Tag Archives: University of Toronto

Art/science events in Vancouver, Canada (Nov. 22, 2017) and Toronto (Dec. 1, 2017)

The first event I’m highlighting is the Curiosity Collider Cafe’s Nov. 22, 2017 event in Vancouver (Canada), from a November 14, 2017 announcement received via email,

Art, science, & neuroscience. Visualizing/sonifying particle collisions. Colors from nature. Sci-art career adventure. Our #ColliderCafe is a space for artists, scientists, makers, and anyone interested in art+science.

Meet, discover, connect, create. Are you curious?

Join us at “Collider Cafe: Art. Science. Interwoven.” to explore how art and science intersect in the exploration of curiosity.

When: 8:00pm on Wednesday, November 22, 2017.

Doors open at 7:30pm.

Where: Café Deux Soleils.. 2096 Commercial Drive, Vancouver, BC (Google Map).

Cost: $5-10 (sliding scale) cover at the door.

Proceeds will be used to cover the cost of running this event, and to fund future Curiosity Collider events.

With speakers:

Caitlin Ffrench (painter, writer, and textile artist) – Colours from Nature

Claudia Krebs (neuroanatomy professor) – Does the brain really differentiate between science and art?

Derek Tan (photographer, illustrator, and multimedia designer) – Design for Science: How I Got My Job E

Eli York (neuroscience researcher) – Imaging the brain’s immune system

Leó Stefánsson (multimedia artist) – Experiencing Data: Visualizing and Sonifying Particle Collisions

Follow updates on twitter via @ccollider or #ColliderCafe.

Head to the Facebook event page – let us know you are coming and share this event with others!

Then in Toronto, there’s the ArtSci Salon with an event about what they claim is one of the hottest topics today: STEAM. For the uninitiated, the acronym is for Science, Technology, Engineering, Art, and Mathematics which some hope will supersede STEM (Science, Technology, Engineering, and Mathematics). Regardless, here’s more from a November 13, 2017 Art/Sci Salon announcement received via email,

The ArtSci Salon presents:

What does A stand for in STEAM?

Date: December 1, 2017

Time: 5:30-7:30 pm

Location: The Fields Institute for Research in Mathematical Sciences
222 College Street, Toronto, ON

Please, RSVP here
http://bit.ly/2zH8nrN

Grouping four broadly defined disciplinary clusters –– Science, Technology, Engineering and Mathematics –– STEM has come to stand for governments’ and institutions’ attempt to champion ambitious programs geared towards excellence and innovation while providing hopeful students with “useful” education leading to “real jobs”. But in recent years education advocates have reiterated the crucial role of the arts in achieving such excellence. A has been added to STEM…

But what does A stand for in STEAM? What is its role? and how is it interpreted by those involved in STEM education, by arts practitioners and educators and by science communicators? It turns out that A has different roles, meanings, applications, interpretations…

Please, join us for an intriguing discussion on STEAM education and STEAM approaches. Our guests represent different experiences, backgrounds and areas of research. Your participation will make their contributions even richer

With:

Linda Duvall (Visual and Media Artist)

Richard Lachman (Associate Professor, RTA School of Media, Ryerson University)

Jan McMillin (Teacher/Librarian, Queen Victoria P.S.)

Jenn Stroud Rossmann (Professor, Mechanical Engineering – Lafayette College)

Lauren Williams (Special Collections Librarian – Thomas Fisher Rare Book Library

Bios

Linda Duvall is a Saskatoon-based visual artist whose work exists at the intersection of collaboration, performance and conversation. Her hybrid practice addresses recurring themes of connection to place, grief and loss, and the many meanings of exclusion and absence.

Richard Lachman directs the Zone Learning network of incubators for Ryerson University, Research Development for the Faculty of Communication and Design, and the Experiential Media Institute. His research interests include transmedia storytelling, digital documentaries, augmented/locative/VR experiences, mixed realities, and collaborative design thinking.

Jan McMillin is a Teacher Librarian at the TDSB. Over the last 3 years she has led a team to organize a S.T.E.A.M. Conference for approximately 180 Intermediate students from Queen Victoria P.S. and Parkdale Public. The purpose of the conference is to inspire these young people and to show them what they can also aspire to. Queen Victoria has a history of promoting the Arts in Education and so the conference was also partly to expand the notion of STEM to incorporate the Arts and creativity

Jenn Stroud Rossmann is a professor of mechanical engineering at Lafayette College. Her research interests include cardiovascular and respiratory fluid mechanics and interdiscplinary pedagogies. She co-authored an innovative textbook, Introduction to Engineering Mechanics: A Continuum Approach (CRC Press, Second Edition, 2015), and writes the essay series “An Engineer Reads a Novel” for Public Books. She is also a fiction writer whose work (in such journals as Cheap Pop, Literary Orphans, Tahoma Literary Review) has earned several Pushcart Prize nominations and other honors; her first novel is forthcoming in Fall 2018 from 7.13 Books.

Lauren Williams is Special Collections Librarian in the Department of Rare Books and Special Collections, Thomas Fisher Rare Book Library. Lauren is a graduate of the University of Toronto iSchool, where she specialized in Library and Information Science and participated in the Book History and Print Culture Collaborative Program.

Enjoy!

Narrating neuroscience in Toronto (Canada) on Oct. 20, 2017 and knitting a neuron

What is it with the Canadian neuroscience community? First, there’s The Beautiful Brain an exhibition of the extraordinary drawings of Santiago Ramón y Cajal (1852–1934) at the Belkin Gallery on the University of British Columbia (UBC) campus in Vancouver and a series of events marking the exhibition (for more see my Sept. 11, 2017 posting ; scroll down about 30% for information about the drawings and the events still to come).

I guess there must be some money floating around for raising public awareness because now there’s a neuroscience and ‘storytelling’ event (Narrating Neuroscience) in Toronto, Canada. From a Sept. 25, 2017 ArtSci Salon announcement (received via email),

With NARRATING NEUROSCIENCE we plan to initiate a discussion on the  role and the use of storytelling and art (both in verbal and visual  forms) to communicate abstract and complex concepts in neuroscience to  very different audiences, ranging from fellow scientists, clinicians and patients, to social scientists and the general public. We invited four guests to share their research through case studies and experiences stemming directly from their research or from other practices they have adopted and incorporated into their research, where storytelling and the arts have played a crucial role not only in communicating cutting edge research in neuroscience, but also in developing and advancing it.

OUR GUESTS

MATTEO FARINELLA, PhD, Presidential Scholar in Society and Neuroscience – Columbia University

SHELLEY WALL , AOCAD, MSc, PhD – Assistant professor, Biomedical Communications Graduate Program and Department of Biology, UTM

ALFONSO FASANO, MD, PhD, Associate Professor – University of Toronto Clinician Investigator – Krembil Research Institute Movement Disorders Centre – Toronto Western Hospital

TAHANI BAAKDHAH, MD, MSc, PhD candidate – University of Toronto

DATE: October 20, 2017
TIME: 6:00-8:00 pm
LOCATION: The Fields Institute for Research in Mathematical Sciences
222 College Street, Toronto, ON

Events Facilitators: Roberta Buiani and Stephen Morris (ArtSci Salon) and Nina Czegledy (Leonardo Network)

TAHANI BAAKDHAH is a PhD student at the University of Toronto studying how the stem cells built our retina during development, the mechanism by which the light sensing cells inside the eye enable us to see this beautiful world and how we can regenerate these cells in case of disease or injury.

MATTEO FARINELLA combines a background in neuroscience with a lifelong passion for drawing, making comics and illustrations about the brain. He is the author of _Neurocomic_ (Nobrow 2013) published with the support of the Wellcome Trust, _Cervellopoli_ (Editoriale Scienza 2017) and he has collaborated with universities and educational institutions around
the world to make science more clear and accessible. In 2016 Matteo joined Columbia University as a Presidential Scholar in Society and Neuroscience, where he investigates the role of visual narratives in science communication. Working with science journalists, educators and cognitive neuroscientists he aims to understand how these tools may
affect the public perception of science and increase scientific literacy (cartoonscience.org [2]).

ALFONSO FASANO graduated from the Catholic University of Rome, Italy, in 2002 and became a neurologist in 2007. After a 2-year fellowship at the University of Kiel, Germany, he completed a PhD in neuroscience at the Catholic University of Rome. In 2013 he joined the Movement Disorder Centre at Toronto Western Hospital, where he is the co-director of the
surgical program for movement disorders. He is also an associate professor of medicine in the Division of Neurology at the University of Toronto and clinician investigator at the Krembil Research Institute. Dr. Fasano’s main areas of interest are the treatment of movement  disorders with advanced technology (infusion pumps and neuromodulation), pathophysiology and treatment of tremor and gait disorders. He is author of more than 170 papers and book chapters. He is principal investigator of several clinical trials.

SHELLEY WALL is an assistant professor in the University of Toronto’s Biomedical Communications graduate program, a certified medical illustrator, and inaugural Illustrator-in-Residence in the Faculty of Medicine, University of Toronto. One of her primary areas of research, teaching, and creation is graphic medicine—the intersection of comics with illness, medicine, and caregiving—and one of her ongoing projects is a series of comics about caregiving and young onset Parkinson’s disease.

You can register for this free Toronto event here.

One brief observation, there aren’t any writers (other than academics) or storytellers included in this ‘storytelling’ event. The ‘storytelling’ being featured is visual. To be blunt I’m not of the ‘one picture is worth a thousand words’ school of thinking (see my Feb. 22, 2011 posting). Yes, sometimes pictures are all you need but that tiresome aphorism which suggests  communication can be reduced to one means of communication really needs to be retired. As for academic writing, it’s not noted for its storytelling qualities or experimentation. Academics are not judged on their writing or storytelling skills although there are some who are very good.

