Tag Archives: University of Toronto (UofT)

Mending a broken heart with hydrogels and cellulose nanocrystals (CNC)

Courtesy: University of Waterloo

This February 12, 2024 news item on ScienceDaily highlights work from the University of Waterloo,

You can mend a broken heart this valentine’s day now that researchers invented a new hydrogel that can be used to heal damaged heart tissue and improve cancer treatments.

University of Waterloo chemical engineering researcher Dr. Elisabeth Prince teamed up with researchers from the University of Toronto and Duke University to design the synthetic material made using cellulose nanocrystals [CNC], which are derived from wood pulp.

A February 12, 2024 University of Waterloo news release (also on EurekAlert), which originated the news item, fills in some details,

The material is engineered to replicate the fibrous nanostructures and properties of human tissues, thereby recreating its unique biomechanical properties.

“Cancer is a diverse disease and two patients with the same type of cancer will often respond to the same treatment in very different ways,” Prince said. “Tumour organoids are essentially a miniaturized version of an individual patient’s tumour that can be used for drug testing, which could allow researchers to develop personalized therapies for a specific patient.”

As director of the Prince Polymer Materials Lab, Prince designs synthetic biomimetic hydrogels for biomedical applications. The hydrogels have a nanofibrous architecture with large pores for nutrient and waste transport, which affect mechanical properties and cell interaction. 

Prince, a professor in Waterloo’s Department of Chemical Engineering, utilized these human-tissue mimetic hydrogels to promote the growth of small-scale tumour replicas derived from donated tumour tissue. 

She aims to test the effectiveness of cancer treatments on the mini-tumour organoids before administering the treatment to patients, potentially allowing for personalized cancer therapies. This research was conducted alongside Professor David Cescon at the Princess Margaret Cancer Center.

Prince’s research group at Waterloo is developing similar biomimetic hydrogels to be injectable for drug delivery and regenerative medical applications as Waterloo researchers continue to lead health innovation in Canada.

Her research aims to use injected filamentous hydrogel material to regrow heart tissue damaged after a heart attack. She used nanofibers as a scaffolding for the regrowth and healing of damaged heart tissue. 

“We are building on the work that I started during my PhD to design human-tissue mimetic hydrogels that can be injected into the human body to deliver therapeutics and repair the damage caused to the heart when a patient suffers a heart attack,” Prince said.

Prince’s research is unique as most gels currently used in tissue engineering or 3D cell culture don’t possess this nanofibrous architecture. Prince’s group uses nanoparticles and polymers as building blocks for materials and develops chemistry for nanostructures that accurately mimic human tissues.

The next step in Prince’s research is to use conductive nanoparticles to make electrically conductive nanofibrous gels that can be used to heal heart and skeletal muscle tissue.

Here’s a link to and a citation for the paper,

Nanocolloidal hydrogel mimics the structure and nonlinear mechanical properties of biological fibrous networks by Elisabeth Prince, Sofia Morozova, Zhengkun Chen, and Eugenia Kumacheva. Proceedings of the National Academy of Sciences (PNAS) December 13, 2023 120 (51) e2220755120 DOI: https://doi.org/10.1073/pnas.2220755120

This paper is behind a paywall.

Margot Lee Shetterly (Hidden Figures author) in Toronto, Canada and a little more STEM (science, technology, engineering, and mathematics) information

Ms. Shetterly was at the University of Toronto (Hart House) as a mentor at Tundra Technical Solutions’ 2023 Launchpad event. The company is a ‘talent recruitment’ agency and this is part of their outreach/public relations programme. This undated video (runtime: 2 mins. 27 secs.) from a previous Hart House event gives you a pretty good idea of what this year’s Toronto event was like,

This November 9, 2023 Tundra Technical Solutions news release (on Cision) suggests that this is a US-based company while supplying more information about their 2023 STEM or Launchpad mentorship event at Hart House,

On the heels of [US] National STEM Day, a landmark event unfolds tonight to advance the role of women in Science, Technology, Engineering, and Mathematics (STEM). Tundra, a trailblazer championing diversity within the world’s most innovative industries, hosts its annual Launchpad Mentorship Event at the University of Toronto’s Hart House.

This event welcomes hundreds of high school female students across the GTA [Greater Toronto Area?] to inspire and empower them to consider careers in STEM.

The night opens with a fascinating keynote speech by Margot Lee Shetterly, acclaimed author of the #1 New York Times bestseller Hidden Figures. Margot will share her insights into the critical contributions of African-American women mathematicians at NASA, setting a powerful tone for the evening. The spotlight also shines brightly on Arushi Nath, a 14-year-old Canadian prodigy and Tundra Launchpad Mentee of the Year whose contributions to astronomy have propelled her onto the world stage.

The Launchpad Event panel discussion features an impressive lineup of leaders, with Anne Steptoe, VP of Infrastructure at Wealthsimple; Linda Siksna, SVP of Technology Ops and Platforms at Canadian Tire; Natasha Nelson, VP of Ecostruxure at Schneider Electric; and Allison Atkins, National Leader for Cloud Endpoint at Microsoft. Moderated by Marisa Sterling, Assistant Dean and Director of Diversity, Inclusion, and Professionalism at the University of Toronto, the panel tackles the challenges and opportunities within STEM fields, emphasizing the need for diversity and inclusion.

In a seamless transition from Shetterly’s keynote to the voices of present-day STEM leaders, the event spotlights the potential of young women in these fields. Arushi Nath [emphasis mine], the 9th-grade Canadian astronomy sensation, embodied this potential. Fresh from her success at the European Union Contest for Young Scientists, Arushi’s presence will be a vibrant reminder of what the next generation can achieve with support from initiatives like Tundra’s Launchpad Event.

Tundra’s commitment to nurturing and developing STEM leaders of tomorrow is evident through its substantial investments in youth. Every year, Tundra connects thousands of students who identify as female and non-binary with mentors, awarding scholarships and prize packs to help students excel in their future.

Tundra’s dedication to diversity and empowerment in STEM remains unwavering since the Launchpad’s inception in 2019. The event is a testament to the bright future that awaits when we invest in the mentorship and recognition of young talent.

Female-identifying or non-binary students in grades 10-12 can apply for Tundra’s next Launchpad Scholarship here [deadline: December 3, 2023].

You can find out more about the Tundra Technical Solutions STEM initiatives here. (I’m not sure why they’ve listed Vancouver as a location for the event on the STEM initiatives page since there is no mention of it in the news release or elsewhere on the page.)

Arushi Nath was last mentioned here in a November 17, 2023 posting where her wins at the 2023 Canada Wide Science awards and the 34th European Union Contest for Young Scientists (EUCYS) and her appearance at the 2023 Natural Sciences and Engineering Research Council of Canada (NSERC) Awards were highlighted.

I’m having trouble keeping with her!

She has written up an account of her experience at the 2023 Launchpad Mentorship event at Hart House in a November 18 (?), 2023 blog posting on the HotPopRobot website,

Almost 150 students from across Toronto and the region attended the event. In addition, around 20 mentors from several organizations gathered to interact with the students. Many staff members from Tundra were also present to support the event.

Keynote Speech: Science and Space is for All

The evening started with a keynote speech from Margot Lee Shetterly, the author of Hidden Figures book. Hidden Figures [movie] explores the biographies of three African-American women who worked as computers to solve problems for engineers and others at NASA.

In her speech, she talked about her journey writing the book and what drew her to the topic. The fact that one of the three women was her neighbour was a big inspiring force. She shared the background of these brilliant women mathematicians, their personal stories, anecdotes and the crucial roles they played during the Space Race.

Several questions were posed to her, including how she felt about having her book transformed into a movie before the book was even complete and how students could merge their other passions with science.

Prizes and Awards: Winning 2023 Mentee of the Year Award

At the end of the raffle, I was surprised to hear my name called on the stage. I was honoured to receive the 2023 Mentee of the Year Award. I thanked the organizers for this gesture and for organizing such a wonderful evening of fun, learning and networking.

With Margot Lee Shetterly, the Author of Hidden Figures book [downloaded from https://hotpoprobot.com/2023/11/18/encouraging-young-women-in-science-technology-engineering-and-math-reflections-from-the-2023-launchpad-mentorship-event/]

More about Hidden Figures on FrogHeart

First mentioned here in a September 2, 2016 posting titled, “Movies and science, science, science (Part 1 of 2),” it focused heavily on Margot Lee Shetterly‘s 2016 nonfiction book, “Hidden Figures: The American Dream and the Untold Story of the Black Women Who Helped Win the Space Race.”

The movie focused primarily on three women but the book cast a wider net. It’s fascinating social history.

They were computers

These days we think of computers as pieces of technology but for a significant chunk of time, computers were people with skills in mathematics. Over time, computers were increasingly women because they worked harder and they worked for less money than men.

I have an embedded video trailer for the then upcoming movie and more about human computers in my September 2, 2016 posting.

There’s also something about the Hidden Figures script writing process in my February 6, 2017 posting; scroll down about 80% of the way. Sadly, I was not using subheads that day.

More Canadian STEM information

The government of Canada (Innovation, Science and Economic Development Canada) has a webpage devoted to STEM initiatives, their own and others,

Canada has emerged as a world leader in many science, technology, engineering and math (STEM) fields, and many new jobs and career opportunities that have emerged in recent years are STEM-related. As more and more businesses and organizations look to innovate, modernize and grow, the demand for people who can fill STEM-related jobs will only increase. Canada needs a workforce that can continue to meet the challenges of the future.

Additionally, young Canadians today need to think carefully and critically about science misinformation. Misinformation is not new, but the intensity and speed in which it has been spreading is both increasing and concerning, especially within the science realm. Science literacy encourages people to question, evaluate, and understand information. By equipping youth with science literacy skills, they will be better positioned to navigate online information and make better decisions based on understanding the difference between personal opinions and evidence-based conclusions.

The Government of Canada and its federal partners have put forward several new opportunities that are aimed at increasing science literacy and the participation of Canadians in STEM, including under-represented groups like women and Indigenous communities.

CanCode (Innovation, Science and Economic Develoment Canada)

CanCode is an Innovation, Science and Economic Development Canada (ISED) funding program that provides financial support for organizations to equip Canadian youth, including traditionally underrepresented groups, with the skills they need to be prepared for further studies. This includes advanced digital skills, like coding and STEM courses, leading to jobs of the future. For more information on the program and future Calls for Proposals, visit the CanCode webpage.

Citizen Science Portal (ISED)

The Citizen Science Portal provides information and access to science projects and science experiments happening in various communities for Canadians to participate in. Some may only be available at certain times of year or in certain areas, but with a little exploration, there are exciting ways to take part in science.

Objective: Moon – including Junior Astronauts (Canadian Space Agency)

The Canadian Space Agency (CSA) aims to engage young Canadians, to get them excited about STEM and future careers in the field of space through a suite of resources for youth and educators. The CSA also helps them understand how they can play a role in Canada’s mission to the Moon. As part of Canada’s participation in Lunar Gateway, the Objective: Moon portfolio of activities, including the Junior Astronauts campaign that ended in July 2021, makes learning science fun and engaging for youth in grades K – 12.

