum will be run like a Rump Session to have a lively discussion of various topics of interest to the IEEE Nanotechnology Community. The key to the success of this Forum is participation from the audience with their own opinions and comments on any Nanotechnology subject or issue they can think of. We expect the session to be lively, interesting, controversial, opinionated and more. Here are some topics or issues to think about:

  1. When are we ever going to have a large scale impact of nanotechnology ? Shouldn’t we be afraid that the stakeholders (Tax payers, Politicians) are going to run out of patience ?
  2. Is there a killer app or apps on the horizon ?
  3. Is there a future for carbon nanotubes in electronics ? It has been 15 years + now….
  4. Is there a future for graphene in electronics ?
  5. Is there a future for graphene in anything ? Or will it just run its course on every application people did previously for carbon nanotubes ?
  6. As engineers, are we doing anything different from the physicists/chemists ? Looks like we are also chasing the same old : trying to publish in Nature, Science, and other similar journals with huge impact factor ? Are we prepared adequately to play in someone else’s game ? Should we even be doing it ?
  7. As engineers, aren’t we supposed to come up with working widgets closer to manufacturing ?
  8. As engineers, are we going to take responsibility for the commercial future of nanotechnology as has been done in all previous success stories ?

This list is by no means exhaustive. Please come up with your own questions/issues and speak up at the session.

Good luck with your abstract.

Getting the logos they deserve: 50 physicists and mathematicians

There are some 50 logos created by Dr. Prateek Lala of the University of Toronto (Canada) on behalf of various physicists and mathematicians. Before showing any of these clever logos, here’s a bit more about Dr. Lala’s logos in John Brownlee’s Feb. 5, 2014 article for Fast Company (Note: Links have been removed),

The scientific typographics were created by Dr. Prateek Lala, a physician and amateur calligrapher from Toronto. Inspired by the type biographies of Indian graphic designer Kapil Bhagat, Lala designed his logos to make the lives and discoveries of various scientists more engaging and immediately relatable to students.

Kelly Oakes in a Feb. 3, 2014 post for BuzzFeed features 20 of the logos and I’ve downloaded two of them for here,

James Clerk Maxwell (1831-1879) formulated the equations that describe electricity, magnetism, and optics as manifestations of the same phenomenon – the electromagnetic field. He’s also the namesake of Maxwell’s demon, a thought experiment in which a hypothetical demon violates the Second Law of Thermodynamics. Credit: Dr. Prateek Lala / Perimeter Institute

James Clerk Maxwell (1831-1879) formulated the equations that describe electricity, magnetism, and optics as manifestations of the same phenomenon – the electromagnetic field. He’s also the namesake of Maxwell’s demon, a thought experiment in which a hypothetical demon violates the Second Law of Thermodynamics. Credit: Dr. Prateek Lala / Perimeter Institute

I particularly enjoy how Dr. Lala has introduced the ‘demon’ into the logo. And then, there’s this one,

Rosalind Franklin (1920-1958) was a biophysicist who used X-ray diffraction data to determine the structures of complex minerals and living tissues, including – famously – DNA. Credit: Dr. Prateek Lala / Perimeter Institute

Rosalind Franklin (1920-1958) was a biophysicist who used X-ray diffraction data to determine the structures of complex minerals and living tissues, including – famously – DNA. Credit: Dr. Prateek Lala / Perimeter Institute

There is a bit of a controversy regarding Franklin as many believe she should have received more acknowledgement for her role in Crick and Watson’s ‘discovery of DNA’. I last mentioned Franklin in an August 19, 2013 posting (scroll down half-way) featuring a rap, Rosalind Franklin vs Watson & Crick, which was written and performed by children as part  of Tom McFadden’s Battle Rap Histories of Epic Science (Brahe’s Battles) school science project. The rap does a very good job of summarizing the discovery and the controversy and the performance is of a professional grade.

Getting back to Dr. Lala’s logos, there’s a slide show of 50 logos on this Perimeter Institute for Theoretical Physics webpage. I selected this one from the slideshow for inclusion here,

Aryabhatta (476-550) was a pioneer of mathematics and astronomy in India. He is believed to have devised the concept of zero and worked on the approximation of pi. Credit Dr. Prateek Lala / Perimeter Institute

Aryabhatta (476-550) was a pioneer of mathematics and astronomy in India. He is believed to have devised the concept of zero and worked on the approximation of pi. Credit Dr. Prateek Lala / Perimeter Institute

Dr. Lala has created some infographics of his logos which are can be seen here at visual.ly or you can see one featuring 60 of his logos in a July 26, 2013 posting by Carolina Brandão Zanelli on her Art for Scientists blog. As well, the Perimeter Institute is offering a poster of Dr. Lala’s logos in the Fall 2013 issue of their Inside the Perimeter magazine available here.