Getting back to the Toronto event, they seem to have the visual part of their focus  ” … discussion on the  role and the use of storytelling and art (both in verbal and visual  forms) … ” covered. Having recently attended a somewhat similar event in Vancouver, which was announced n my Sept. 11, 2017 posting, there were some exciting images and ideas presented.

The ArtSci Salon folks also announced this (from the Sept. 25, 2017 ArtSci Salon announcement; received via email),

ATTENTION ARTSCI SALONISTAS AND FANS OF ART AND SCIENCE!!
CALL FOR KNITTING AND CROCHET LOVERS!

In addition to being a PhD student at the University of Toronto, Tahani Baakdhah is a prolific knitter and crocheter and has been the motor behind two successful Knit-a-Neuron Toronto initiatives. We invite all Knitters and Crocheters among our ArtSci Salonistas to pick a pattern
(link below) and knit a neuron (or 2! Or as many as you want!!)

http://bit.ly/2y05hRR

BRING THEM TO OUR OCTOBER 20 ARTSCI SALON!
Come to the ArtSci Salon and knit there!
You can’t come?
Share a picture with @ArtSci_Salon @SciCommTO #KnitANeuronTO [3] on
social media
Or…Drop us a line at artscisalon@gmail.com !

I think it’s been a few years since my last science knitting post. No, it was Oct. 18, 2016. Moving on, I found more neuron knitting while researching this piece. Here’s the Neural Knitworks group, which is part of Australia’s National Science Week (11-19 August 2018) initiative (from the Neural Knitworks webpage),

Neural Knitworks is a collaborative project about mind and brain health.

Whether you’re a whiz with yarn, or just discovering the joy of craft, now you can crochet wrap, knit or knot—and find out about neuroscience.

During 2014 an enormous number of handmade neurons were donated (1665 in total!) and used to build a giant walk-in brain, as seen here at Hazelhurst Gallery [scroll to end of this post]. Since then Neural Knitworks have been held in dozens of communities across Australia, with installations created in Queensland, the ACT, Singapore, as part of the Cambridge Science Festival in the UK and in Philadelphia, USA.

In 2017, the Neural Knitworks team again invites you to host your own home-grown Neural Knitwork for National Science Week*. Together we’ll create a giant ‘virtual’ neural network by linking your displays visually online.

* If you wish to host a Neural Knitwork event outside of National Science Week or internationally we ask that you contact us to seek permission to use the material, particularly if you intend to create derivative works or would like to exhibit the giant brain. Please outline your plans in an email.

Your creation can be big or small, part of a formal display, or simply consist of neighbourhood neuron ‘yarn-bombings’. Knitworks can be created at home, at work or at school. No knitting experience is required and all ages can participate.

See below for how to register your event and download our scientifically informed patterns.

What is a neuron?

Neurons are electrically excitable cells of the brain, spinal cord and peripheral nerves. The billions of neurons in your body connect to each other in neural networks. They receive signals from every sense, control movement, create memories, and form the neural basis of every thought.

Check out the neuron microscopy gallery for some real-world inspiration.

What happens at a Neural Knitwork?

Neural Knitworks are based on the principle that yarn craft, with its mental challenges, social connection and mindfulness, helps keep our brains and minds sharp, engaged and healthy.

Have fun as you

  • design your own woolly neurons, or get inspired by our scientifically-informed knitting, crochet or knot patterns;
  • natter with neuroscientists and teach them a few of your crafty tricks;
  • contribute to a travelling textile brain exhibition;
  • increase your attention span and test your memory.

Calm your mind and craft your own brain health as you

  • forge friendships;
  • solve creative and mental challenges;
  • practice mindfulness and relaxation;
  • teach and learn;
  • develop eye-hand coordination and fine motor dexterity.

Interested in hosting a Neural Knitwork?

  1. Log your event on the National Science Week calendar to take advantage of multi-channel promotion.
  2. Share the link^ for this Neural Knitwork page on your own website or online newsletter and add information your own event details.
  3. Use this flyer template (2.5 MB .docx) to promote your event in local shop windows and on noticeboards.
  4. Read our event organisers toolbox for tips on hosting a successful event.
  5. You’ll need plenty of yarn, needles, copies of our scientifically-based neuron crafting pattern books (3.4 MB PDF) and a comfy spot in which to create.
  6. Gather together a group of friends who knit, crochet, design, spin, weave and anyone keen to give it a go. Those who know how to knit can teach others how to do it, and there’s even an easy no knit pattern that you can knot.
  7. Download a neuroscience podcast to listen to, and you’ve got a Neural Knitwork!
  8. Join the Neural Knitworks community on Facebook  to share and find information about events including public talks featuring neuroscientists.
  9. Tweet #neuralknitworks to show us your creations.
  10. Find display ideas in the pattern book and on our Facebook page.

Finally,, the knitted neurons from Australia’s 2014 National Science Week brain exhibit,

[downloaded from https://www.scienceweek.net.au/neural-knitworks/]

ETA Oct. 24, 2017: If you’re interested on how the talk was received, there’s an Oct. 24, 2017 posting by Magosia Pakulska for the Research2Reality blog.

Canadian science policy news and doings (also: some US science envoy news)

I have a couple of notices from the Canadian Science Policy Centre (CSPC), a twitter feed, and an article in online magazine to thank for this bumper crop of news.

 Canadian Science Policy Centre: the conference

The 2017 Canadian Science Policy Conference to be held Nov. 1 – 3, 2017 in Ottawa, Ontario for the third year in a row has a super saver rate available until Sept. 3, 2017 according to an August 14, 2017 announcement (received via email).

Time is running out, you have until September 3rd until prices go up from the SuperSaver rate.

Savings off the regular price with the SuperSaver rate:
Up to 26% for General admission
Up to 29% for Academic/Non-Profit Organizations
Up to 40% for Students and Post-Docs

Before giving you the link to the registration page and assuming that you might want to check out what is on offer at the conference, here’s a link to the programme. They don’t seem to have any events celebrating Canada’s 150th anniversary although they do have a session titled, ‘The Next 150 years of Science in Canada: Embedding Equity, Delivering Diversity/Les 150 prochaine années de sciences au Canada:  Intégrer l’équité, promouvoir la diversité‘,

Enhancing equity, diversity, and inclusivity (EDI) in science, technology, engineering and math (STEM) has been described as being a human rights issue and an economic development issue by various individuals and organizations (e.g. OECD). Recent federal policy initiatives in Canada have focused on increasing participation of women (a designated under-represented group) in science through increased reporting, program changes, and institutional accountability. However, the Employment Equity Act requires employers to act to ensure the full representation of the three other designated groups: Aboriginal peoples, persons with disabilities and members of visible minorities. Significant structural and systemic barriers to full participation and employment in STEM for members of these groups still exist in Canadian institutions. Since data support the positive role of diversity in promoting innovation and economic development, failure to capture the full intellectual capacity of a diverse population limits provincial and national potential and progress in many areas. A diverse international panel of experts from designated groups will speak to the issue of accessibility and inclusion in STEM. In addition, the discussion will focus on evidence-based recommendations for policy initiatives that will promote full EDI in science in Canada to ensure local and national prosperity and progress for Canada over the next 150 years.

There’s also this list of speakers . Curiously, I don’t see Kirsty Duncan, Canada’s Minister of Science on the list, nor do I see any other politicians in the banner for their conference website  This divergence from the CSPC’s usual approach to promoting the conference is interesting.

Moving onto the conference, the organizers have added two panels to the programme (from the announcement received via email),

Friday, November 3, 2017
10:30AM-12:00PM
Open Science and Innovation
Organizer: Tiberius Brastaviceanu
Organization: ACES-CAKE

10:30AM- 12:00PM
The Scientific and Economic Benefits of Open Science
Organizer: Arij Al Chawaf
Organization: Structural Genomics

I think this is the first time there’s been a ‘Tiberius’ on this blog and teamed with the organization’s name, well, I just had to include it.

Finally, here’s the link to the registration page and a page that details travel deals.

Canadian Science Policy Conference: a compendium of documents and articles on Canada’s Chief Science Advisor and Ontario’s Chief Scientist and the pre-2018 budget submissions

The deadline for applications for the Chief Science Advisor position was extended to Feb. 2017 and so far, there’s no word as to whom it might be. Perhaps Minister of Science Kirsty Duncan wants to make a splash with a surprise announcement at the CSPC’s 2017 conference? As for Ontario’s Chief Scientist, this move will make province the third (?) to have a chief scientist, after Québec and Alberta. There is apparently one in Alberta but there doesn’t seem to be a government webpage and his LinkedIn profile doesn’t include this title. In any event, Dr. Fred Wrona is mentioned as the Alberta’s Chief Scientist in a May 31, 2017 Alberta government announcement. *ETA Aug. 25, 2017: I missed the Yukon, which has a Senior Science Advisor. The position is currently held by Dr. Aynslie Ogden.*

Getting back to the compendium, here’s the CSPC’s A Comprehensive Collection of Publications Regarding Canada’s Federal Chief Science Advisor and Ontario’s Chief Scientist webpage. Here’s a little background provided on the page,

On June 2nd, 2017, the House of Commons Standing Committee on Finance commenced the pre-budget consultation process for the 2018 Canadian Budget. These consultations provide Canadians the opportunity to communicate their priorities with a focus on Canadian productivity in the workplace and community in addition to entrepreneurial competitiveness. Organizations from across the country submitted their priorities on August 4th, 2017 to be selected as witness for the pre-budget hearings before the Committee in September 2017. The process will result in a report to be presented to the House of Commons in December 2017 and considered by the Minister of Finance in the 2018 Federal Budget.