Actua

Actua is a Canadian charitable organization preparing youth, ages 6-26, to be the next generation of leaders and innovators. It engages youth in inclusive, hands-on STEM experiences that build critical employability skills and confidence. Through a national outreach team and a vast member network of universities and colleges, Actua reaches youth in every province and territory in Canada through summer camps, classroom workshops, clubs, teacher training, and community outreach activities.

Mitacs

Mitacs is a national not-for-profit organization that designs and delivers internships and training programs in Canada. Working with universities, companies and federal and provincial governments, Mitacs builds and maintains partnerships that support industrial and social innovation in Canada. More information on Mitacs’ programs can be found here.

Science fairs, STEM competitions and awards

The Government of Canada supports the discoveries and the ingenuity of tomorrow’s scientists, engineers and inventors.

Canada’s science fairs and STEM competitions

The page has not been updated since August 13, 2021.

There are more organizations and STEM efforts (e.g. ScienceRendezvous [a national one day science fair], Beakerhead [a four day science fair held annually in Calgary, Alberta], the Perimeter Institute for Theoretical Physics [they also offer “Inside the Perimeter” with all kinds of resources online]) than are listed on the page, which is a good place to start, but keep on looking.

A reminder: Tundra Launchpad scholarship deadline

Female-identifying or non-binary students in grades 10-12 can apply for Tundra’s next Launchpad Scholarship here [deadline: December 3, 2023].

Reducing microplastic pollution from when you wash your clothes with a new coating

A January 26, 2023 University of Toronto news release (also found on EurekAlert and here but published on January 30, 2023) by Safa Jinje announced a coating the minimizes the amount of microplastic entering the water when your clothes are washed, Note: Links have been removed,

A team of University of Toronto Engineering researchers, led by Professor Kevin Golovin, have designed a solution to reduce the amount of microplastic fibres that are shed when clothes made of synthetic fabrics are washed.   

In a world swamped by fast fashion — an industry that produces a high-volume of cheaply made clothing at an immense cost to the environment — more than two-thirds of clothes are now made of synthetic fabrics. 

When clothes made from synthetic fabrics, such as nylon, polyester, acrylic and rayon, are washed in washing machines, the friction caused by cleaning cycles produces tiny tears in the fabric. These tears in turn cause microplastic fibres measuring less than 500 micrometres in length to break off and make their way down laundry drains to enter waterways.   

Once microplastics end up in oceans and freshwater lakes and rivers, the particles are difficult to remove and will take decades or more to fully break down. The accumulation of this debris in bodies of water can threaten marine life. It can also become part of the human food chain through its presence in food and tap water, with effects on human health that are not yet clear.  

Governments around the world have been looking for ways to minimize the pollution that comes from washing synthetic fabrics. One example is washing machine filters, which have emerged as a leading fix to stop microplastic fibres from entering waterways. In Ontario, legislative members have introduced a bill that would require filters in new washing machines in the province.  

“And yet, when we look at what governments around the world are doing, there is no trend towards preventing the creation of microplastic fibres in the first place,” says Golovin.  

“Our research is pushing in a different direction, where we actually solve the problem rather than putting a Band-Aid on the issue.”   

Golovin and his team have created a two-layer coating made of polydimethylsiloxane (PDMS) brushes, which are linear, single polymer chains grown from a substrate to form a nanoscale surface layer.  

Experiments conducted by the team showed that this coating can significantly reduce microfibre shedding of nylon clothing after repeated laundering. The researchers share their findings in a new paper published in Nature Sustainability

“My lab has been working with this coating on other surfaces, including glass and metals, for a few years now,” says Golovin. “One of the properties we have observed is that it is quite slippery, meaning it has very low friction.” 

PDMS is a silicon-based organic polymer that is found in many household products. Its presence in shampoos makes hair shiny and slippery. It is also used as a food additive in oils to prevent liquids from foaming when bottled. 

Dr. Sudip Kumar Lahiri, a postdoctoral researcher in Golovin’s lab and lead author of the study, had the idea that if they could reduce the friction that occurs during wash cycles with a PDMS-based fabric finish, then that could stop fibres from rubbing together and breaking off during laundering.  

One of the biggest challenges the researchers faced during their study was ensuring the PDMS brushes stayed on the fabric. Lahiri, who is a textile engineer by trade, developed a molecular primer based on his understanding of fabric dyes.  

Lahiri reasoned that the type of bonding responsible for keeping dyed apparel colourful after repeated washes could work for the PDMS coating as well.  

Neither the primer nor the PDMS brushes work separately to decrease the microplastic-fibre shedding. But together, they created a strong finish that reduced the release of microfibres by more than 90% after nine washes.  

“PDMS brushes are environmentally friendly because they are not derived from petroleum like many polymers used today,” says Golovin, who was awarded a Connaught New Researcher award for this work.  

“With the addition of Sudip’s primer, our coating is robust enough to remain on the garment and continue to reduce micro-fibre shedding over time.”  

Since PDMS is naturally a hydrophobic (water-repellent) material, the researchers are currently working on making the coating hydrophilic, so that coated fabrics will be better able to wick away sweat. The team has also expanded the research to look beyond nylon fabrics, including polyester and synthetic-fabric blends.  

“Many textiles are made of multiple types of fibres,” says Golovin. “We are working to formulate the correct polymer architecture so that our coating can durably adhere to all of those fibres simultaneously.” 

Here’s a link to and a citation for the paper,

Polydimethylsiloxane-coated textiles with minimized microplastic pollution by Sudip Kumar Lahiri, Zahra Azimi Dijvejin & Kevin Golovin. Nature Sustainability (2023) DOI: https://doi.org/10.1038/s41893-022-01059-4 Published: 26 January 2023

This paper is behind a paywall.

Virtual panel discussion: Canadian Strategies for Responsible Neurotechnology Innovation on May 16, 2023

The Canadian Science Policy Centre (CSPC) sent a May 11, 2023 notice (via email) about an upcoming event but first, congratulations (Bravo!) are in order,

The Science Meets Parliament [SMP] Program 2023 is now complete and was a huge success. 43 Delegates from across Canada met with 62 Parliamentarians from across the political spectrum on the Hill on May 1-2, 2023.

The SMP Program is championed by CSPC and Canada’s Chief Science Advisor, Dr. Mona Nemer [through the Office of the Chief Science Advisor {OCSA}].

This Program would not have been possible without the generous support of our sponsors: The Royal Military College of Canada, The Stem Cell Network, and the University of British Columbia.

There are 443 seats in Canada’s Parliament with 338 in the House of Commons and 105 in the Senate and 2023 is the third time the SMP programme has been offered. (It was previously held in 2018 and 2022 according to the SMP program page.)

The Canadian programme is relatively new compared to Australia where they’ve had a Science Meets Parliament programme since 1999 (according to a March 20, 2017 essay by Ken Baldwin, Director of Energy Change Institute at Australian National University for The Conversation). The Scottish have had a Science and the Parliament programme since 2000 (according to this 2022 event notice on the Royal Society of Chemistry’s website).

By comparison to the other two, the Canadian programme is a toddler. (We tend not to recognize walking for the major achievement it is.) So, bravo to the CSPC and OCSA on getting 62 Parliamentarians to make time in their schedules to meet a scientist.

Responsible neurotechnology innovation?

From the Canadian Strategies for Responsible Neurotechnology Innovation event page on the CSPC website,

Advances in neurotechnology are redefining the possibilities of improving neurologic health and mental wellbeing, but related ethical, legal, and societal concerns such as privacy of brain data, manipulation of personal autonomy and agency, and non-medical and dual uses are increasingly pressing concerns [emphasis mine]. In this regard, neurotechnology presents challenges not only to Canada’s federal and provincial health care systems, but to existing laws and regulations that govern responsible innovation. In December 2019, just before the pandemic, the OECD [Organisation for Economic Cooperation and Development] Council adopted a Recommendation on Responsible Innovation in Neurotechnology. It is now urging that member states develop right-fit implementation strategies.

What should these strategies look like for Canada? We will propose and discuss opportunities that balance and leverage different professional and governance approaches towards the goal of achieving responsible innovation for the current state of the art, science, engineering, and policy, and in anticipation of the rapid and vast capabilities expected for neurotechnology in the future by and for this country.

Link to the full OECD Recommendation on Responsible Innovation in Neurotechnology

Date: May 16 [2023]

Time: 12:00 pm – 1:30 pm EDT

Event Category: Virtual Session [on Zoom]

Registration Page: https://us02web.zoom.us/webinar/register/WN_-g8d1qubRhumPSCQi6WUtA

The panelists are:

Dr. Graeme Moffat
Neurotechnology entrepreneur & Senior Fellow, Munk School of Global Affairs & Public Policy [University of Toronto]

Dr. Graeme Moffat is a co-founder and scientist with System2 Neurotechnology. He previously was Chief Scientist and VP of Regulatory Affairs at Interaxon, Chief Scientist with ScienceScape (later Chan-Zuckerberg Meta), and a research engineer at Neurelec (a division of Oticon Medical). He served as Managing Editor of Frontiers in Neuroscience, the largest open access scholarly journal series in the field of neuroscience. Dr. Moffat is a Senior Fellow at the Munk School of Global Affairs and Public Policy and an advisor to the OECD’s neurotechnology policy initiative.

Professor Jennifer Chandler
Professor of Law at the Centre for Health Law, Policy and Ethics, University of Ottawa

Jennifer Chandler is Professor of Law at the Centre for Health Law, Policy and Ethics, University of Ottawa. She leads the “Neuroethics Law and Society” Research Pillar for the Brain Mind Research Institute and sits on its Scientific Advisory Council. Her research focuses on the ethical, legal and policy issues in brain sciences and the law. She teaches mental health law and neuroethics, tort law, and medico-legal issues. She is a member of the advisory board for CIHR’s Institute for Neurosciences, Mental Health and Addiction (IMNA) and serves on international editorial boards in the field of law, ethics and neuroscience, including Neuroethics, the Springer Book Series Advances in Neuroethics, and the Palgrave-MacMillan Book Series Law, Neuroscience and Human Behavior. She has published widely in legal, bioethical and health sciences journals and is the co-editor of the book Law and Mind: Mental Health Law and Policy in Canada (2016). Dr. Chandler brings a unique perspective to this panel as her research focuses on the ethical, legal and policy issues at the intersection of the brain sciences and the law. She is active in Canadian neuroscience research funding policy, and regularly contributes to Canadian governmental policy on contentious matters of biomedicine.