I was a little curious about Dr. Lala and was able to find this on academia.edu,

Prateek Lala
University of Toronto, Medicine, Post-Doc

Research Interests:
Medicine, Pharmacology, Drug metabolism, Pharmacoinformatics and Education

Enjoy!

Catching up with Vive Crop Protection—advanced insecticide formulations, marketing in the US, and more

Starting with the “and more” part of the headline, it’s great to have found an article describing Vive Crop’s technology in language I can understand, Sadly, I failed to see it until Dec. 26, 2013,. Titled “Vive La Crop! nanotech venture vive crop protection of toronto has developed a more eco-friendly way to keep pests, fungi and weeds out of farmers’ fields. and that’s just the beginning,” is written by Tyler Hamilton for the April 2012 issue of ACCN the Canadian Chemical News (L’Actualite chemique canadienne) and it answers many of the questions I’ve had about Vive Crop’s Allosperse technology,

Pesticides don’t have the best reputation when it comes to their potential impacts on human health, but even more concerning — for regulators especially — are the volatile organic solvents frequently relied on to deliver crop-protection chemicals to farmers’ fields.

The solvents themselves are often known carcinogens, not the kind of thing we want on farmland that grows soy, corn and wheat. And they’re not as effective as they could be. Farmers tend to overspray to make sure enough of the active ingredients in insecticides, fungicides and herbicides are dispersed across a field to be effective.

It’s why Vive Crop Protection, a Toronto-based nanotechnology company specializing in crop protection, has been attracting so much attention from some of the world’s biggest chemical companies. Vive Crop (formerly Vive Nano, and before that Northern Nanotechnologies) has done away with the need for volatile organic solvents.

At the heart of Vive Crop’s technology are polymer particles the company has trademarked under the name Allosperse, which measure less than 10 nanometres in size. It describes these particles as ultra- small cages — or “really tiny little FEDEX boxes” in the words of CEO [Chief Executive Officer] Keith Thomas — which hold active pesticide ingredients and are engineered to disperse evenly in water.

Even and thorough dispersal is critical. Avinash Bhaskar, an analyst at research firm Frost & Sullivan who has followed Vive Crop closely, says one of the biggest problems with pesticides is they tend to agglomerate, resulting in uneven, clustery distribution on fields. “You want uniform distribution on the soil,” Bhaskar says. “Vive Crop’s technology prevents agglomeration and this is a key differentiator in the market.”

How Vive Crop chemically engineers these Allosperse particles is the company’s core innovation. It starts by dissolving negatively charged polymers in water. The like charges repel so the polymers spread out in the solution. Then positively charged ions are added to the mix. These ions neutralize the charge around the polymers, causing the polymers to collapse around the ions and create a kind of nanocage — the Allosperse.

The company then filters out the positive and negative ions and loads up the empty cages with molecules of active pesticide ingredients. The cage itself is amphiphilic, meaning it has both water-attracting and water-repelling areas. In this case, the outer shell attracts water and the inner core doesn’t. “While in water the active ingredient, which also hates water, stays inside (the cages),” explains Vive Crop chief technology officer Darren Anderson. Because the outside of the cages like water, the particles freely and evenly disperse. “Once sprayed on the crop, the water droplets evaporate and the active ingredient gradually disperses from the particles that are left behind.” How does Vive Crop assure that the Allosperse cages are amphiphilic? “I can’t tell you the answer,” says Anderson. “It’s part of our secret sauce.”

What the company can say is that the polymer cages themselves are benign. Vive Crop makes them out of chitosans, found naturally in the shells of shrimp and other crustaceans, and polyacrylic acid, the super-absorbent material found in baby diapers.

Interestingly, the core technology appears to be based on a former student project,

The core technology was developed in the early 2000s by Jordan Dinglasan, a chemistry student from the Philippines who took up graduate studies at the University of Toronto. Dinglasan and fellow researchers at U of T’s Department of Chemistry, including Anderson and chemistry professor Cynthia Goh, decided in 2006 that they wanted to reach beyond the walls of academia and create a company to commercialize the technology.

At the time of the Hamilton article, the company had 30 employees. Since the April 2012 article, the company has been busy as I’ve written an Aug. 7, 2013 posting about the US Environmental Protection Agency’s (EPA) approval of Vive Crop’s VCP-01, Bifenthrin 10 DF insecticide for foliar use on crops, turf, and ornamentals. and a September 25, 2013 posting about funding for two Vive Crop projects from Sustainable Development Technology Canada.

Now in the last weeks of December 2013 Vive Crop has issued two more news releases. First, there’s the Dec. 17, 2013 Vive Crop news release announcing a marketing initiative with a US company, AMVAC Chemical Corporation, which is wholly owned by American Vanguard Corporation and is based in California,,

Vive Crop Protection, Inc. and AMVAC Chemical Corporation are pleased to announce a collaboration to develop and market an advanced insecticide formulation for multiple uses in the United States.  The products leverage Vive’s patented AllosperseT technology delivering enhanced agronomic performance and new application opportunities to AMVAC’s customers.