NEWS & ANNOUNCEMENT

House of Commons- PRE-BUDGET CONSULTATIONS IN ADVANCE OF THE 2018 BUDGET

https://www.ourcommons.ca/Committees/en/FINA/StudyActivity?studyActivityId=9571255

CANADIANS ARE INVITED TO SHARE THEIR PRIORITIES FOR THE 2018 FEDERAL BUDGET

https://www.ourcommons.ca/DocumentViewer/en/42-1/FINA/news-release/9002784

The deadline for pre-2018 budget submissions was Aug. 4, 2017 and they haven’t yet scheduled any meetings although they are to be held in September. (People can meet with the Standing Committee on Finance in various locations across Canada to discuss their submissions.) I’m not sure where the CSPC got their list of ‘science’ submissions but it’s definitely worth checking as there are some odd omissions such as TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics)), Genome Canada, the Pan-Canadian Artificial Intelligence Strategy, CIFAR (Canadian Institute for Advanced Research), the Perimeter Institute, Canadian Light Source, etc.

Twitter and the Naylor Report under a microscope

This news came from University of British Columbia President Santa Ono’s twitter feed,

 I will join Jon [sic] Borrows and Janet Rossant on Sept 19 in Ottawa at a Mindshare event to discuss the importance of the Naylor Report

The Mindshare event Ono is referring to is being organized by Universities Canada (formerly the Association of Universities and Colleges of Canada) and the Institute for Research on Public Policy. It is titled, ‘The Naylor report under the microscope’. Here’s more from the event webpage,

Join Universities Canada and Policy Options for a lively discussion moderated by editor-in-chief Jennifer Ditchburn on the report from the Fundamental Science Review Panel and why research matters to Canadians.

Moderator

Jennifer Ditchburn, editor, Policy Options.

Jennifer Ditchburn

Editor-in-chief, Policy Options

Jennifer Ditchburn is the editor-in-chief of Policy Options, the online policy forum of the Institute for Research on Public Policy.  An award-winning parliamentary correspondent, Jennifer began her journalism career at the Canadian Press in Montreal as a reporter-editor during the lead-up to the 1995 referendum.  From 2001 and 2006 she was a national reporter with CBC TV on Parliament Hill, and in 2006 she returned to the Canadian Press.  She is a three-time winner of a National Newspaper Award:  twice in the politics category, and once in the breaking news category. In 2015 she was awarded the prestigious Charles Lynch Award for outstanding coverage of national issues. Jennifer has been a frequent contributor to television and radio public affairs programs, including CBC’s Power and Politics, the “At Issue” panel, and The Current. She holds a bachelor of arts from Concordia University, and a master of journalism from Carleton University.

@jenditchburn

Tuesday, September 19, 2017

 12-2 pm

Fairmont Château Laurier,  Laurier  Room
 1 Rideau Street, Ottawa

 rsvp@univcan.ca

I can’t tell if they’re offering lunch or if there is a cost associated with this event so you may want to contact the organizers.

As for the Naylor report, I posted a three-part series on June 8, 2017, which features my comments and the other comments I was able to find on the report:

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 1 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 2 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 3 of 3

One piece not mentioned in my three-part series is Paul Wells’ provocatively titled June 29, 2017 article for MacLean’s magazine, Why Canadian scientists aren’t happy (Note: Links have been removed),

Much hubbub this morning over two interviews Kirsty Duncan, the science minister, has given the papers. The subject is Canada’s Fundamental Science Review, commonly called the Naylor Report after David Naylor, the former University of Toronto president who was its main author.

Other authors include BlackBerry founder Mike Lazaridis, who has bankrolled much of the Waterloo renaissance, and Canadian Nobel physicist Arthur McDonald. It’s as blue-chip as a blue-chip panel could be.

Duncan appointed the panel a year ago. It’s her panel, delivered by her experts. Why does it not seem to be… getting anywhere? Why does it seem to have no champion in government? Therein lies a tale.

Note, first, that Duncan’s interviews—her first substantive comment on the report’s recommendations!—come nearly three months after its April release, which in turn came four months after Duncan asked Naylor to deliver his report, last December. (By March I had started to make fun of the Trudeau government in print for dragging its heels on the report’s release. That column was not widely appreciated in the government, I’m told.)

Anyway, the report was released, at an event attended by no representative of the Canadian government. Here’s the gist of what I wrote at the time:

 

Naylor’s “single most important recommendation” is a “rapid increase” in federal spending on “independent investigator-led research” instead of the “priority-driven targeted research” that two successive federal governments, Trudeau’s and Stephen Harper’s, have preferred in the last 8 or 10 federal budgets.

In English: Trudeau has imitated Harper in favouring high-profile, highly targeted research projects, on areas of study selected by political staffers in Ottawa, that are designed to attract star researchers from outside Canada so they can bolster the image of Canada as a research destination.

That’d be great if it wasn’t achieved by pruning budgets for the less spectacular research that most scientists do.

Naylor has numbers. “Between 2007-08 and 2015-16, the inflation-adjusted budgetary envelope for investigator-led research fell by 3 per cent while that for priority-driven research rose by 35 per cent,” he and his colleagues write. “As the number of researchers grew during this period, the real resources available per active researcher to do investigator-led research declined by about 35 per cent.”

And that’s not even taking into account the way two new programs—the $10-million-per-recipient Canada Excellence Research Chairs and the $1.5 billion Canada First Research Excellence Fund—are “further concentrating resources in the hands of smaller numbers of individuals and institutions.”

That’s the context for Duncan’s remarks. In the Globe, she says she agrees with Naylor on “the need for a research system that promotes equity and diversity, provides a better entry for early career researchers and is nimble in response to new scientific opportunities.” But she also “disagreed” with the call for a national advisory council that would give expert advice on the government’s entire science, research and innovation policy.

This is an asinine statement. When taking three months to read a report, it’s a good idea to read it. There is not a single line in Naylor’s overlong report that calls for the new body to make funding decisions. Its proposed name is NACRI, for National Advisory Council on Research and Innovation. A for Advisory. Its responsibilities, listed on Page 19 if you’re reading along at home, are restricted to “advice… evaluation… public reporting… advice… advice.”

Duncan also didn’t promise to meet Naylor’s requested funding levels: $386 million for research in the first year, growing to $1.3 billion in new money in the fourth year. That’s a big concern for researchers, who have been warning for a decade that two successive government’s—Harper’s and Trudeau’s—have been more interested in building new labs than in ensuring there’s money to do research in them.

The minister has talking points. She gave the same answer to both reporters about whether Naylor’s recommendations will be implemented in time for the next federal budget. “It takes time to turn the Queen Mary around,” she said. Twice. I’ll say it does: She’s reacting three days before Canada Day to a report that was written before Christmas. Which makes me worry when she says elected officials should be in charge of being nimble.

Here’s what’s going on.

The Naylor report represents Canadian research scientists’ side of a power struggle. The struggle has been continuing since Jean Chrétien left office. After early cuts, he presided for years over very large increases to the budgets of the main science granting councils. But since 2003, governments have preferred to put new funding dollars to targeted projects in applied sciences. …

Naylor wants that trend reversed, quickly. He is supported in that call by a frankly astonishingly broad coalition of university administrators and working researchers, who until his report were more often at odds. So you have the group representing Canada’s 15 largest research universities and the group representing all universities and a new group representing early-career researchers and, as far as I can tell, every Canadian scientist on Twitter. All backing Naylor. All fundamentally concerned that new money for research is of no particular interest if it does not back the best science as chosen by scientists, through peer review.

The competing model, the one preferred by governments of all stripes, might best be called superclusters. Very large investments into very large projects with loosely defined scientific objectives, whose real goal is to retain decorated veteran scientists and to improve the Canadian high-tech industry. Vast and sprawling labs and tech incubators, cabinet ministers nodding gravely as world leaders in sexy trendy fields sketch the golden path to Jobs of Tomorrow.

You see the imbalance. On one side, ribbons to cut. On the other, nerds experimenting on tapeworms. Kirsty Duncan, a shaky political performer, transparently a junior minister to the supercluster guy, with no deputy minister or department reporting to her, is in a structurally weak position: her title suggests she’s science’s emissary to the government, but she is not equipped to be anything more than government’s emissary to science.

A government that consistently buys into the market for intellectual capital at the very top of the price curve is a factory for producing white elephants. But don’t take my word for it. Ask Geoffrey Hinton [University of Toronto’s Geoffrey Hinton, a Canadian leader in machine learning].

“There is a lot of pressure to make things more applied; I think it’s a big mistake,” he said in 2015. “In the long run, curiosity-driven research just works better… Real breakthroughs come from people focusing on what they’re excited about.”

I keep saying this, like a broken record. If you want the science that changes the world, ask the scientists who’ve changed it how it gets made. This government claims to be interested in what scientists think. We’ll see.

Incisive and acerbic,  you may want to make time to read this article in its entirety.

Getting back to the ‘The Naylor report under the microscope’ event, I wonder if anyone will be as tough and direct as Wells. Going back even further, I wonder if this is why there’s no mention of Duncan as a speaker at the conference. It could go either way: surprise announcement of a Chief Science Advisor, as I first suggested, or avoidance of a potentially angry audience.

For anyone curious about Geoffrey Hinton, there’s more here in my March 31, 2017 post (scroll down about 20% of the way) and for more about the 2017 budget and allocations for targeted science projects there’s my March 24, 2017 post.