Ian Burkhart
Neurotech Advocate and Founder of BCI [brain-computer interface] Pioneers Coalition

Ian is a C5 tetraplegic [also known as quadriplegic] from a diving accident in 2010. He participated in a ground-breaking clinical trial using a brain-computer interface to control muscle stimulation. He is the founder of the BCI Pioneers Coalition, which works to establish ethics, guidelines and best practices for future patients, clinicians, and commercial entities engaging with BCI research. Ian serves as Vice President of the North American Spinal Cord Injury Consortium and chairs their project review committee. He has also worked with Unite2Fight Paralysis to advocate for $9 million of SCI research in his home state of Ohio. Ian has been a Reeve peer mentor since 2015 and helps lead two local SCI networking groups. As the president of the Ian Burkhart Foundation, he raises funds for accessible equipment for the independence of others with SCI. Ian is also a full-time consultant working with multiple medical device companies.

Andrew Atkinson
Manager, Emerging Science Policy, Health Canada

Andrew Atkinson is the Manager of the Emerging Sciences Policy Unit under the Strategic Policy Branch of Health Canada. He oversees coordination of science policy issues across the various regulatory and research programs under the mandate of Health Canada. Prior to Health Canada, he was a manager under Environment Canada’s CEPA new chemicals program, where he oversaw chemical and nanomaterial risk assessments, and the development of risk assessment methodologies. In parallel to domestic work, he has been actively engaged in ISO [International Organization for Standardization and OECD nanotechnology efforts.

Andrew is currently a member of the Canadian delegation to the OECD Working Party on Biotechnology, Nanotechnology and Converging Technologies (BNCT). BNCT aims to contribute original policy analysis on emerging science and technologies, such as gene editing and neurotechnology, including messaging to the global community, convening key stakeholders in the field, and making ground-breaking proposals to policy makers.

Professor Judy Illes
Professor, Division of Neurology, Department of Medicine, Faculty of Medicine, UBC [University of British Columbia]

Dr. Illes is Professor of Neurology and Distinguished Scholar in Neuroethics at the University of British Columbia. She is the Director of Neuroethics Canada, and among her many leadership positions in Canada, she is Vice Chair of the Canadian Institutes of Health Research (CIHR) Advisory Board of the Institute on Neuroscience, Mental Health and Addiction (INMHA), and chair of the International Brain Initiative (www.internationalbraininitiative.org; www.canadianbrain.ca), Director at Large of the Canadian Academy of Health Sciences, and a member of the Board of Directors of the Council of Canadian Academies.

Dr. Illes is a world-renown expert whose research, teaching and outreach are devoted to ethical, legal, social and policy challenges at the intersection of the brain sciences and biomedical ethics. She has made ground breaking contributions to neuroethical thinking for neuroscience discovery and clinical translation across the life span, including in entrepreneurship and in the commercialization of health care. Dr. Illes has a unique and comprehensive overview of the field of neurotechnology and the relevant sectors in Canada.

One concern I don’t see mentioned is bankruptcy (in other words, what happens if the company that made your neural implant goes bankrupt?) either in the panel description or in the OECD recommendation. My April 5, 2022 posting “Going blind when your neural implant company flirts with bankruptcy (long read)” explored that topic and while many of the excerpted materials present a US perspective, it’s easy to see how it could also apply in Canada and elsewhere.

For those of us on the West Coast, this session starts at 9 am. Enjoy!

*June 20, 2023: This sentence changed (We tend not to recognize that walking for the major achievement it is.) to We tend not to recognize walking for the major achievement it is.

Data storytelling in libraries

I had no idea that thee was such enthusiasm for data storytelling but it seems libraries require a kit for the topic. From an August 30, 2022 University of Illinois School of Information Sciences news release (also on EurekAlert), Note: A link has been removed,

A new project led by Associate Professor Kate McDowell and Assistant Professor Matthew Turk of the School of Information Sciences (iSchool) at the University of Illinois Urbana-Champaign will help libraries tell data stories that connect with their audiences. Their project, “Data Storytelling Toolkit for Librarians,” has received a two-year, $99,330 grant from the Institute of Museum and Library Services (IMLS grant RE-250094-OLS-21), under the Laura Bush 21st Century Librarian Program, which supports innovative research by untenured, tenure-track faculty.

“There are thousands of librarians who are skittish about data but love stories,” explained McDowell, who co-teaches a data storytelling course at the iSchool with Turk. “And there are hundreds of librarians who see data as fundamental, but until those librarians have a language through which to connect with the passions of the thousands who love stories, this movement toward strategic data use in the field of libraries will be stifled, along with the potential collaborative creativity of librarians.”

The data storytelling toolkit will provide a set of easy-to-adapt templates, which librarians can use to move quickly from data to story to storytelling. Librarians will be able to use the toolkit to plug in data they already have and generate data visualization and narrative structure options.

“To give an example, public libraries need to communicate employment impact. In this case, the data story will include who has become employed based on library services, how (journey map showing a visual sequence of steps from job seeking to employment), a structure for the story of an individual’s outcomes, and a strong data visualization strategy for communicating this impact,” said McDowell.

According to the researchers, the toolkit will be clearly defined so that librarians understand the potential for communicating with data but also fully adaptable to each librarian’s setting and to the communication needs inside the organization and with the public. The project will focus on community college and public libraries, with initial collaborators to include Ericson Public Library in Boone, Iowa; Oregon City (OR) Public Library; Moraine Valley Community College in Palos Hills, Illinois; Jackson State Community College in Jackson, Tennessee; and The Urbana Free Library.

McDowell’s storytelling research has involved training collaborations with advancement staff both at the University of Illinois Urbana-Champaign and the University of Illinois system; storytelling consulting work for multiple nonprofits including the 50th anniversary of the statewide Prairie Rivers Network that protects Illinois water; and storytelling lectures for the Consortium of Academic and Research Libraries in Illinois (CARLI). McDowell researches and publishes in the areas of storytelling at work, social justice storytelling, and what library storytelling can teach the information sciences about data storytelling. She holds both an MS and PhD in library and information science from Illinois.

Turk also holds an appointment with the Department of Astronomy in the College of Liberal Arts and Sciences at the University of Illinois. His research focuses on how individuals interact with data and how that data is processed and understood. He is a recipient of the prestigious Gordon and Betty Moore Foundation’s Moore Investigator Award in Data-Driven Discovery. Turk holds a PhD in physics from Stanford University.

I found some earlier information about a data storytelling course taught by the two researchers, from a September 25, 2019 University of Illinois School of Information Sciences news release, which provides some additional insight,

Collecting and understanding data is important, but equally important is the ability to tell meaningful stories based on data. Students in the iSchool’s Data Science Storytelling course (IS 590DST) learn data visualization as well as storytelling techniques, a combination that will prove valuable to their employers as they enter the workforce.

The course instructors, Associate Professor and Interim Associate Dean for Academic Affairs Kate McDowell and Assistant Professor Matthew Turk, introduced Data Science Storytelling in fall 2017. The course combines McDowell’s research interests in storytelling practices and applications and Turk’s research interests in data analysis and visualization.

Students in the course learn storytelling concepts, narrative theories, and performance techniques as well as how to develop stories in a collaborative workshop style. They also work with data visualization toolkits, which involves some knowledge of coding.

Ashley Hetrick (MS ’18) took Data Science Storytelling because she wanted “the skills to be able to tell the right story when the time is right for it.” She appreciated the practical approach, which allowed the students to immediately apply the skills they learned, such as developing a story structure and using a pandas DataFrame to support and build a story. Hetrick is using those skills in her current work as assistant director for research data engagement and education at the University of Illinois.

“I combine tools and methods from data science and analytics with storytelling to make sense of my unit’s data and to help researchers make sense of theirs,” she said. “In my experience, few researchers like data for its own sake. They collect, care for, and analyze data because they’re after what all storytellers are after: meaning. They want to find the signal in all of this noise. And they want others to find it too, perhaps long after their own careers are complete. Each dataset is a story and raw material for stories waiting to be told.”

According to Turk, the students who have enrolled in the course have been outstanding, “always finding ways to tell meaningful stories from data.” He hopes they leave the class with an understanding that stories permeate their lives and that shaping the stories they tell others and about others is a responsibility they carry with them.

“One reason that this course means a lot to me is because it gives students the opportunity to really bring together the different threads of study at the iSchool,” Turk said. “It’s a way to combine across levels of technicality, and it gives students permission to take a holistic approach to how they present data.”

I didn’t put much effort into it but did find three other courses on data storytelling, one at the University of Texas (my favourite), one at the University of Toronto, and one (Data Visualization and Storytelling) at the University of British Columbia. The one at the University of British Columbia is available through the business school, the other two are available through information/library science faculties.

Are we spending money on the right research? Government of Canada launches Advisory Panel

it’s a little surprising that this is not being managed by the Council of Canadian Academies (CCA) but perhaps their process is not quite nimble enough (from an October 6, 2022 Innovation, Science and Economic Development Canada news release),

Government of Canada launches Advisory Panel on the Federal Research Support System

Members to recommend enhancements to system to position Canadian researchers for success

October 6, 2022 – Ottawa, Ontario

Canada’s success is in large part due to our world-class researchers and their teams who are globally recognized for unleashing bold new ideas, driving technological breakthroughs and addressing complex societal challenges. The Government of Canada recognizes that for Canada to achieve its full potential, support for science and research must evolve as Canadians push beyond what is currently imaginable and continue to find Canadian-made solutions to the world’s toughest problems.

Today [October 6, 2022], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, and the Honourable Jean-Yves Duclos, Minister of Health, launched the Advisory Panel on the Federal Research Support System. Benefiting from the insights of leaders in the science, research and innovation ecosystem, the panel will provide independent, expert policy advice on the structure, governance and management of the federal system supporting research and talent. This will ensure that Canadian researchers are positioned for even more success now and in the future.

The panel will focus on the relationships among the federal research granting agencies—the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada and the Canadian Institutes of Health Research—and the relationship between these agencies and the Canada Foundation for Innovation.

As the COVID-19 pandemic and climate crisis have shown, addressing the world’s most pressing challenges requires greater collaboration within the Canadian research community, government and industry, as well as with the international community. A cohesive and agile research support system will ensure Canadian researchers can quickly and effectively respond to the questions of today and tomorrow. Optimizing Canada’s research support system will equip researchers to transcend disciplines and borders, seize new opportunities and be responsive to emerging needs and interests to improve Canadians’ health, well-being and prosperity.

Quotes

“Canada is known for world-class research thanks to the enormous capabilities of our researchers. Canadian researchers transform curiosity into bold new ideas that can significantly enhance Canadians’ lives and well-being. With this advisory panel, our government will ensure our support for their research is just as cutting-edge as Canada’s science and research community.”
– The Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry

“Our priority is to support Canada’s world-class scientific community so it can respond effectively to the challenges of today and the future. That’s why we are leveraging the expertise and perspectives of a newly formed advisory panel to maximize the impact of research and downstream innovation, which contributes significantly to Canadians’ well-being and prosperity.”
– The Honourable Jean-Yves Duclos, Minister of Health

Quick facts

The Advisory Panel on the Federal Research Support System has seven members, including the Chair. The members were selected by the Minister of Innovation, Science and Industry and the Minister of Health. The panel will consult with experts and stakeholders to draw on their diverse experiences, expertise and opinions. 