“We are quite excited about working with AMVAC to add to their portfolio of innovative products,” said Vive CEO Keith Thomas. “Vive is rapidly developing a strong pipeline of effective crop protection products for our partners and growers.”

“As part of AMVAC’s continued commitment to innovate and deliver products with the best technology available, we are very pleased to be working with and investigating this new technology from Vive” said AMVAC Eric Wintemute, CEO of AMVAC .

Vive Crop followed up with a Dec. 19, 2013 news release announcing another marketing initiative, this time with United Suppliers (based in Iowa, US),

United Suppliers, Inc. and Vive Crop Protection, Inc. are pleased to announce a collaboration to demonstrate and market advanced formulation technologies in the United States. Targeted to launch in the 2015 growing season, these technologies will leverage Vive’s patented AllosperseT delivery system to provide enhanced agronomic performance and new application opportunities to United Suppliers’ leading-edge owners and customers.

“We are pursuing the capabilities of getting more activity out of the products we are using in current and expanded applications,” said United Suppliers VP of Crop Protection and Seed Brett Bruggeman. “United Suppliers’ retail owners are in the best position to deliver new technology to growers.”

“We are quite excited about working with United Suppliers to provide innovative products to their customers,” said Vive CEO Keith Thomas. “Vive is rapidly developing a strong pipeline of effective crop protection products for our partners and growers.”

About United Suppliers
United Suppliers is a unique, customer-owned wholesale supplier of crop protection inputs, seed and crop nutrients, with headquarters in Eldora and Ames, Iowa. Founded in 1963, United Suppliers is today comprised of more than 650 agricultural retailers (Owners) who operate nearly 2,800 retail locations throughout the United States and parts of Canada. The mission of United Suppliers is to be the supplier of choice while increasing its Owners’ capabilities and competitiveness. To meet this goal, United Suppliers strives to provide Owners with transparent market intelligence, innovative products, reliable market access and customized business solutions. For more information, please visit www.unitedsuppliers.com.

About Vive Crop Protection
Vive Crop Protection makes products that better protect crops from pests. The company has won a number of awards and was highly commended for Best Formulation Innovation at the 2012 Agrow Awards. Vive’s patented Allosperse delivery system has the ability to coat plants more evenly, which provides better crop protection and can lead to increased yields. Vive is working with partners across the globe that share our vision of bringing safer, more effective crop protection products to growers everywhere. For more information, see www.vivecrop.com.

I wish Vive Crop all the best in 2014 as it capitalizes on the momentum it seems to be building.

Put some iron in your perfume and in your drugs

A Nov. 28, 2013 University of Toronto (Ontario, Canada) news release (also on EurekAlert) by Sean Bettan describes a new ‘green’ process, featuring iron, for use in the drug and perfume industries,

University of Toronto researchers have developed a series of techniques to create a variety of very active iron-based catalysts necessary to produce certain compounds used in the drug and perfume industry. The new synthetic methods promise to be safer, more economical and more environmentally friendly than traditional industrial processes.

There’s not much detail in the news release about this interesting work,

“There is a research effort world-wide to make chemical processes more sustainable and green, by replacing the rare, expensive and potentially toxic elements used in hydrogenation, catalytic converters in cars, fuel cells for the efficient conversion of chemical energy into electricity, and silicone coatings, with abundant ions such as iron,” says U of T chemistry professor Robert Morris, principal investigator of a study reported in the November 29 issue of Science. “Iron is about 10,000 times cheaper to obtain than ruthenium. Less than 200 metric tons of platinum-type metals are mined in the world every year and not all of it can be recycled after use. They are not essential to life and can be toxic.”

“We found a way to make the ferrous form of iron behave in a catalytic process much more efficiently than a precious metal.  We did this by finding molecules containing nitrogen, phosphorus, carbon and hydrogen, that bond to, and enhance, the reactivity of iron,” says Morris.

The scientists inexpensively produced varieties of alcohol with different biological properties — which can be used in flavour and drug synthesis — and different smells, a property important to the perfume industry. In one example from the study, the precursor alcohol to a cancer treatment can be made using the hydrogenation process catalyzed by iron. Using iron, the resulting complex is often a better catalyst than the industrial one based on ruthenium.

Here’s a link to and a citation for the paper,

Amine(imine)diphosphine Iron Catalysts for Asymmetric Transfer Hydrogenation of Ketones and Imines by Weiwei Zuo, Alan J. Lough, Young Feng Li, & Robert H. Morris. Science 29 November 2013: Vol. 342 no. 6162 pp. 1080-1083 DOI: 10.1126/science.1244466

This paper is behind a paywall.

Occasionally, I write about green chemistry as I did in a Jan. 10, 2011 posting about a McGill University (Montreal, Quebec, Canada) green chemistry breakthrough and about cinnamon-based green chemistry.