US science envoy quits

An Aug. 23, 2017article by Matthew Rosza for salon.com notes the resignation of one of the US science envoys,

President Donald Trump’s infamous response to the Charlottesville riots — namely, saying that both sides were to blame and that there were “very fine people” marching as white supremacists — has prompted yet another high profile resignation from his administration.

Daniel M. Kammen, who served as a science envoy for the State Department and focused on renewable energy development in the Middle East and Northern Africa, submitted a letter of resignation on Wednesday. Notably, he began the first letter of each paragraph with letters that spelled out I-M-P-E-A-C-H. That followed a letter earlier this month by writer Jhumpa Lahiri and actor Kal Penn to similarly spell R-E-S-I-S-T in their joint letter of resignation from the President’s Committee on Arts and Humanities.

Jeremy Berke’s Aug. 23, 2017 article for BusinessInsider.com provides a little more detail (Note: Links have been removed),

A State Department climate science envoy resigned Wednesday in a public letter posted on Twitter over what he says is President Donald Trump’s “attacks on the core values” of the United States with his response to violence in Charlottesville, Virginia.

“My decision to resign is in response to your attacks on the core values of the United States,” wrote Daniel Kammen, a professor of energy at the University of California, Berkeley, who was appointed as one five science envoys in 2016. “Your failure to condemn white supremacists and neo-Nazis has domestic and international ramifications.”

“Your actions to date have, sadly, harmed the quality of life in the United States, our standing abroad, and the sustainability of the planet,” Kammen writes.

Science envoys work with the State Department to establish and develop energy programs in countries around the world. Kammen specifically focused on renewable energy development in the Middle East and North Africa.

That’s it.

Artificial intelligence (AI) company (in Montréal, Canada) attracts $135M in funding from Microsoft, Intel, Nvidia and others

It seems there’s a push on to establish Canada as a centre for artificial intelligence research and, if the federal and provincial governments have their way, for commercialization of said research. As always, there seems to be a bit of competition between Toronto (Ontario) and Montréal (Québec) as to which will be the dominant hub for the Canadian effort if one is to take Braga’s word for the situation.

In any event, Toronto seemed to have a mild advantage over Montréal initially with the 2017 Canadian federal government  budget announcement that the Canadian Institute for Advanced Research (CIFAR), based in Toronto, would launch a Pan-Canadian Artificial Intelligence Strategy and with an announcement from the University of Toronto shortly after (from my March 31, 2017 posting),

On the heels of the March 22, 2017 federal budget announcement of $125M for a Pan-Canadian Artificial Intelligence Strategy, the University of Toronto (U of T) has announced the inception of the Vector Institute for Artificial Intelligence in a March 28, 2017 news release by Jennifer Robinson (Note: Links have been removed),

A team of globally renowned researchers at the University of Toronto is driving the planning of a new institute staking Toronto’s and Canada’s claim as the global leader in AI.

Geoffrey Hinton, a University Professor Emeritus in computer science at U of T and vice-president engineering fellow at Google, will serve as the chief scientific adviser of the newly created Vector Institute based in downtown Toronto.

“The University of Toronto has long been considered a global leader in artificial intelligence research,” said U of T President Meric Gertler. “It’s wonderful to see that expertise act as an anchor to bring together researchers, government and private sector actors through the Vector Institute, enabling them to aim even higher in leading advancements in this fast-growing, critical field.”

As part of the Government of Canada’s Pan-Canadian Artificial Intelligence Strategy, Vector will share $125 million in federal funding with fellow institutes in Montreal and Edmonton. All three will conduct research and secure talent to cement Canada’s position as a world leader in AI.

However, Montréal and the province of Québec are no slouches when it comes to supporting to technology. From a June 14, 2017 article by Matthew Braga for CBC (Canadian Broadcasting Corporation) news online (Note: Links have been removed),

One of the most promising new hubs for artificial intelligence research in Canada is going international, thanks to a $135 million investment with contributions from some of the biggest names in tech.

The company, Montreal-based Element AI, was founded last October [2016] to help companies that might not have much experience in artificial intelligence start using the technology to change the way they do business.

It’s equal parts general research lab and startup incubator, with employees working to develop new and improved techniques in artificial intelligence that might not be fully realized for years, while also commercializing products and services that can be sold to clients today.

It was co-founded by Yoshua Bengio — one of the pioneers of a type of AI research called machine learning — along with entrepreneurs Jean-François Gagné and Nicolas Chapados, and the Canadian venture capital fund Real Ventures.

In an interview, Bengio and Gagné said the money from the company’s funding round will be used to hire 250 new employees by next January. A hundred will be based in Montreal, but an additional 100 employees will be hired for a new office in Toronto, and the remaining 50 for an Element AI office in Asia — its first international outpost.

They will join more than 100 employees who work for Element AI today, having left jobs at Amazon, Uber and Google, among others, to work at the company’s headquarters in Montreal.

The expansion is a big vote of confidence in Element AI’s strategy from some of the world’s biggest technology companies. Microsoft, Intel and Nvidia all contributed to the round, and each is a key player in AI research and development.

The company has some not unexpected plans and partners (from the Braga, article, Note: A link has been removed),

The Series A round was led by Data Collective, a Silicon Valley-based venture capital firm, and included participation by Fidelity Investments Canada, National Bank of Canada, and Real Ventures.

What will it help the company do? Scale, its founders say.

“We’re looking at domain experts, artificial intelligence experts,” Gagné said. “We already have quite a few, but we’re looking at people that are at the top of their game in their domains.

“And at this point, it’s no longer just pure artificial intelligence, but people who understand, extremely well, robotics, industrial manufacturing, cybersecurity, and financial services in general, which are all the areas we’re going after.”

Gagné says that Element AI has already delivered 10 projects to clients in those areas, and have many more in development. In one case, Element AI has been helping a Japanese semiconductor company better analyze the data collected by the assembly robots on its factory floor, in a bid to reduce manufacturing errors and improve the quality of the company’s products.

There’s more to investment in Québec’s AI sector than Element AI (from the Braga article; Note: Links have been removed),

Element AI isn’t the only organization in Canada that investors are interested in.

In September, the Canadian government announced $213 million in funding for a handful of Montreal universities, while both Google and Microsoft announced expansions of their Montreal AI research groups in recent months alongside investments in local initiatives. The province of Quebec has pledged $100 million for AI initiatives by 2022.

Braga goes on to note some other initiatives but at that point the article’s focus is exclusively Toronto.

For more insight into the AI situation in Québec, there’s Dan Delmar’s May 23, 2017 article for the Montreal Express (Note: Links have been removed),

Advocating for massive government spending with little restraint admittedly deviates from the tenor of these columns, but the AI business is unlike any other before it. [emphasis misn] Having leaders acting as fervent advocates for the industry is crucial; resisting the coming technological tide is, as the Borg would say, futile.

The roughly 250 AI researchers who call Montreal home are not simply part of a niche industry. Quebec’s francophone character and Montreal’s multilingual citizenry are certainly factors favouring the development of language technology, but there’s ample opportunity for more ambitious endeavours with broader applications.

AI isn’t simply a technological breakthrough; it is the technological revolution. [emphasis mine] In the coming decades, modern computing will transform all industries, eliminating human inefficiencies and maximizing opportunities for innovation and growth — regardless of the ethical dilemmas that will inevitably arise.

“By 2020, we’ll have computers that are powerful enough to simulate the human brain,” said (in 2009) futurist Ray Kurzweil, author of The Singularity Is Near, a seminal 2006 book that has inspired a generation of AI technologists. Kurzweil’s projections are not science fiction but perhaps conservative, as some forms of AI already effectively replace many human cognitive functions. “By 2045, we’ll have expanded the intelligence of our human-machine civilization a billion-fold. That will be the singularity.”

The singularity concept, borrowed from physicists describing event horizons bordering matter-swallowing black holes in the cosmos, is the point of no return where human and machine intelligence will have completed their convergence. That’s when the machines “take over,” so to speak, and accelerate the development of civilization beyond traditional human understanding and capability.

The claims I’ve highlighted in Delmar’s article have been made before for other technologies, “xxx is like no other business before’ and “it is a technological revolution.”  Also if you keep scrolling down to the bottom of the article, you’ll find Delmar is a ‘public relations consultant’ which, if you look at his LinkedIn profile, you’ll find means he’s a managing partner in a PR firm known as Provocateur.

Bertrand Marotte’s May 20, 2017 article for the Montreal Gazette offers less hyperbole along with additional detail about the Montréal scene (Note: Links have been removed),

It might seem like an ambitious goal, but key players in Montreal’s rapidly growing artificial-intelligence sector are intent on transforming the city into a Silicon Valley of AI.

Certainly, the flurry of activity these days indicates that AI in the city is on a roll. Impressive amounts of cash have been flowing into academia, public-private partnerships, research labs and startups active in AI in the Montreal area.

…, researchers at Microsoft Corp. have successfully developed a computing system able to decipher conversational speech as accurately as humans do. The technology makes the same, or fewer, errors than professional transcribers and could be a huge boon to major users of transcription services like law firms and the courts.

Setting the goal of attaining the critical mass of a Silicon Valley is “a nice point of reference,” said tech entrepreneur Jean-François Gagné, co-founder and chief executive officer of Element AI, an artificial intelligence startup factory launched last year.

The idea is to create a “fluid, dynamic ecosystem” in Montreal where AI research, startup, investment and commercialization activities all mesh productively together, said Gagné, who founded Element with researcher Nicolas Chapados and Université de Montréal deep learning pioneer Yoshua Bengio.

“Artificial intelligence is seen now as a strategic asset to governments and to corporations. The fight for resources is global,” he said.

The rise of Montreal — and rival Toronto — as AI hubs owes a lot to provincial and federal government funding.