Since 2016, the Government of Canada has committed more than $14 billion to support research and science across Canada. 

Here’s a list of advisory panel members I’ve assembled from the Advisory Panel on the Federal Research Support System: Member biographies webpage,

  • Frédéric Bouchard (Chair) is Dean of the Faculty of Arts and Sciences at the Université de Montréal, where he has been a professor of philosophy of science since 2005.
  • Janet Rossant is a Senior Scientist Emeritus in the Developmental and Stem Cell Biology Program, the Hospital for Sick Children and a Professor Emeritus at the University of Toronto’s Department of Molecular Genetics.
  • [Gilles Patry] is Professor Emeritus and President Emeritus at the University of Ottawa. Following a distinguished career as a consulting engineer, researcher and university administrator, Gilles Patry is now a consultant and board director [Royal Canadian Mint].
  • Yolande E. Chan joined McGill University’s Desautels Faculty of Management as Dean and James McGill Professor in 2021. Her research focuses on innovation, knowledge strategy, digital strategy, digital entrepreneurship, and business-IT alignment.
  • Laurel Schafer is a Professor at the Department of Chemistry at the University of British Columbia. Her research focuses on developing novel organometallic catalysts to carry out difficult transformations in small molecule organic chemistry.
  • Vianne Timmons is the President and Vice-Chancellor of Memorial University of Newfoundland since 2020. She is a nationally and internationally recognized researcher and advocate in the field of inclusive education.
  • Dr. Baljit Singh is a highly accomplished researcher, … . He began his role as Vice-President Research at the University of Saskatchewan in 2021, after serving as Dean of the University of Calgary Faculty of Veterinary Medicine (2016 – 2020), and as Associate Dean of Research at the Western College of Veterinary Medicine at the University of Saskatchewan (2010 – 2016).

Nobody from the North. Nobody who’s worked there or lived there or researched there. It’s not the first time I’ve noticed a lack of representation for the North.

Canada’s golden triangle (Montréal, Toronto, Ottawa) is well represented and, as is often the case, there’s representation for other regions: one member from the Prairies, one member from the Maritimes or Atlantic provinces, and one member from the West.

The mandate indicates they could have five to eight members. With seven spots filled, they could include one more member, one from the North.

Even if they don’t add an eighth member, I’m not ready to abandon all hope for involvement from the North when there’s this, from the mandate,

Communications and deliverables

In pursuing its mandate, and to strengthen its advice, the panel may engage with experts and stakeholders to expand access [emphasis mine] to diverse experience, expertise and opinion, and enhance members’ understanding of the topics at hand.

To allow for frank and open discussion, internal panel deliberations among members will be closed.

The panel will deliver a final confidential report by December 2022 [emphasis mine] to the Ministers including recommendations and considerations regarding the modernization of the research support system. A summary of the panel’s observations on the state of the federal research support system may be made public once its deliberations have concluded. The Ministers may also choose to seek confidential advice and/or feedback from the panel on other issues related to the research system.

The panel may also be asked to deliver an interim confidential report to the Ministers by November 2022 [emphases mine], which will provide the panel’s preliminary observations up to that point.

it seems odd there’s no mention of the Pan-Canadian Artificial Intelligence Strategy. It’s my understanding that the funding goes directly from the federal government to the Canadian Institute for Advanced Research (CIFAR), which then distributes the funds. There are other unmentioned science funding agencies, e.g., the National Research Council of Canada and Genome Canada, which (as far as I know) also receive direct funding. It seems that the panel will not be involved in a comprehensive review of Canada’s research support ecosystem.

Plus, I wonder why everything is being kept ‘confidential’. According the government news release, the panel is tasked with finding ways of “optimizing Canada’s research support system.” Do they have security concerns or is this a temporary state of affairs while the government analysts examine the panel’s report?

Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (2 of 2): Meditations

Dear friend,

I thought it best to break this up a bit. There are a couple of ‘objects’ still to be discussed but this is mostly the commentary part of this letter to you. (Here’s a link for anyone who stumbled here but missed Part 1.)

Ethics, the natural world, social justice, eeek, and AI

Dorothy Woodend in her March 10, 2022 review for The Tyee) suggests some ethical issues in her critique of the ‘bee/AI collaboration’ and she’s not the only one with concerns. UNESCO (United Nations Educational, Scientific and Cultural Organization) has produced global recommendations for ethical AI (see my March 18, 2022 posting). More recently, there’s “Racist and sexist robots have flawed AI,” a June 23, 2022 posting, where researchers prepared a conference presentation and paper about deeply flawed AI still being used in robots.

Ultimately, the focus is always on humans and Woodend has extended the ethical AI conversation to include insects and the natural world. In short, something less human-centric.

My friend, this reference to the de Young exhibit may seem off topic but I promise it isn’t in more ways than one. The de Young Museum in San Francisco (February 22, 2020 – June 27, 2021) also held and AI and art show called, “Uncanny Valley: Being Human in the Age of AI”), from the exhibitions page,

In today’s AI-driven world, increasingly organized and shaped by algorithms that track, collect, and evaluate our data, the question of what it means to be human [emphasis mine] has shifted. Uncanny Valley is the first major exhibition to unpack this question through a lens of contemporary art and propose new ways of thinking about intelligence, nature, and artifice. [emphasis mine]

Courtesy: de Young Museum [downloaded from https://deyoung.famsf.org/exhibitions/uncanny-valley]

As you can see, it hinted (perhaps?) at an attempt to see beyond human-centric AI. (BTW, I featured this ‘Uncanny Valley’ show in my February 25, 2020 posting where I mentioned Stephanie Dinkins [featured below] and other artists.)

Social justice

While the VAG show doesn’t see much past humans and AI, it does touch on social justice. In particular there’s Pod 15 featuring the Algorithmic Justice League (AJL). The group “combine[s] art and research to illuminate the social implications and harms of AI” as per their website’s homepage.

In Pod 9, Stephanie Dinkins’ video work with a robot (Bina48), which was also part of the de Young Museum ‘Uncanny Valley’ show, addresses some of the same issues.

Still of Stephanie Dinkins, “Conversations with Bina48,” 2014–present. Courtesy of the artist [downloaded from https://deyoung.famsf.org/stephanie-dinkins-conversations-bina48-0]

From the the de Young Museum’s Stephanie Dinkins “Conversations with Bina48” April 23, 2020 article by Janna Keegan (Dinkins submitted the same work you see at the VAG show), Note: Links have been removed,

Transdisciplinary artist and educator Stephanie Dinkins is concerned with fostering AI literacy. The central thesis of her social practice is that AI, the internet, and other data-based technologies disproportionately impact people of color, LGBTQ+ people, women, and disabled and economically disadvantaged communities—groups rarely given a voice in tech’s creation. Dinkins strives to forge a more equitable techno-future by generating AI that includes the voices of multiple constituencies …

The artist’s ongoing Conversations with Bina48 takes the form of a series of interactions with the social robot Bina48 (Breakthrough Intelligence via Neural Architecture, 48 exaflops per second). The machine is the brainchild of Martine Rothblatt, an entrepreneur in the field of biopharmaceuticals who, with her wife, Bina, cofounded the Terasem Movement, an organization that seeks to extend human life through cybernetic means. In 2007 Martine commissioned Hanson Robotics to create a robot whose appearance and consciousness simulate Bina’s. The robot was released in 2010, and Dinkins began her work with it in 2014.

Part psychoanalytical discourse, part Turing test, Conversations with Bina48 also participates in a larger dialogue regarding bias and representation in technology. Although Bina Rothblatt is a Black woman, Bina48 was not programmed with an understanding of its Black female identity or with knowledge of Black history. Dinkins’s work situates this omission amid the larger tech industry’s lack of diversity, drawing attention to the problems that arise when a roughly homogenous population creates technologies deployed globally. When this occurs, writes art critic Tess Thackara, “the unconscious biases of white developers proliferate on the internet, mapping our social structures and behaviors onto code and repeating imbalances and injustices that exist in the real world.” One of the most appalling and public of these instances occurred when a Google Photos image-recognition algorithm mislabeled the faces of Black people as “gorillas.”

Eeek

You will find as you go through the ‘imitation game’ a pod with a screen showing your movements through the rooms in realtime on a screen. The installation is called “Creepers” (2021-22). The student team from Vancouver’s Centre for Digital Media (CDM) describes their project this way, from the CDM’s AI-driven Installation Piece for the Vancouver Art Gallery webpage,

Project Description

Kaleidoscope [team name] is designing an installation piece that harnesses AI to collect and visualize exhibit visitor behaviours, and interactions with art, in an impactful and thought-provoking way.

There’s no warning that you’re being tracked and you can see they’ve used facial recognition software to track your movements through the show. It’s claimed on the pod’s signage that they are deleting the data once you’ve left.

‘Creepers’ is an interesting approach to the ethics of AI. The name suggests that even the student designers were aware it was problematic.

For the curious, there’s a description of the other VAG ‘imitation game’ installations provided by CDM students on the ‘Master of Digital Media Students Develop Revolutionary Installations for Vancouver Art Gallery AI Exhibition‘ webpage.

In recovery from an existential crisis (meditations)

There’s something greatly ambitious about “The Imitation Game: Visual Culture in the Age of Artificial Intelligence” and walking up the VAG’s grand staircase affirms that ambition. Bravo to the two curators, Grenville and Entis for an exhibition.that presents a survey (or overview) of artificial intelligence, and its use in and impact on creative visual culture.

I’ve already enthused over the history (specifically Turing, Lovelace, Ovid), admitted to being mesmerized by Scott Eaton’s sculpture/AI videos, and confessed to a fascination (and mild repulsion) regarding Oxman’s honeycombs.

It’s hard to remember all of the ‘objects’ as the curators have offered a jumble of work, almost all of them on screens. Already noted, there’s Norbert Wiener’s The Moth (1949) and there are also a number of other computer-based artworks from the 1960s and 1970s. Plus, you’ll find works utilizing a GAN (generative adversarial network), an AI agent that is explained in the exhibit.

It’s worth going more than once to the show as there is so much to experience.

Why did they do that?

Dear friend, I’ve already commented on the poor flow through the show and It’s hard to tell if the curators intended the experience to be disorienting but this is to the point of chaos, especially when the exhibition is crowded.

I’ve seen Grenville’s shows before. In particular there was “MashUp: The Birth of Modern Culture, a massive survey documenting the emergence of a mode of creativity that materialized in the late 1800s and has grown to become the dominant model of cultural production in the 21st century” and there was “KRAZY! The Delirious World of Anime + Manga + Video Games + Art.” As you can see from the description, he pulls together disparate works and ideas into a show for you to ‘make sense’ of them.

One of the differences between those shows and the “imitation Game: …” is that most of us have some familiarity, whether we like it or not, with modern art/culture and anime/manga/etc. and can try to ‘make sense’ of it.