Ottawa promised $213 million last September to fund AI and big data research at four Montreal post-secondary institutions. Quebec has earmarked $100 million over the next five years for the development of an AI “super-cluster” in the Montreal region.

The provincial government also created a 12-member blue-chip committee to develop a strategic plan to make Quebec an AI hub, co-chaired by Claridge Investments Ltd. CEO Pierre Boivin and Université de Montréal rector Guy Breton.

But private-sector money has also been flowing in, particularly from some of the established tech giants competing in an intense AI race for innovative breakthroughs and the best brains in the business.

Montreal’s rich talent pool is a major reason Waterloo, Ont.-based language-recognition startup Maluuba decided to open a research lab in the city, said the company’s vice-president of product development, Mohamed Musbah.

“It’s been incredible so far. The work being done in this space is putting Montreal on a pedestal around the world,” he said.

Microsoft struck a deal this year to acquire Maluuba, which is working to crack one of the holy grails of deep learning: teaching machines to read like the human brain does. Among the company’s software developments are voice assistants for smartphones.

Maluuba has also partnered with an undisclosed auto manufacturer to develop speech recognition applications for vehicles. Voice recognition applied to cars can include such things as asking for a weather report or making remote requests for the vehicle to unlock itself.

Marotte’s Twitter profile describes him as a freelance writer, editor, and translator.

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 2 of 3

This is the middle commentary on the report titled,(INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research). Part 1 of my commentary having provided some introductory material and first thoughts about the report, this part offers more detailed thoughts and Part 3 offers ‘special cases’ and sums up some of the ideas first introduced in part 1.

The report: the good, the informative, and the problematic

As Canadian government reports go, this is quite readable and I’m delighted to note some sections are downright engaging. (Thank you to the writer)

Happily, the report acknowledges the problems with the usual measures for research performance (p. xiv print; p. 18 PDF in the Executive Summary and, also, in Chapter 3). Also happily, the panel describes how the scope of the disciplines was decided,

Among the early challenges for the Panel were misinterpretation of its moniker and the related scope of its work. The term “fundamental science” originated with federal Budget 2016, which announced the Government of Canada’s intent to undertake a review.3 Alignment of terminology followed. Some members of the anglophone research community were understandably concerned that the Panel’s mandate excluded applied science in a range of fields, as well as the social sciences and humanities. Francophone researchers, accustomed to les sciences sociales et humaines, were more sanguine.

Minister Duncan [Kirsty Duncan], whose own scholarship cuts across the natural sciences, social sciences, and humanities, made it clear from the outset that the Panel was to examine the full range of scientific and scholarly disciplines. The Panel’s secretariat and members similarly emphasized the breadth of our review. We were accordingly delighted to receive submissions from many researchers and organizations representative of disciplines supported by the three granting councils, others doing transdisciplinary research who sometimes find themselves in limbo, and others again frustrated that the lack of collaboration across the councils has effectively shut out their disciplines altogether.

A residual source of some confusion was the term “fundamental”, which is used infrequently in the social sciences and humanities even though much scholarship in those fields is arguably basic or conceptual.

The Panel again took a pragmatic view. Our mandate was derived in meaningful measure from concerns that Canada’s capacity for generation of exciting new knowledge had been eroded. We therefore assumed our remit ranged from basic science focused on making major discoveries to applied science with important technological implications, and from deep philosophical inquiry to rigorous economic evaluations of policies and programs.

The Panel emphasizes in this latter regard that societies without great science and scholarship across a wide range of disciplines are impoverished in multiple dimensions. From the social sciences and humanities, contributions range from deeper understanding of the complexity of human nature and social structures to grace in self-expression and excellence and beauty in the creative and performing arts. From the natural and health sciences and engineering, while attention often focuses on practical applications, basic research provides the breakthrough insights that fundamentally change our understanding of the natural world and our cosmos. We return to this subject in Chapter 2.

The Panel also observes that these categorizations are all focused on research subject matter, when in fact the subject that really matters may be the person doing the research. Postsecondary education enriched by exposure to basic research provides citizens with an outlook and intellectual tools that are extraordinarily well-suited to technological and social innovation. Indeed, countless authors of abstract graduate theses have gone on to lives of deep and productive engagement with practical problems, bringing with them perspectives that reflect an inquiring and critical mind.

In brief, the Panel’s primary interest is in the extramural research realm, and particularly in supports for research into topics chosen by scholars and scientists from the full range of disciplines, using methods that they have developed or adapted, and subject to review by research colleagues. This research may be basic or applied. It may be project-based or programmatic. And it may have early application or no immediate relevance. However, a key criterion is that the work is sufficiently excellent to withstand critical scrutiny by peers, [emphasis mine] and produces knowledge that, after appropriate review, can be shared widely to advance the collective store of knowledge and ideas in the relevant field or fields. (p. 4-5 print; pp. 38-9 PDF)

Here’s a problem not mentioned in the report. Sometimes, the most exciting work is not appreciated or even approved by your peers. Daniel Schechtman’s work with quasicrystals  illustrates the issue (from the Dan Schechtman Wikipedia entry),

“I was a subject of ridicule and lectures about the basics of crystallography. The leader of the opposition to my findings was the two-time Nobel Laureate Linus Pauling, [emphasis mine] the idol of the American Chemical Society and one of the most famous scientists in the world. For years, ’til his last day, he fought against quasi-periodicity in crystals. He was wrong, and after a while, I enjoyed every moment of this scientific battle, knowing that he was wrong.”[citation needed]

Linus Pauling is noted saying “There is no such thing as quasicrystals, only quasi-scientists.”[15] Pauling was apparently unaware of a paper in 1981 by H. Kleinert and K. Maki which had pointed out the possibility of a non-periodic Icosahedral Phase in quasicrystals[16] (see the historical notes). The head of Shechtman’s research group told him to “go back and read the textbook” and a couple of days later “asked him to leave for ‘bringing disgrace’ on the team.”[17] [emphasis mine] Shechtman felt dejected.[15] On publication of his paper, other scientists began to confirm and accept empirical findings of the existence of quasicrystals.[18][19]

Schechtman does get back into the lab, finds support for his discovery from other scientists, and wins the Nobel Prize for Chemisty in 2011. But, that first few years was pretty rough sledding. As for the problem, how can you tell the difference between ground-breaking research and a ‘nutbar’ theory?

Getting back to the report, there’s a very nice listing of research milestones (the inception of various funding agencies, science ministries, important reports, and more) in the Canadian research landscape on pp. 8-9 print; pp. 42-3 PDF. The list stretches from 1916 to 2016. Oddly, the 2011 Jenkins report (also known as the Review of Federal Support to R&D report) is not on the list. Of course, it was a report commissioned by the then Conservative federal government.

Chapter 2 is the ‘Case for Science and Inquiry’ and it includes a bit of a history of the world, geologically speaking (p. 18 print; p. 52 PDF), and more. The scholars that are referenced tend to be from Europe and the US (sigh … isn’t there a way to broaden our perspectives?).

I was surprised that they didn’t include Wilder Penfield’s work in their partial listing of Canadian discoveries, and achievements in natural sciences, engineering, and health (p. 22 print; p. 56 PDF). From the Wilder Penfield Wikipedia entry*,

Wilder Graves Penfield OM CC CMG FRS[1] (January 26, 1891 – April 5, 1976) was an American-Canadian pioneering neurosurgeon once dubbed “the greatest living Canadian.”[2] He expanded brain surgery’s methods and techniques, including mapping the functions of various regions of the brain such as the cortical homunculus. His scientific contributions on neural stimulation expand across a variety of topics including hallucinations, illusions, and déjà vu. Penfield devoted a lot of his thinking to mental processes, including contemplation of whether there was any scientific basis for the existence of the human soul.[2]

Also mildly surprising was Ursula Franklin’s exclusion from their sampling of great Canadian thinkers in the social science and humanities (p. 23 print; p. 57 PDF) especially as there seems to be room for one more entry. From the Ursula Franklin Wikipedia entry,

Ursula Martius Franklin, CC OOnt FRSC (16 September 1921 – 22 July 2016), was a German-Canadian metallurgist, research physicist, author, and educator who taught at the University of Toronto for more than 40 years.[1] …

Franklin is best known for her writings on the political and social effects of technology. For her, technology was much more than machines, gadgets or electronic transmitters. It was a comprehensive system that includes methods, procedures, organization, “and most of all, a mindset”.[5] …

For some, Franklin belongs in the intellectual tradition of Harold Innis and Jacques Ellul who warn about technology’s tendency to suppress freedom and endanger civilization.[8] …

As noted earlier, Chapter 3 offers information about typical measures for scientific impact. There were two I didn’t mention. First, there are the scores for interprovincial collaboration. While we definitely could improve our international collaboration efforts, it’s the interprovincial efforts that tend to be pitiful (Note: I’ve had to create the table myself so it’s not identical to the report table’s format),

Province or Territory  Collaborative rates 2003-2014
Interprovincial International
Alberta 24.4 42.5
British Columbia 23.0 48.2
Manitoba 33.5 39.7
New Brunswick 35.7 38.0
Newfoundland and Labrador 33.6 38.7
Northwest Territories 86.9 32.5
Nova Scotia 34.7 40.9
Nunavut 85.7 34.5
Ontario 14.8 43.4
Prince Edward island 46.7 40.6
Québec 16.9 43.8
Saskatchewan 33.9 41.7
Yukon 79.4 39.0
Canada 9.8 43.7

* *The interprovincial collaboration rates (IPC) are computed on whole counts, not fractional counts. So, for example, a publication with authors from four provinces would count as one for Canada and one for each of the provinces. So the IPC for the whole of Canada would be 1 out of 874,475 (Canada’s whole publication count over 2003–2014) and the IPC for Ontario (for example) would be 1 out of 396,811 (the whole count for Ontario). Therefore the interprovincial collaboration rate would be lower for Canada than for Ontario. (p. 39 print; 73 PDF)

Second, there are the prizes,

Moving from highly-cited researchers and papers to the realm of major international research prizes takes us further into the realm of outlying talent. Major international prizes for research are relevant measures because they bring great prestige not just to individuals and teams, but also to institutions and nations. They are also the culmination of years of excellence in research and, particularly when prizes are won repeatedly across a range of disciplines, they send strong signals to the world about the health of a nation’s basic research ecosystem.

Unfortunately, Canada’s performance in winning international prizes is also lagging. In 2013 the Right Honourable David Johnston, Governor General of Canada, and Dr Howard Alper, then chair of the national Science, Technology and Innovation Council (STIC), observed that Canadians underperform “when it comes to the world’s most distinguished awards”, e.g., Nobel Prize, Wolf Prize, and Fields Medal. They added: “In the period from 1941 to 2008, Canadians received 19 of the top international awards in science—an impressive achievement, to be sure, but lacking when compared with the United States (with 1,403 winners), the United Kingdom (222), France (91), Germany (75) and Australia (42).”22 ix

There is an interesting wrinkle to the dominance of the U.S. in Nobel prizes.23 Over 30 per cent of all U.S. Nobel laureates since 1950 were foreign-born, with that proportion rising over time. From 2007 to 2016, the 54 Nobel prizes awarded to U.S.-based researchers included 20 immigrants. Sources differ as to whether more of the U.S. Nobel laureates originated from Canada or Germany, but the best estimate is that, since 1901, there have been 15 Canadian-born, and in many cases Canadian-educated, Nobel laureates based in the U.S.—double the total number of Nobel prizes awarded to Canadian-based researchers in the same period.

From the standpoint of international recognition, 2015 was an exceptional year. Canadians won two of the pinnacle awards: a Nobel prize (Arthur McDonald for Physics) and a Wolf prize (James Arthur for Mathematics). Those prizes celebrate work that exemplifies two very different models of discovery. As a theoretical mathematician, Dr Arthur’s pioneering papers in automorphic forms have been overwhelmingly sole-authored; his long-term support has come from modest NSERC Discovery Grants. As a particle physicist, Dr McDonald has led a large team in developing and operating the renowned Sudbury Neutrino Laboratory, a major science facility purpose-built deep in an active nickel mine, where startling observations have been made that are forcing a reconsideration of The Standard Model for Elementary Particles. In both cases, however, what matters is that the work began decades ago, and Canada provided long-term support at the levels and in forms required to enable path-breaking discoveries to be made.

Canada cannot assume that there will be a series of other pinnacle prizes awarded based on discoveries that tap into work initiated in the 1970s and 1980s. To ensure a continuous pipeline of successful nominations for international awards, research institutions must be supported consistently to recruit and retain outstanding scholars and scientists. They in turn must be supported to create world-class research environments through meritocratic adjudication processes that offer fair access to appropriate levels of consistent funding for scientific inquiry. Our assessment thus far has not given us great confidence that these winning conditions are being created, let alone enhanced. (pp. 46-7 print; pp. 80-1 PDF)

I found one more interesting bit in the report, a dated list of Canadian science advice vehicles. Somewhat optimistically given the speed with which the initiative has moved forward, they’ve listed a Canadian chief science advisor for 2017 (p. 54 print; p. 88 PDF). Understandably, since it is a recommendation, they left out the NACRI, .

Again, here’s a link to the other parts:

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report) Commentaries

Part 1

Part 3

*’enty’ corrected to ‘entry’ and a link to Wilder Penfield’s Wikipedia entry was added on June 15, 2017.

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 1 of 3

This sucker (INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research, also known as, Canada’s Fundamental Science Review 2017 or the Naylor report) is a 280 pp. (PDF) and was released on Monday, April 10, 2017. I didn’t intend that this commentary should stretch out into three parts (sigh). Them’s the breaks. This first part provides an introduction to the panel and the report as well as some ‘first thoughts’. Part 2 offers more detailed thoughts and Part 3 offers ‘special cases’ and sums up some of the ideas first introduced in part 1.

I first wrote about this review in a June 15, 2017 posting where amongst other comments I made this one,

Getting back to the review and more specifically, the panel, it’s good to see that four of the nine participants are women but other than that there doesn’t seem to be much diversity, i.e.,the majority (five) spring from the Ontario/Québec nexus of power and all the Canadians are from the southern part of country. Back to diversity, there is one business man, Mike Laziridis known primarily as the founder of Research in Motion (RIM or more popularly as the Blackberry company) making the panel not a wholly ivory tower affair. Still, I hope one day these panels will have members from the Canadian North and international members who come from somewhere other than the US, Great Britain, and/or if they’re having a particularly wild day, Germany. Here are some candidate countries for other places to look for panel members: Japan, Israel, China, South Korea, and India. Other possibilities include one of the South American countries, African countries, and/or the Middle Eastern countries.

Take the continent of Africa for example, where many countries seem to have successfully tackled one of the issues as we face. Specifically, the problem of encouraging young researchers. …

Here’s a quick summary about the newly released report from the April 10, 2017 federal government news release on Canada’s Public Policy Forum,

Today [April 10, 2017], the Government of Canada published the final report of the expert panel on Canada’s Fundamental Science Review. Commissioned by the Honourable Kirsty Duncan, Minister of Science, the report by the blue-ribbon panel offers a comprehensive review of the mechanisms for federal funding that supports research undertaken at academic institutions and research institutes across Canada, as well as the levels of that funding. It provides a multi-year blueprint for improving the oversight and governance of what the panelists call the “research ecosystem.” The report also recommends making major new investments to restore support for front-line research and strengthen the foundations of Canadian science and research at this pivotal point in global history.

The review is the first of its type in more than 40 years. While it focused most closely on the four major federal agencies that support science and scholarly inquiry across all disciplines, the report also takes a wide-angle view of governance mechanisms ranging from smaller agencies to big science facilities. Another issue closely examined by the panel was the effect of the current configuration of funding on the prospects of early career researchers—a group that includes a higher proportion of women and is more diverse than previous generations of scientists and scholars.

The panel’s deliberations were informed by a broad consultative process. The panel received 1,275 written submissions [emphasis mine] from individuals, associations and organizations. It also held a dozen round tables in five cities, engaging some 230 researchers [emphasis mine] at different career stages.

Among the findings:

  • Basic research worldwide has led to most of the technological, medical and social advances that make our quality of life today so much better than a century ago. Canadian scientists and scholars have contributed meaningfully to these advances through the decades; however, by various measures, Canada’s research competitiveness has eroded in recent years.
  • This trend emerged during a period when there was a drop of more than 30 percent in real per capita funding for independent or investigator-led research by front-line scientists and scholars in universities, colleges, institutes and research hospitals. This drop occurred as a result of caps on federal funding to the granting councils and a dramatic change in the balance of funding toward priority-driven and partnership-oriented research.
  • Canada is an international outlier in that funding from federal government sources accounts for less than 25 percent of total spending on research and development in the higher education sector. While governments sometimes highlight that, relative to GDP, Canada leads the G7 in total spending by this sector, institutions themselves now underwrite 50 percent of these costs—with adverse effects on both research and education.
  • Coordination and collaboration among the four key federal research agencies [Canada Foundation for Innovation {CFI}; Social Sciences and Humanities Research Council {SSHRC}; Natural Sciences and Engineering Research Council {NSERC}; Canadian Institutes of Health Research {CIHR}] is suboptimal, with poor alignment of supports for different aspects of research such as infrastructure, operating costs and personnel awards. Governance and administrative practices vary inexplicably, and support for areas such as international partnerships or multidisciplinary research is uneven.
  • Early career researchers are struggling in some disciplines, and Canada lacks a career-spanning strategy for supporting both research operations and staff.
  • Flagship personnel programs such as the Canada Research Chairs have had the same value since 2000. Levels of funding and numbers of awards for students and post-doctoral fellows have not kept pace with inflation, peer nations or the size of applicant pools.

The report also outlines a comprehensive agenda to strengthen the foundations of Canadian extramural research. Recommended improvements in oversight include:

  • legislation to create an independent National Advisory Council on Research and Innovation (NACRI) that would work closely with Canada’s new Chief Science Advisor (CSA) to raise the bar in terms of ongoing evaluations of all research programming;
  • wide-ranging improvements to oversight and governance of the four agencies, including the appointment of a coordinating board chaired by the CSA; and
  • lifecycle governance of national-scale research facilities as well as improved methods for overseeing and containing the growth in ad-hoc funding of smaller non-profit research entities.

With regard to funding, the panel recommends a major multi-year reinvestment in front-line research, targeting several areas of identified need. Each recommendation is benchmarked and is focused on making long-term improvements in Canada’s research capacity. The panel’s recommendations, to be phased in over four years, would raise annual spending across the four major federal agencies and other key entities from approximately $3.5 billion today to $4.8 billion in 2022. The goal is to ensure that Canada benefits from an outsized concentration of world-leading scientists and scholars who can make exciting discoveries and generate novel insights while educating and inspiring the next generation of researchers, innovators and leaders.

Given global competition, the current conditions in the ecosystem, the role of research in underpinning innovation and educating innovators, and the need for research to inform evidence-based policy-making, the panel concludes that this is among the highest-yield investments in Canada’s future that any government could make.

The full report is posted on www.sciencereview.ca.