By contrast, artificial intelligence (which even experts have difficulty defining) occupies an entirely different set of categories; all of them associated with science/technology. This makes for a different kind of show so the curators cannot rely on the audience’s understanding of basics. It’s effectively an art/sci or art/tech show and, I believe, the first of its kind at the Vancouver Art Gallery. Unfortunately, the curators don’t seem to have changed their approach to accommodate that difference.

AI is also at the centre of a current panic over job loss, loss of personal agency, automated racism and sexism, etc. which makes the experience of viewing the show a little tense. In this context, their decision to commission and use ‘Creepers’ seems odd.

Where were Ai-Da and Dall-E-2 and the others?

Oh friend, I was hoping for a robot. Those roomba paintbots didn’t do much for me. All they did was lie there on the floor

To be blunt I wanted some fun and perhaps a bit of wonder and maybe a little vitality. I wasn’t necessarily expecting Ai-Da, an artisitic robot, but something three dimensional and fun in this very flat, screen-oriented show would have been nice.

This image has an empty alt attribute; its file name is image-asset.jpeg
Ai-Da was at the Glastonbury Festival in the U from 23-26th June 2022. Here’s Ai-Da and her Billie Eilish (one of the Glastonbury 2022 headliners) portrait. [downloaded from https://www.ai-darobot.com/exhibition]

Ai-Da was first featured here in a December 17, 2021 posting about performing poetry that she had written in honour of the 700th anniversary of poet Dante Alighieri’s death.

Named in honour of Ada Lovelace, Ai-Da visited the 2022 Venice Biennale as Leah Henrickson and Simone Natale describe in their May 12, 2022 article for Fast Company (Note: Links have been removed),

Ai-Da sits behind a desk, paintbrush in hand. She looks up at the person posing for her, and then back down as she dabs another blob of paint onto the canvas. A lifelike portrait is taking shape. If you didn’t know a robot produced it, this portrait could pass as the work of a human artist.

Ai-Da is touted as the “first robot to paint like an artist,” and an exhibition of her work, called Leaping into the Metaverse, opened at the Venice Biennale.

Ai-Da produces portraits of sitting subjects using a robotic hand attached to her lifelike feminine figure. She’s also able to talk, giving detailed answers to questions about her artistic process and attitudes toward technology. She even gave a TEDx talk about “The Intersection of Art and AI” in Oxford a few years ago. While the words she speaks are programmed, Ai-Da’s creators have also been experimenting with having her write and perform her own poetry.

She has her own website.

If not Ai-Da, what about Dall-E-2? Aaron Hertzmann’s June 20, 2022 commentary, “Give this AI a few words of description and it produces a stunning image – but is it art?” investigates for Salon (Note: Links have been removed),

DALL-E 2 is a new neural network [AI] algorithm that creates a picture from a short phrase or sentence that you provide. The program, which was announced by the artificial intelligence research laboratory OpenAI in April 2022, hasn’t been released to the public. But a small and growing number of people – myself included – have been given access to experiment with it.

As a researcher studying the nexus of technology and art, I was keen to see how well the program worked. After hours of experimentation, it’s clear that DALL-E – while not without shortcomings – is leaps and bounds ahead of existing image generation technology. It raises immediate questions about how these technologies will change how art is made and consumed. It also raises questions about what it means to be creative when DALL-E 2 seems to automate so much of the creative process itself.

A July 4, 2022 article “DALL-E, Make Me Another Picasso, Please” by Laura Lane for The New Yorker has a rebuttal to Ada Lovelace’s contention that creativity is uniquely human (Note: A link has been removed),

“There was this belief that creativity is this deeply special, only-human thing,” Sam Altman, OpenAI’s C.E.O., explained the other day. Maybe not so true anymore, he said. Altman, who wore a gray sweater and had tousled brown hair, was videoconferencing from the company’s headquarters, in San Francisco. DALL-E is still in a testing phase. So far, OpenAI has granted access to a select group of people—researchers, artists, developers—who have used it to produce a wide array of images: photorealistic animals, bizarre mashups, punny collages. Asked by a user to generate “a plate of various alien fruits from another planet photograph,” DALL-E returned something kind of like rambutans. “The rest of mona lisa” is, according to DALL-E, mostly just one big cliff. Altman described DALL-E as “an extension of your own creativity.”

There are other AI artists, in my August 16, 2019 posting, I had this,

AI artists first hit my radar in August 2018 when Christie’s Auction House advertised an art auction of a ‘painting’ by an algorithm (artificial intelligence). There’s more in my August 31, 2018 posting but, briefly, a French art collective, Obvious, submitted a painting, “Portrait of Edmond de Belamy,” that was created by an artificial intelligence agent to be sold for an estimated to $7000 – $10,000. They weren’t even close. According to Ian Bogost’s March 6, 2019 article for The Atlantic, the painting sold for $432,500 In October 2018.

That posting also included AI artist, AICAN. Both artist-AI agents (Obvious and AICAN) are based on GANs (generative adversarial networks) for learning and eventual output. Both artist-AI agents work independently or with human collaborators on art works that are available for purchase.

As might be expected not everyone is excited about AI and visual art. Sonja Drimmer, Professor of Medieval Art, University of Massachusetts at Amherst, provides another perspective on AI, visual art, and, her specialty, art history in her November 1, 2021 essay for The Conversation (Note: Links have been removed),

Over the past year alone, I’ve come across articles highlighting how artificial intelligence recovered a “secret” painting of a “lost lover” of Italian painter Modigliani, “brought to life” a “hidden Picasso nude”, “resurrected” Austrian painter Gustav Klimt’s destroyed works and “restored” portions of Rembrandt’s 1642 painting “The Night Watch.” The list goes on.

As an art historian, I’ve become increasingly concerned about the coverage and circulation of these projects.

They have not, in actuality, revealed one secret or solved a single mystery.

What they have done is generate feel-good stories about AI.

Take the reports about the Modigliani and Picasso paintings.

These were projects executed by the same company, Oxia Palus, which was founded not by art historians but by doctoral students in machine learning.

In both cases, Oxia Palus relied upon traditional X-rays, X-ray fluorescence and infrared imaging that had already been carried out and published years prior – work that had revealed preliminary paintings beneath the visible layer on the artists’ canvases.

The company edited these X-rays and reconstituted them as new works of art by applying a technique called “neural style transfer.” This is a sophisticated-sounding term for a program that breaks works of art down into extremely small units, extrapolates a style from them and then promises to recreate images of other content in that same style.

As you can ‘see’ my friend, the topic of AI and visual art is a juicy one. In fact, I have another example in my June 27, 2022 posting, which is titled, “Art appraised by algorithm.” So, Grenville’s and Entis’ decision to focus on AI and its impact on visual culture is quite timely.

Visual culture: seeing into the future

The VAG Imitation Game webpage lists these categories of visual culture “animation, architecture, art, fashion, graphic design, urban design and video games …” as being represented in the show. Movies and visual art, not mentioned in the write up, are represented while theatre and other performing arts are not mentioned or represented. That’ s not a surprise.

In addition to an area of science/technology that’s not well understood even by experts, the curators took on the truly amorphous (and overwhelming) topic of visual culture. Given that even writing this commentary has been a challenge, I imagine pulling the show together was quite the task.

Grenville often grounds his shows in a history of the subject and, this time, it seems especially striking. You’re in a building that is effectively a 19th century construct and in galleries that reflect a 20th century ‘white cube’ aesthetic, while looking for clues into the 21st century future of visual culture employing technology that has its roots in the 19th century and, to some extent, began to flower in the mid-20th century.

Chung’s collaboration is one of the only ‘optimistic’ notes about the future and, as noted earlier, it bears a resemblance to Wiener’s 1949 ‘Moth’

Overall, it seems we are being cautioned about the future. For example, Oxman’s work seems bleak (bees with no flowers to pollinate and living in an eternal spring). Adding in ‘Creepers’ and surveillance along with issues of bias and social injustice reflects hesitation and concern about what we will see, who sees it, and how it will be represented visually.

Learning about robots, automatons, artificial intelligence, and more

I wish the Vancouver Art Gallery (and Vancouver’s other art galleries) would invest a little more in audience education. A couple of tours, by someone who may or may not know what they’re talking, about during the week do not suffice. The extra material about Stephanie Dinkins and her work (“Conversations with Bina48,” 2014–present) came from the de Young Museum’s website. In my July 26, 2021 commentary on North Vancouver’s Polygon Gallery 2021 show “Interior Infinite,” I found background information for artist Zanele Muholi on the Tate Modern’s website. There is nothing on the VAG website that helps you to gain some perspective on the artists’ works.

It seems to me that if the VAG wants to be considered world class, it should conduct itself accordingly and beefing up its website with background information about their current shows would be a good place to start.

Robots, automata, and artificial intelligence

Prior to 1921, robots were known exclusively as automatons. These days, the word ‘automaton’ (or ‘automata’ in the plural) seems to be used to describe purely mechanical representations of humans from over 100 years ago whereas the word ‘robot’ can be either ‘humanlike’ or purely machine, e.g. a mechanical arm that performs the same function over and over. I have a good February 24, 2017 essay on automatons by Miguel Barral for OpenMind BBVA*, which provides some insight into the matter,

The concept of robot is relatively recent. The idea was introduced in 1921 by the Czech writer Karel Capek in his work R.U.R to designate a machine that performs tasks in place of man. But their predecessors, the automatons (from the Greek automata, or “mechanical device that works by itself”), have been the object of desire and fascination since antiquity. Some of the greatest inventors in history, such as Leonardo Da Vinci, have contributed to our fascination with these fabulous creations:

The Al-Jazari automatons

The earliest examples of known automatons appeared in the Islamic world in the 12th and 13th centuries. In 1206, the Arab polymath Al-Jazari, whose creations were known for their sophistication, described some of his most notable automatons: an automatic wine dispenser, a soap and towels dispenser and an orchestra-automaton that operated by the force of water. This latter invention was meant to liven up parties and banquets with music while floating on a pond, lake or fountain.

As the water flowed, it started a rotating drum with pegs that, in turn, moved levers whose movement produced different sounds and movements. As the pegs responsible for the musical notes could be exchanged for different ones in order to interpret another melody, it is considered one of the first programmable machines in history.

If you’re curious about automata, my friend, I found this Sept. 26, 2016 ABC news radio news item about singer Roger Daltrey’s and his wife, Heather’s auction of their collection of 19th century French automata (there’s an embedded video showcasing these extraordinary works of art). For more about automata, robots, and androids, there’s an excellent May 4, 2022 article by James Vincent, ‘A visit to the human factory; How to build the world’s most realistic robot‘ for The Verge; Vincent’s article is about Engineered Arts, the UK-based company that built Ai-Da.

AI is often used interchangeably with ‘robot’ but they aren’t the same. Not all robots have AI integrated into their processes. At its simplest AI is an algorithm or set of algorithms, which may ‘live’ in a CPU and be effectively invisible or ‘live’ in or make use of some kind of machine and/or humanlike body. As the experts have noted, the concept of artificial intelligence is a slippery concept.

*OpenMind BBVA is a Spanish multinational financial services company, Banco Bilbao Vizcaya Argentaria (BBVA), which runs the non-profit project, OpenMind (About us page) to disseminate information on robotics and so much more.*

You can’t always get what you want

My friend,

I expect many of the show’s shortcomings (as perceived by me) are due to money and/or scheduling issues. For example, Ai-Da was at the Venice Biennale and if there was a choice between the VAG and Biennale, I know where I’d be.

Even with those caveats in mind, It is a bit surprising that there were no examples of wearable technology. For example, Toronto’s Tapestry Opera recently performed R.U.R. A Torrent of Light (based on the word ‘robot’ from Karel Čapek’s play, R.U.R., ‘Rossumovi Univerzální Roboti’), from my May 24, 2022 posting,

I have more about tickets prices, dates, and location later in this post but first, here’s more about the opera and the people who’ve created it from the Tapestry Opera’s ‘R.U.R. A Torrent of Light’ performance webpage,

“This stunning new opera combines dance, beautiful multimedia design, a chamber orchestra including 100 instruments creating a unique electronica-classical sound, and wearable technology [emphasis mine] created with OCAD University’s Social Body Lab, to create an immersive and unforgettable science-fiction experience.”

And, from later in my posting,

“Despite current stereotypes, opera was historically a launchpad for all kinds of applied design technologies. [emphasis mine] Having the opportunity to collaborate with OCAD U faculty is an invigorating way to reconnect to that tradition and foster connections between art, music and design, [emphasis mine]” comments the production’s Director Michael Hidetoshi Mori, who is also Tapestry Opera’s Artistic Director. 

That last quote brings me back to the my comment about theatre and performing arts not being part of the show. Of course, the curators couldn’t do it all but a website with my hoped for background and additional information could have helped to solve the problem.

The absence of the theatrical and performing arts in the VAG’s ‘Imitation Game’ is a bit surprising as the Council of Canadian Academies (CCA) in their third assessment, “Competing in a Global Innovation Economy: The Current State of R&D in Canada” released in 2018 noted this (from my April 12, 2018 posting),

Canada, relative to the world, specializes in subjects generally referred to as the
humanities and social sciences (plus health and the environment), and does
not specialize as much as others in areas traditionally referred to as the physical
sciences and engineering. Specifically, Canada has comparatively high levels
of research output in Psychology and Cognitive Sciences, Public Health and
Health Services, Philosophy and Theology, Earth and Environmental Sciences,
and Visual and Performing Arts. [emphasis mine] It accounts for more than 5% of world research in these fields. Conversely, Canada has lower research output than expected in Chemistry, Physics and Astronomy, Enabling and Strategic Technologies,
Engineering, and Mathematics and Statistics. The comparatively low research
output in core areas of the natural sciences and engineering is concerning,
and could impair the flexibility of Canada’s research base, preventing research
institutions and researchers from being able to pivot to tomorrow’s emerging
research areas. [p. xix Print; p. 21 PDF]

US-centric

My friend,

I was a little surprised that the show was so centered on work from the US given that Grenville has curated ate least one show where there was significant input from artists based in Asia. Both Japan and Korea are very active with regard to artificial intelligence and it’s hard to believe that their artists haven’t kept pace. (I’m not as familiar with China and its AI efforts, other than in the field of facial recognition, but it’s hard to believe their artists aren’t experimenting.)

The Americans, of course, are very important developers in the field of AI but they are not alone and it would have been nice to have seen something from Asia and/or Africa and/or something from one of the other Americas. In fact, anything which takes us out of the same old, same old. (Luba Elliott wrote this (2019/2020/2021?) essay, “Artificial Intelligence Art from Africa and Black Communities Worldwide” on Aya Data if you want to get a sense of some of the activity on the African continent. Elliott does seem to conflate Africa and Black Communities, for some clarity you may want to check out the Wikipedia entry on Africanfuturism, which contrasts with this August 12, 2020 essay by Donald Maloba, “What is Afrofuturism? A Beginner’s Guide.” Maloba also conflates the two.)

As it turns out, Luba Elliott presented at the 2019 Montréal Digital Spring event, which brings me to Canada’s artificial intelligence and arts scene.

I promise I haven’t turned into a flag waving zealot, my friend. It’s just odd there isn’t a bit more given that machine learning was pioneered at the University of Toronto. Here’s more about that (from Wikipedia entry for Geoffrey Hinston),

Geoffrey Everest HintonCCFRSFRSC[11] (born 6 December 1947) is a British-Canadian cognitive psychologist and computer scientist, most noted for his work on artificial neural networks.

Hinton received the 2018 Turing Award, together with Yoshua Bengio [Canadian scientist] and Yann LeCun, for their work on deep learning.[24] They are sometimes referred to as the “Godfathers of AI” and “Godfathers of Deep Learning“,[25][26] and have continued to give public talks together.[27][28]

Some of Hinton’s work was started in the US but since 1987, he has pursued his interests at the University of Toronto. He wasn’t proven right until 2012. Katrina Onstad’s February 29, 2018 article (Mr. Robot) for Toronto Life is a gripping read about Hinton and his work on neural networks. BTW, Yoshua Bengio (co-Godfather) is a Canadian scientist at the Université de Montréal and Yann LeCun (co-Godfather) is a French scientist at New York University.

Then, there’s another contribution, our government was the first in the world to develop a national artificial intelligence strategy. Adding those developments to the CCA ‘State of Science’ report findings about visual arts and performing arts, is there another word besides ‘odd’ to describe the lack of Canadian voices?

You’re going to point out the installation by Ben Bogart (a member of Simon Fraser University’s Metacreation Lab for Creative AI and instructor at the Emily Carr University of Art + Design (ECU)) but it’s based on the iconic US scifi film, 2001: A Space Odyssey. As for the other Canadian, Sougwen Chung, she left Canada pretty quickly to get her undergraduate degree in the US and has since moved to the UK. (You could describe hers as the quintessential success story, i.e., moving from Canada only to get noticed here after success elsewhere.)

Of course, there are the CDM student projects but the projects seem less like an exploration of visual culture than an exploration of technology and industry requirements, from the ‘Master of Digital Media Students Develop Revolutionary Installations for Vancouver Art Gallery AI Exhibition‘ webpage, Note: A link has been removed,

In 2019, Bruce Grenville, Senior Curator at Vancouver Art Gallery, approached [the] Centre for Digital Media to collaborate on several industry projects for the forthcoming exhibition. Four student teams tackled the project briefs over the course of the next two years and produced award-winning installations that are on display until October 23 [2022].

Basically, my friend, it would have been nice to see other voices or, at the least, an attempt at representing other voices and visual cultures informed by AI. As for Canadian contributions, maybe put something on the VAG website?

Playing well with others

it’s always a mystery to me why the Vancouver cultural scene seems comprised of a set of silos or closely guarded kingdoms. Reaching out to the public library and other institutions such as Science World might have cost time but could have enhanced the show

For example, one of the branches of the New York Public Library ran a programme called, “We are AI” in March 2022 (see my March 23, 2022 posting about the five-week course, which was run as a learning circle). The course materials are available for free (We are AI webpage) and I imagine that adding a ‘visual culture module’ wouldn’t be that difficult.

There is one (rare) example of some Vancouver cultural institutions getting together to offer an art/science programme and that was in 2017 when the Morris and Helen Belkin Gallery (at the University of British Columbia; UBC) hosted an exhibition of Santiago Ramon y Cajal’s work (see my Sept. 11, 2017 posting about the gallery show) along with that show was an ancillary event held by the folks at Café Scientifique at Science World and featuring a panel of professionals from UBC’s Faculty of Medicine and Dept. of Psychology, discussing Cajal’s work.

In fact, where were the science and technology communities for this show?

On a related note, the 2022 ACM SIGGRAPH conference (August 7 – 11, 2022) is being held in Vancouver. (ACM is the Association for Computing Machinery; SIGGRAPH is for Special Interest Group on Computer Graphics and Interactive Techniques.) SIGGRAPH has been holding conferences in Vancouver every few years since at least 2011.

At this year’s conference, they have at least two sessions that indicate interests similar to the VAG’s. First, there’s Immersive Visualization for Research, Science and Art which includes AI and machine learning along with other related topics. There’s also, Frontiers Talk: Art in the Age of AI: Can Computers Create Art?

This is both an international conference and an exhibition (of art) and the whole thing seems to have kicked off on July 25, 2022. If you’re interested, the programme can be found here and registration here.

Last time SIGGRAPH was here the organizers seemed interested in outreach and they offered some free events.

In the end

It was good to see the show. The curators brought together some exciting material. As is always the case, there were some missed opportunities and a few blind spots. But all is not lost.

July 27, 2022, the VAG held a virtual event with an artist,

Gwenyth Chao to learn more about what happened to the honeybees and hives in Oxman’s Synthetic Apiary project. As a transdisciplinary artist herself, Chao will also discuss the relationship between art, science, technology and design. She will then guide participants to create a space (of any scale, from insect to human) inspired by patterns found in nature.

Hopefully there will be more more events inspired by specific ‘objects’. Meanwhile, August 12, 2022, the VAG is hosting,

… in partnership with the Canadian Music Centre BC, New Music at the Gallery is a live concert series hosted by the Vancouver Art Gallery that features an array of musicians and composers who draw on contemporary art themes.

Highlighting a selection of twentieth- and twenty-first-century music compositions, this second concert, inspired by the exhibition The Imitation Game: Visual Culture in the Age of Artificial Intelligence, will spotlight The Iliac Suite (1957), the first piece ever written using only a computer, and Kaija Saariaho’s Terra Memoria (2006), which is in a large part dependent on a computer-generated musical process.

It would be lovely if they could include an Ada Lovelace Day event. This is an international celebration held on October 11, 2022.

Do go. Do enjoy, my friend.

Quantum Mechanics & Gravity conference (August 15 – 19, 2022) launches Vancouver (Canada)-based Quantum Gravity Institute and more

I received (via email) a July 21, 2022 news release about the launch of a quantum science initiative in Vancouver (BTW, I have more about the Canadian quantum scene later in this post),

World’s top physicists unite to tackle one of Science’s greatest
mysteries


Vancouver-based Quantum Gravity Society leads international quest to
discover Theory of Quantum Gravity

Vancouver, B.C. (July 21, 2022): More than two dozen of the world’s
top physicists, including three Nobel Prize winners, will gather in
Vancouver this August for a Quantum Gravity Conference that will host
the launch a Vancouver-based Quantum Gravity Institute (QGI) and a
new global research collaboration that could significantly advance our
understanding of physics and gravity and profoundly change the world as
we know it.