Quotes

“In response to the request from Prime Minister Trudeau and Minister Duncan, the Science Review panel has put together a comprehensive roadmap for Canadian pre-eminence in science and innovation far into the future. The report provides creative pathways for optimizing Canada’s investments in fundamental research in the physical, life and social sciences as well as the humanities in a cost effective way. Implementation of the panel’s recommendations will make Canada the destination of choice for the world’s best talent. It will also guarantee that young Canadian researchers can fulfill their dreams in their own country, bringing both Nobel Prizes and a thriving economy to Canada. American scientists will look north with envy.”

– Robert J. Birgeneau, Silverman Professor of Physics and Public Policy, University of California, Berkeley

“We have paid close attention not only to hard data on performance and funding but also to the many issues raised by the science community in our consultations. I sincerely hope the report will serve as a useful guide to policy-makers for years to come.”

– Martha Crago, Vice-President, Research and Professor of Human Communication Disorders, Dalhousie University

“Science is the bedrock of modern civilization. Our report’s recommendations to increase and optimize government investments in fundamental scientific research will help ensure that Canada’s world-class researchers can continue to make their critically important contributions to science, industry and society in Canada while educating and inspiring future generations. At the same time, such investments will enable Canada to attract top researchers from around the world. Canada must strategically build critical density in our researcher communities to elevate its global competitiveness. This is the path to new technologies, new businesses, new jobs and new value creation for Canada.”

– Mike Lazaridis, Founder and Managing Partner, Quantum Valley Investments

“This was a very comprehensive review. We heard from a wide range of researchers—from the newest to those with ambitious, established and far-reaching research careers. At all these levels, researchers spoke of their gratitude for federal funding, but they also described enormous barriers to their success. These ranged from personal career issues like gaps in parental leave to a failure to take gender, age, geographic location and ethnicity into account. They also included mechanical and economic issues like gaps between provincial and federal granting timelines and priorities, as well as a lack of money for operating and maintaining critical equipment.”

– Claudia Malacrida, Associate Vice-President, Research and Professor of Sociology, University of Lethbridge

“We would like to thank the community for its extensive participation in this review. We reflect that community perspective in recommending improvements to funding and governance for fundamental science programs to restore the balance with recent industry-oriented programs and improve both science and innovation in Canada.”

– Arthur B. McDonald, Professor Emeritus, Queen’s University

“This report sets out a multi-year agenda that, if implemented, could transform Canadian research capacity and have enormous long-term impacts across the nation. It proffers a legacy-building opportunity for a new government that has boldly nailed its colours to the mast of science and evidence-informed policy-making. I urge the Prime Minister to act decisively on our recommendations.”

– C. David Naylor, Professor of Medicine, University of Toronto (Chair)

“This report outlines all the necessary ingredients to advance basic research, thereby positioning Canada as a leading ‘knowledge’ nation. Rarely does a country have such a unique opportunity to transform the research landscape and lay the foundation for a future of innovation, prosperity and well-being.”

– Martha C. Piper, President Emeritus, University of British Columbia

“Our report shows a clear path forward. Now it is up to the government to make sure that Canada truly becomes a world leader in how it both organizes and financially supports fundamental research.”

– Rémi Quirion, Le scientifique en chef du Québec

“The government’s decision to initiate this review reflected a welcome commitment to fundamental research. I am hopeful that the release of our report will energize the government and research community to take the next steps needed to strengthen Canada’s capacity for discovery and research excellence. A research ecosystem that supports a diversity of scholars at every career stage conducting research in every discipline will best serve Canada and the next generation of students and citizens as we move forward to meet social, technological, economic and ecological challenges.”

– Anne Wilson, Professor of Psychology, Wilfrid Laurier University

Quick facts

  • The Fundamental Science Review Advisory Panel is an independent and non-partisan body whose mandate was to provide advice and recommendations to the Minister of Science on how to improve federal science programs and initiatives.
  • The panel was asked to consider whether there are gaps in the federal system of support for fundamental research and recommend how to address them.
  • The scope of the review included the federal granting councils along with some federally funded organizations such as the Canada Foundation for Innovation.

First thoughts

Getting to the report itself, I have quickly skimmed through it  but before getting to that and for full disclosure purposes, please note, I made a submission to the panel. That said, I’m a little disappointed. I would have liked to have seen a little more imagination in the recommendations which set forth future directions. Albeit the questions themselves would not seem to encourage any creativity,

Our mandate was summarized in two broad questions:

1. Are there any overall program gaps in Canada’s fundamental research funding ecosystem that need to be addressed?

2. Are there elements or programming features in other countries that could provide a useful example for the Government of Canada in addressing these gaps? (p. 1 print; p. 35 PDF)

A new agency to replace the STIC (Science, Technology and Innovation Council)

There are no big surprises. Of course they’ve recommended another organization, NACRI [National Advisory Council on Research and Innovation], most likely to replace the Conservative government’s advisory group, the Science, Technology and Innovation Council (STIC) which seems to have died as of Nov. 2015, one month after the Liberals won. There was no Chief Science Advisor under the Conservatives. As I recall, the STIC replaced a previous Liberal government’s advisory group and Chief Science Advisor (Arthur Carty, now the executive director of the Waterloo [as in University of Waterloo] Institute of Nanotechnology).

Describing the NACRI as peopled by volunteers doesn’t exactly describe the situation. This is the sort of ‘volunteer opportunity’ a dedicated careerist salivates over because it’s a career builder where you rub shoulders with movers and shakers in other academic institutions, in government, and in business. BTW, flights to meetings will be paid for along with per diems (accommodations and meals). These volunteers will also have a staff. Admittedly, it will be unpaid extra time for the ‘volunteer’ but the payoff promises to be considerable.

Canada’s eroding science position

There is considerable concern evinced over Canada’s eroding position although we still have bragging rights in some areas (regenerative medicine, artificial intelligence for two areas). As for erosion, the OECD (Organization for Economic Cooperation and Development) dates the erosion back to 2001 (from my June 2, 2014 posting),

Interestingly, the OECD (Organization for Economic Cooperation and Development) Science, Technology and Industry Scoreboard 2013 dates the decline to 2001. From my Oct. 30, 2013 posting (excerpted from the scorecard),

Canada is among the few OECD countries where R&D expenditure declined between 2000 and 2011 (Figure 1). This decline was mainly due to reduced business spending on R&D. It occurred despite relatively generous public support for business R&D, primarily through tax incentives. In 2011, Canada was amongst the OECD countries with the most generous tax support for R&D and the country with the largest share of government funding for business R&D being accounted for by tax credits (Figure 2). …

It should be noted, the Liberals have introduced another budget with flat funding for science (if you want to see a scathing review see Nassif Ghoussoub’s (professor of mathematics at the University of British Columbia April 10, 2017 posting) on his Piece of Mind blog). Although the funding isn’t quite so flat as it might seem at first glance (see my March 24, 2017 posting about the 2017 budget). The government explained that the science funding agencies didn’t receive increased funding as the government was waiting on this report which was released only weeks later (couldn’t they have a sneak preview?). In any event, it seems it will be at least a year before the funding issues described in the report can be addressed through another budget unless there’s some ‘surprise’ funding ahead.

Again, here’s a link to the other parts:

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report) Commentaries

Part 2

Part 3

The insanity of Canadian science outreach (Science Odyssey, May 12 – 21, 2017 and Science RendezVous on May 13, 2017)

When was the last time you saw a six-year old or a twelve-year old attend a political candidates’ meeting or vote in an election? Sadly, most creative science outreach in Canada is aimed at children and teenagers in the misbegotten belief that adults don’t matter and ‘youth are the future’. There are three adult science outreach scenarios although they didn’t tend to be particularly creative. (1) Should scientists feel hard done by elected representatives, they reach out to other adults for support. (2) Should those other adults become disturbed by any scientific or technological ‘advance’ then scientific experts will arrive to explain why that’s wrong. (3) Should the science enterprise want money, then a call goes out (see my May 12, 2017 posting about the Canada Science and Technology Museums Corporation gala and, yes, they were a bit creative about it).

I am oversimplifying the situation but not by much especially if one considers two upcoming national Canadian science events: Science Rendezvous which is a day-long (May 13, 2017) cross country science event taking place during while the Science Odyssey holds a 10-day (May 12 – 2017) cross country science event. The two groups arranged their events separately and then decided to coordinate their efforts. Science Odyssey is a rebranding of the Canada Science and Technology Week organized by the federal government for at least two decades and which was held (until 2016) in the fall of each year. Science Rendezvous (About page) was launched in Toronto in 2008 (University of Toronto, Ryerson University, York University and the University of Ontario Institute of Technology (UOIT)).

Regardless, both events are clearly aimed at children (and families).

I’m not suggesting that exciting science outreach for children should be curtailed. Let’s expand the efforts to9 include the adult and senior populations too.

In all the talk about Canada’s adult and ageing populations, perhaps we could approach it all more creatively. For example, there’s this (from an April 18, 2017 University of California at San Diego University news release (also on EurekAlert) by Inga Kiderra,

Philip Guo caught the coding bug in high school, at a fairly typical age for a Millennial. Less typical is that the UC San Diego cognitive scientist is now eager to share his passion for programming with a different demographic. And it’s not one you’re thinking of – it’s not elementary or middle school-aged kids. Guo wants to get adults age 60 and up.

In the first known study of older adults learning computer programming, Guo outlines his reasons: People are living and working longer. This is a growing segment of the population, and it’s severely underserved by learn-to-code intiatives, which usually target college students and younger. Guo wants to change that. He would like this in-demand skill to become more broadly accessible.