For roughly 100 years, the world’s understanding of physics has been
based on Albert Einstein’s General Theory of Relativity (GR), which
explored the theory of space, time and gravity, and quantum mechanics
(QM), which focuses on the behaviour of matter and light on the atomic
and subatomic scale. GR has given us a deep understanding of the cosmos,
leading to space travel and technology like atomic clocks, which govern
global GPS systems. QM is responsible for most of the equipment that
runs our world today, including the electronics, lasers, computers, cell
phones, plastics, and other technologies that support modern
transportation, communications, medicine, agriculture, energy systems
and more.

While each theory has led to countless scientific breakthroughs, in many
cases, they are incompatible and seemingly contradictory. Discovering a
unifying connection between these two fundamental theories, the elusive
Theory of Quantum Gravity, could provide the world with a deeper
understanding of time, gravity and matter and how to potentially control
them. It could also lead to new technologies that would affect most
aspects of daily life, including how we communicate, grow food, deliver
health care, transport people and goods, and produce energy.

“Discovering the Theory of Quantum Gravity could lead to the
possibility of time travel, new quantum devices, or even massive new
energy resources that produce clean energy and help us address climate
change,” said Philip Stamp, Professor, Department of Physics and
Astronomy, University of British Columbia, and Visiting Associate in
Theoretical Astrophysics at Caltech [California Institute of Technology]. “The potential long-term ramifications of this discovery are so incredible that life on earth 100
years from now could look as miraculous to us now as today’s
technology would have seemed to people living 100 years ago.”

The new Quantum Gravity Institute and the conference were founded by the
Quantum Gravity Society, which was created in 2022 by a group of
Canadian technology, business and community leaders, and leading
physicists. Among its goals are to advance the science of physics and
facilitate research on the Theory of Quantum Gravity through initiatives
such as the conference and assembling the world’s leading archive of
scientific papers and lectures associated with the attempts to reconcile
these two theories over the past century.

Attending the Quantum Gravity Conference in Vancouver (August 15-19 [2022])
will be two dozen of the world’s top physicists, including Nobel
Laureates Kip Thorne, Jim Peebles and Sir Roger Penrose, as well as
physicists Baron Martin Rees, Markus Aspelmeyer, Viatcheslav Mukhanov
and Paul Steinhardt. On Wednesday, August 17, the conference will be
open to the public, providing them with a once-in-a-lifetime opportunity
to attend keynote addresses from the world’s pre-eminent physicists.
… A noon-hour discussion on the importance of the
research will be delivered by Kip Thorne, the former Feynman Professor
of physics at Caltech. Thorne is well known for his popular books, and
for developing the original idea for the 2014 film “Interstellar.” He
was also crucial to the development of the book “Contact” by Carl Sagan,
which was also made into a motion picture.

“We look forward to welcoming many of the world’s brightest minds to
Vancouver for our first Quantum Gravity Conference,” said Frank
Giustra, CEO Fiore Group and Co-Founder, Quantum Gravity Society. “One
of the goals of our Society will be to establish Vancouver as a
supportive home base for research and facilitate the scientific
collaboration that will be required to unlock this mystery that has
eluded some of the world’s most brilliant physicists for so long.”

“The format is key,” explains Terry Hui, UC Berkley Physics alumnus
and Co-Founder, Quantum Gravity Society [and CEO of Concord Pacific].
“Like the Solvay Conference nearly 100 years ago, the Quantum Gravity
Conference will bring top scientists together in salon-style gatherings. The
relaxed evening format following the conference will reduce barriers and
allow these great minds to freely exchange ideas. I hope this will help accelerate
the solution of this hundred-year bottleneck between theories relatively
soon.”

“As amazing as our journey of scientific discovery has been over the
past century, we still have so much to learn about how the universe
works on a macro, atomic and subatomic level,” added Paul Lee,
Managing Partner, Vanedge Capital, and Co-Founder, Quantum Gravity
Society. “New experiments and observations capable of advancing work
on this scientific challenge are becoming increasingly possible in
today’s physics labs and using new astronomical tools. The Quantum
Gravity Society looks forward to leveraging that growing technical
capacity with joint theory and experimental work that harnesses the
collective expertise of the world’s great physicists.”

About Quantum Gravity Society

Quantum Gravity Society was founded in Vancouver, Canada in 2020 by a
group of Canadian business, technology and community leaders, and
leading international physicists. The Society’s founding members
include Frank Giustra (Fiore Group), Terry Hui (Concord Pacific), Paul
Lee and Moe Kermani (Vanedge Capital) and Markus Frind (Frind Estate
Winery), along with renowned physicists Abhay Ashtekar, Sir Roger
Penrose, Philip Stamp, Bill Unruh and Birgitta Whaley. For more
information, visit Quantum Gravity Society.

About the Quantum Gravity Conference (Vancouver 2022)


The inaugural Quantum Gravity Conference (August 15-19 [2022]) is presented by
Quantum Gravity Society, Fiore Group, Vanedge Capital, Concord Pacific,
The Westin Bayshore, Vancouver and Frind Estate Winery. For conference
information, visit conference.quantumgravityinstitute.ca. To
register to attend the conference, visit Eventbrite.com.

The front page on the Quantum Gravity Society website is identical to the front page for the Quantum Mechanics & Gravity: Marrying Theory & Experiment conference website. It’s probable that will change with time.

This seems to be an in-person event only.

The site for the conference is in an exceptionally pretty location in Coal Harbour and it’s close to Stanley Park (a major tourist attraction),

The Westin Bayshore, Vancouver
1601 Bayshore Drive
Vancouver, BC V6G 2V4
View map

Assuming that most of my readers will be interested in the ‘public’ day, here’s more from the Wednesday, August 17, 2022 registration page on Eventbrite,

Tickets:

  • Corporate Table of 8 all day access – includes VIP Luncheon: $1,100
  • Ticket per person all day access – includes VIP Luncheon: $129
  • Ticket per person all day access (no VIP luncheon): $59
  • Student / Academia Ticket – all day access (no VIP luncheon): $30

Date:

Wednesday, August 17, 2022 @ 9:00 a.m. – 5:15 p.m. (PT)

Schedule:

  • Registration Opens: 8:00 a.m.
  • Morning Program: 9:00 a.m. – 12:30 p.m.
  • VIP Lunch: 12:30 p.m. – 2:30 p.m.
  • Afternoon Program: 2:30 p.m. – 4:20 p.m.
  • Public Discussion / Debate: 4:20 p.m. – 5:15 p.m.

Program:

9:00 a.m. Session 1: Beginning of the Universe

  • Viatcheslav Mukhanov – Theoretical Physicist and Cosmologist, University of Munich
  • Paul Steinhardt – Theoretical Physicist, Princeton University

Session 2: History of the Universe

  • Jim Peebles, 2019 Nobel Laureate, Princeton University
  • Baron Martin Rees – Cosmologist and Astrophysicist, University of Cambridge
  • Sir Roger Penrose, 2020 Nobel Laureate, University of Oxford (via zoom)

12:30 p.m. VIP Lunch Session: Quantum Gravity — Why Should We Care?

  • Kip Thorne – 2017 Nobel Laureate, Executive Producer of blockbuster film “Interstellar”

2:30 p.m. Session 3: What do Experiments Say?

  • Markus Aspelmeyer – Experimental Physicist, Quantum Optics and Optomechanics Leader, University of Vienna
  • Sir Roger Penrose – 2020 Nobel Laureate (via zoom)

Session 4: Time Travel

  • Kip Thorne – 2017 Nobel Laureate, Executive Producer of blockbuster film “Interstellar”

Event Partners

  • Quantum Gravity Society
  • Westin Bayshore
  • Fiore Group
  • Concord Pacific
  • VanEdge Capital
  • Frind Estate Winery

Marketing Partners

  • BC Business Council
  • Greater Vancouver Board of Trade

Please note that Sir Roger Penrose will be present via Zoom but all the others will be there in the room with you.

Given that Kip Thorne won his 2017 Nobel Prize in Physics (with Rainer Weiss and Barry Barish) for work on gravitational waves, it’s surprising there’s no mention of this in the publicity for a conference on quantum gravity. Finding gravitational waves in 2016 was a very big deal (see Josh Fischman’s and Steve Mirsky’s February 11, 2016 interview with Kip Thorne for Scientific American).

Some thoughts on this conference and the Canadian quantum scene

This conference has a fascinating collection of players. Even I recognized some of the names, e.g., Penrose, Rees, Thorne.

The academics were to be expected and every presenter is an academic, often with their own Wikipedia page. Weirdly, there’s no one from the Perimeter Institute Institute for Theoretical Physics or TRIUMF (a national physics laboratory and centre for particle acceleration) or from anywhere else in Canada, which may be due to their academic specialty rather than an attempt to freeze out Canadian physicists. In any event, the conference academics are largely from the US (a lot of them from CalTech and Stanford) and from the UK.

The business people are a bit of a surprise. The BC Business Council and the Greater Vancouver Board of Trade? Frank Giustra who first made his money with gold mines, then with Lionsgate Entertainment, and who continues to make a great deal of money with his equity investment company, Fiore Group? Terry Hui, Chief Executive Office of Concord Pacific, a real estate development company? VanEdge Capital, an early stage venture capital fund? A winery? Missing from this list is D-Wave Systems, Canada’s quantum calling card and local company. While their area of expertise is quantum computing, I’d still expect to see them present as sponsors. *ETA December 6, 2022: I just looked at the conference page again and D-Wave is now listed as a sponsor.*

The academics? These people are not cheap dates (flights, speaker’s fees, a room at the Bayshore, meals). This is a very expensive conference and $129 for lunch and a daypass is likely a heavily subsidized ticket.

Another surprise? No government money/sponsorship. I don’t recall seeing another academic conference held in Canada without any government participation.

Canadian quantum scene

A National Quantum Strategy was first announced in the 2021 Canadian federal budget and reannounced in the 2022 federal budget (see my April 19, 2022 posting for a few more budget details).. Or, you may find this National Quantum Strategy Consultations: What We Heard Report more informative. There’s also a webpage for general information about the National Quantum Strategy.

As evidence of action, the Natural Science and Engineering Research Council of Canada (NSERC) announced new grant programmes made possible by the National Quantum Strategy in a March 15, 2022 news release,

Quantum science and innovation are giving rise to promising advances in communications, computing, materials, sensing, health care, navigation and other key areas. The Government of Canada is committed to helping shape the future of quantum technology by supporting Canada’s quantum sector and establishing leadership in this emerging and transformative domain.

Today [March 15, 2022], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, is announcing an investment of $137.9 million through the Natural Sciences and Engineering Research Council of Canada’s (NSERC) Collaborative Research and Training Experience (CREATE) grants and Alliance grants. These grants are an important next step in advancing the National Quantum Strategy and will reinforce Canada’s research strengths in quantum science while also helping to develop a talent pipeline to support the growth of a strong quantum community.

Quick facts

Budget 2021 committed $360 million to build the foundation for a National Quantum Strategy, enabling the Government of Canada to build on previous investments in the sector to advance the emerging field of quantum technologies. The quantum sector is key to fuelling Canada’s economy, long-term resilience and growth, especially as technologies mature and more sectors harness quantum capabilities.