“Computers are everywhere, and digital literacy is becoming more and more important,” said Guo, assistant professor in the Department of Cognitive Science, who is also affiliated with UC San Diego’s Design Lab and its Department of Computer Science and Engineering. “At one time, 1,000 years ago, most people didn’t read or write – just some monks and select professionals could do it. I think in the future people will need to read and write in computer language as well. In the meantime, more could benefit from learning how to code.”

Guo’s study was recently awarded honorable mention by the world’s leading organization in human-computer interaction, ACM SIGCHI. Guo will present his findings at the group’s premier international conference, CHI, in May [2017].

When prior human-computer interaction studies have focused on older adults at all, Guo said, it has been mostly as consumers of new technology, of social networking sites like Facebook, say, or ride-sharing services. While a few have investigated the creation of content, like blogging or making digital music, these have involved the use of existing apps. None, to his knowledge, have looked at older adults as makers of entirely new software applications, so he set out to learn about their motivations, their frustrations and if these provided clues to design opportunities.

The Study

For his study, Guo surveyed users of pythontutor.com. A web-based education tool that Guo started in 2010, Python Tutor helps those learning to program visualize their work. Step by step, it displays what a computer is doing with each line of code that it runs. More than 3.5 million people in more than 180 countries have now used Python Tutor, including those around the world taking MOOCs (massive open online courses). Despite its legacy name, the tool helps people supplement their studies not only of the Python programming language but also Java, JavaScript, Ruby, C and C++, all of which are commonly used to teach programing. The users of Python Tutor represent a wide range of demographic groups.

Guo’s survey included 504 people between the ages of 60 and 85, from 52 different countries. Some were retired and semi-retired while others were still working.

What Guo discovered: Older adults are motivated to learn programming for a number of reasons. Some are age-related. They want to make up for missed opportunities during youth (22 percent) and keep their brains “challenged, fresh and sharp” as they age (19 percent). A few (5 percent) want to connect with younger family members.

Reasons not related to age include seeking continuing education for a current job (14 percent) and wanting to improve future job prospects (9 percent). A substantial group is in it just for personal enrichment: 19 percent to implement a specific hobby project idea, 15 percent for fun and entertainment, and 10 percent out of general interest.

Interestingly, 8 percent said they wanted to learn to teach others.

Topping the list of frustrations for older students of coding was bad pedagogy. It was mentioned by 21 percent of the respondents and ranged from the use of jargon to sudden spikes in difficulty levels. Lack of real-world relevance came up 6 percent of the time. A 74-year-old retired physician wrote: “Most [tutorials] are offered by people who must know how to program but don’t seem to have much training in teaching.”

Other frustrations included a perceived decline in cognitive abilities (12 percent) and no human contact with tutors and peers (10 percent).

The study’s limitations are tied in part to the instrument – self-reporting on an online survey – and in part to the survey respondents themselves. Most hailed from North America and other English-speaking nations. Most, 84 percent, identified themselves as male; this stat is consistent with other surveys of online learning, especially in math and science topics. There was a diverse array of occupations reported, but the majority of those surveyed were STEM professionals, managers and technicians. These learners, Guo said, likely represent “early adopters” and “the more technology-literate and self-motivated end of the general population.” He suggests future studies look both at in-person learning and at a broader swath of the public. But he expects the lessons learned from this group will generalize.

The Implications

Based on this first set of findings and using a learner-centered design approach, Guo proposes tailoring computer-programming tools and curricula specifically for older learners. He notes, for example, that many of his respondents seemed to take pride in their years and in their tech-savvy, so while it may be good to advertise products as targeting this age group, they should not appear patronizing. It might make sense to reframe lessons as brain-training games, like Lumosity, now popular among the older set.

Just as it’s key to understand who the learners are so is understanding where they have trouble. Repetition and frequent examples might be good to implement, as well as more in-person courses or video-chat-based workshops, Guo said, which may lead to improvements in the teaching of programming not just for older adults but across the board.

Context matters, too. Lessons are more compelling when they are put into domains that people personally care about. And Guo recommends coding curricula that enable older adults to tell their life stories or family histories, for example, or write software that organizes health information or assists care-givers.

Guo, who is currently working on studies to extend coding education to other underrepresented groups, advocates a computing future that is fully inclusive of all ages.

“There are a number of social implications when older adults have access to computer programming – not merely computer literacy,” he said. “These range from providing engaging mental stimulation to greater gainful employment from the comfort of one’s home.”

By moving the tech industry away from its current focus on youth, Guo argues, we all stand to gain. [emphasis mine]

Guo joined the UC San Diego cognitive science faculty in 2016 after two years as an assistant professor at the University of Rochester. He received his bachelor’s and master’s degrees in computer science from MIT in 2006 and his Ph.D. from Stanford in 2012. Before becoming a professor, he built online learning tools as a software engineer at Google and a research scientist at edX. He also blogs, vlogs and podcasts at http://pgbovine.net/

When was the last time you heard about a ‘coding’ camp for adults and seniors in Canada? Also,, ask yourself if after you’d reached a certain age (40? 50? more? less?) you’d feel welcome at the Science Rendezvous events (without a child in tow), Science Odyssey events (without a child in tow), or the May 17, 2017 National Science and Innovation Gala in Ottawa (from my May 12, 2017 posting “It would seem the only person over the age of 30 who’s expected to attend is the CBC host, Heather Hiscox.”)?

Let’s open the door a bit wider, eh?

Sounding out the TRAPPIST-1 planetary system

It’s been a while since a data sonification story has come this way. Like my first posting on the topic (Feb. 7, 2014) this is another astrophysics ‘piece of music’. From the University of Toronto (Canada) and Thought Café (a Canadian animation studio),

For those who’d like a little text, here’s more from a May 10, 2017 University of Toronto news release (also on EurekAlert) by Don Campbell,

When NASA announced its discovery of the TRAPPIST-1 system back in February [2017] it caused quite a stir, and with good reason. Three of its seven Earth-sized planets lay in the star’s habitable zone, meaning they may harbour suitable conditions for life.

But one of the major puzzles from the original research describing the system was that it seemed to be unstable.

“If you simulate the system, the planets start crashing into one another in less than a million years,” says Dan Tamayo, a postdoc at U of T Scarborough’s Centre for Planetary Science.

“This may seem like a long time, but it’s really just an astronomical blink of an eye. It would be very lucky for us to discover TRAPPIST-1 right before it fell apart, so there must be a reason why it remains stable.”

Tamayo and his colleagues seem to have found a reason why. In research published in the journal Astrophysical Journal Letters, they describe the planets in the TRAPPIST-1 system as being in something called a “resonant chain” that can strongly stabilize the system.

In resonant configurations, planets’ orbital periods form ratios of whole numbers. It’s a very technical principle, but a good example is how Neptune orbits the Sun three times in the amount of time it takes Pluto to orbit twice. This is a good thing for Pluto because otherwise it wouldn’t exist. Since the two planets’ orbits intersect, if things were random they would collide, but because of resonance, the locations of the planets relative to one another keeps repeating.

“There’s a rhythmic repeating pattern that ensures the system remains stable over a long period of time,” says Matt Russo, a post-doc at the Canadian Institute for Theoretical Astrophysics (CITA) who has been working on creative ways to visualize the system.

TRAPPIST-1 takes this principle to a whole other level with all seven planets being in a chain of resonances. To illustrate this remarkable configuration, Tamayo, Russo and colleague Andrew Santaguida created an animation in which the planets play a piano note every time they pass in front of their host star, and a drum beat every time a planet overtakes its nearest neighbour.

Because the planets’ periods are simple ratios of each other, their motion creates a steady repeating pattern that is similar to how we play music. Simple frequency ratios are also what makes two notes sound pleasing when played together.

Speeding up the planets’ orbital frequencies into the human hearing range produces an astrophysical symphony of sorts, but one that’s playing out more than 40 light years away.

“Most planetary systems are like bands of amateur musicians playing their parts at different speeds,” says Russo. “TRAPPIST-1 is different; it’s a super-group with all seven members synchronizing their parts in nearly perfect time.”

But even synchronized orbits don’t necessarily survive very long, notes Tamayo. For technical reasons, chaos theory also requires precise orbital alignments to ensure systems remain stable. This can explain why the simulations done in the original discovery paper quickly resulted in the planets colliding with one another.

“It’s not that the system is doomed, it’s that stable configurations are very exact,” he says. “We can’t measure all the orbital parameters well enough at the moment, so the simulated systems kept resulting in collisions because the setups weren’t precise.”

In order to overcome this Tamayo and his team looked at the system not as it is today, but how it may have originally formed. When the system was being born out of a disk of gas, the planets should have migrated relative to one another, allowing the system to naturally settle into a stable resonant configuration.

“This means that early on, each planet’s orbit was tuned to make it harmonious with its neighbours, in the same way that instruments are tuned by a band before it begins to play,” says Russo. “That’s why the animation produces such beautiful music.”

The team tested the simulations using the supercomputing cluster at the Canadian Institute for Theoretical Astrophysics (CITA) and found that the majority they generated remained stable for as long as they could possibly run it. This was about 100 times longer than it took for the simulations in the original research paper describing TRAPPIST-1 to go berserk.

“It seems somehow poetic that this special configuration that can generate such remarkable music can also be responsible for the system surviving to the present day,” says Tamayo.

Here’s a link to and a citation for the paper,

Convergent Migration Renders TRAPPIST-1 Long-lived by Daniel Tamayo, Hanno Rein, Cristobal Petrovich, and Norman Murray. The Astrophysical Journal Letters, Volume 840, Number 2 https://doi.org/10.5281/zenodo.496153 Published 2017 May 10

© 2017. The American Astronomical Society. All rights reserved.

This paper is open access.