Development of quantum technologies offers job opportunities in research and science, software and hardware engineering and development, manufacturing, technical support, sales and marketing, business operations and other fields.

The Government of Canada also invested more than $1 billion in quantum research and science from 2009 to 2020—mainly through competitive granting agency programs, including Natural Sciences and Engineering Research Council of Canada programs and the Canada First Research Excellence Fund—to help establish Canada as a global leader in quantum science.

In addition, the government has invested in bringing new quantum technologies to market, including investments through Canada’s regional development agencies, the Strategic Innovation Fund and the National Research Council of Canada’s Industrial Research Assistance Program.

Bank of Canada, cryptocurrency, and quantum computing

My July 25, 2022 posting features a special project, Note: All emphases are mine,

… (from an April 14, 2022 HKA Marketing Communications news release on EurekAlert),

Multiverse Computing, a global leader in quantum computing solutions for the financial industry and beyond with offices in Toronto and Spain, today announced it has completed a proof-of-concept project with the Bank of Canada through which the parties used quantum computing to simulate the adoption of cryptocurrency as a method of payment by non-financial firms.

“We are proud to be a trusted partner of the first G7 central bank to explore modelling of complex networks and cryptocurrencies through the use of quantum computing,” said Sam Mugel, CTO [Chief Technical Officer] at Multiverse Computing. “The results of the simulation are very intriguing and insightful as stakeholders consider further research in the domain. Thanks to the algorithm we developed together with our partners at the Bank of Canada, we have been able to model a complex system reliably and accurately given the current state of quantum computing capabilities.”

Multiverse Computing conducted its innovative work related to applying quantum computing for modelling complex economic interactions in a research project with the Bank of Canada. The project explored quantum computing technology as a way to simulate complex economic behaviour that is otherwise very difficult to simulate using traditional computational techniques.

By implementing this solution using D-Wave’s annealing quantum computer, the simulation was able to tackle financial networks as large as 8-10 players, with up to 2^90 possible network configurations. Note that classical computing approaches cannot solve large networks of practical relevance as a 15-player network requires as many resources as there are atoms in the universe.

Quantum Technologies and the Council of Canadian Academies (CCA)

In a May 26, 2022 blog posting the CCA announced its Expert Panel on Quantum Technologies (they will be issuing a Quantum Technologies report),

The emergence of quantum technologies will impact all sectors of the Canadian economy, presenting significant opportunities but also risks. At the request of the National Research Council of Canada (NRC) and Innovation, Science and Economic Development Canada (ISED), the Council of Canadian Academies (CCA) has formed an Expert Panel to examine the impacts, opportunities, and challenges quantum technologies present for Canadian industry, governments, and Canadians. Raymond Laflamme, O.C., FRSC, Canada Research Chair in Quantum Information and Professor in the Department of Physics and Astronomy at the University of Waterloo, will serve as Chair of the Expert Panel.

“Quantum technologies have the potential to transform computing, sensing, communications, healthcare, navigation and many other areas,” said Dr. Laflamme. “But a close examination of the risks and vulnerabilities of these technologies is critical, and I look forward to undertaking this crucial work with the panel.”

As Chair, Dr. Laflamme will lead a multidisciplinary group with expertise in quantum technologies, economics, innovation, ethics, and legal and regulatory frameworks. The Panel will answer the following question:

In light of current trends affecting the evolution of quantum technologies, what impacts, opportunities and challenges do these present for Canadian industry, governments and Canadians more broadly?

The Expert Panel on Quantum Technologies:

Raymond Laflamme, O.C., FRSC (Chair), Canada Research Chair in Quantum Information; the Mike and Ophelia Lazaridis John von Neumann Chair in Quantum Information; Professor, Department of Physics and Astronomy, University of Waterloo

Sally Daub, Founder and Managing Partner, Pool Global Partners

Shohini Ghose, Professor, Physics and Computer Science, Wilfrid Laurier University; NSERC Chair for Women in Science and Engineering

Paul Gulyas, Senior Innovation Executive, IBM Canada

Mark W. Johnson, Senior Vice-President, Quantum Technologies and Systems Products, D-Wave Systems

Elham Kashefi, Professor of Quantum Computing, School of Informatics, University of Edinburgh; Directeur de recherche au CNRS, LIP6 Sorbonne Université

Mauritz Kop, Fellow and Visiting Scholar, Stanford Law School, Stanford University

Dominic Martin, Professor, Département d’organisation et de ressources humaines, École des sciences de la gestion, Université du Québec à Montréal

Darius Ornston, Associate Professor, Munk School of Global Affairs and Public Policy, University of Toronto

Barry Sanders, FRSC, Director, Institute for Quantum Science and Technology, University of Calgary

Eric Santor, Advisor to the Governor, Bank of Canada

Christian Sarra-Bournet, Quantum Strategy Director and Executive Director, Institut quantique, Université de Sherbrooke

Stephanie Simmons, Associate Professor, Canada Research Chair in Quantum Nanoelectronics, and CIFAR Quantum Information Science Fellow, Department of Physics, Simon Fraser University

Jacqueline Walsh, Instructor; Director, initio Technology & Innovation Law Clinic, Dalhousie University

You’ll note that both the Bank of Canada and D-Wave Systems are represented on this expert panel.

The CCA Quantum Technologies report (in progress) page can be found here.

Does it mean anything?

Since I only skim the top layer of information (disparagingly described as ‘high level’ by the technology types I used to work with), all I can say is there’s a remarkable level of interest from various groups who are self-organizing. (The interest is international as well. I found the International Society for Quantum Gravity [ISQG], which had its first meeting in 2021.)

I don’t know what the purpose is other than it seems the Canadian focus seems to be on money. The board of trade and business council have no interest in primary research and the federal government’s national quantum strategy is part of Innovation, Science and Economic Development (ISED) Canada’s mandate. You’ll notice ‘science’ is sandwiched between ‘innovation’, which is often code for business, and economic development.

The Bank of Canada’s monetary interests are quite obvious.

The Perimeter Institute mentioned earlier was founded by Mike Lazaridis (from his Wikipedia entry) Note: Links have been removed,

… a Canadian businessman [emphasis mine], investor in quantum computing technologies, and founder of BlackBerry, which created and manufactured the BlackBerry wireless handheld device. With an estimated net worth of US$800 million (as of June 2011), Lazaridis was ranked by Forbes as the 17th wealthiest Canadian and 651st in the world.[4]

In 2000, Lazaridis founded and donated more than $170 million to the Perimeter Institute for Theoretical Physics.[11][12] He and his wife Ophelia founded and donated more than $100 million to the Institute for Quantum Computing at the University of Waterloo in 2002.[8]

That Institute for Quantum Computing? There’s an interesting connection. Raymond Laflamme, the chair for the CCA expert panel, was its director for a number of years and he’s closely affiliated with the Perimeter Institute. (I’m not suggesting anything nefarious or dodgy. It’s a small community in Canada and relationships tend to be tightly interlaced.) I’m surprised he’s not part of the quantum mechanics and gravity conference but that could have something to do with scheduling.

One last interesting bit about Laflamme, from his Wikipedia entry, Note: Links have been removed)

As Stephen Hawking’s PhD student, he first became famous for convincing Hawking that time does not reverse in a contracting universe, along with Don Page. Hawking told the story of how this happened in his famous book A Brief History of Time in the chapter The Arrow of Time.[3] Later on Laflamme made a name for himself in quantum computing and quantum information theory, which is what he is famous for today.

Getting back to the Quantum Mechanics & Gravity: Marrying Theory & Experiment, the public day looks pretty interesting and when is the next time you’ll have a chance to hobnob with all those Nobel Laureates?

Art/Sci exhibit in Toronto, Canada: “These are a Few of Our Favourite Bees” June 22 – July 16, 2022

A “These are a few of Our Favourite Bees” upcoming exhibitions notice on the Campbell House Museum website (also received via email as a June 4, 2022 ArtSci Salon announcement) features a month long exhibit being co-presented with the Canadian Music Centre in Toronto,

Exhibition
Campbell House Museum
June 22 – July 16, 2022
160 Queen Street W.

Opening event
Campbell House,
Saturday July 2,
2 – 4 p.m. [ET]

Artists’ Talk & Webcast
The Canadian Music Centre,
20 St. Joseph Street Toronto
Thursday, July 7
7:30 – 9 p.m. [ET]
(doors open 7 pm)

These are a Few of Our Favourite Bees investigates wild, native bees and their ecology through playful dioramas, video, audio, relief print and poetry. Inspired by lambe lambe – South American miniature puppet stages for a single viewer – four distinct dioramas convey surreal yet enlightening worlds where bees lounge in cozy environs, animals watch educational films [emphasis mine] and ethereal sounds animate bowls of berries (having been pollinated by their diverse bee visitors). Displays reminiscent of natural history museums invite close inspection, revealing minutiae of these tiny, diverse animals, our native bees. From thumb-sized to extremely tiny, fuzzy to hairless, black, yellow, red or emerald green, each native bee tells a story while her actions create the fruits of pollination, reflecting the perpetual dance of animals, plants and planet. With a special appearance by Toronto’s official bee, the jewelled green sweat bee, Agapostemon virescens!

These are a Few of Our Favourite Bees Collective are: Sarah Peebles, Ele Willoughby, Rob Cruickshank & Stephen Humphrey

 The Works

These are a Few of Our Favourite Bees

Sarah Peebles, Ele Willoughby, Rob Cruickshank & Stephen Humphrey

Single-viewer box theatres, dioramas, sculpture, textile art, macro video, audio transducers, poetry, insect specimens, relief print, objects, electronics, colour-coded DNA barcodes.

Bees represented: rusty-patched bumble bee (Bombus affinis); jewelled green sweat bee (Agapostemon virescens); masked sweat bee (Hylaeus annulatus); leafcutter bee (Megachile relativa)

In the Landscape

Ele Willoughby & Sarah Peebles

paper, relief print, video projection, audio, audio cable, mixed media

Bee specimens & bee barcodes generously provided by Laurence Packer – Packer Lab, York University; Scott MacIvor – BUGS Lab, U-T [University of Toronto] Scarborough; Sam Droege – USGS [US Geological Survey]; Barcode of Life Data Systems; Antonia Guidotti, Department of Natural History, Royal Ontario Museum

In addition to watching television, animals have been known to interact with touchscreen computers as mentioned in my June 24, 2016 posting, “Animal technology: a touchscreen for your dog, sonar lunch orders for dolphins, and more.”

The “These are a few of Our Favourite Bees” upcoming exhibitions notice features this artist statement for a third piece, “Without A Bee, It Would Not Be” by Tracey Lawko,

In May, my crabapple tree blooms. In August, I pick the ripe crabapples. In September, I make jelly. Then I have breakfast. This would not be without a bee.

It could not be without a bee. The fruit and vegetables I enjoy eating, as well as the roses I admire as centrepieces, all depend on pollination.

Our native pollinators and their habitat are threatened.  Insect populations are declining due to habitat loss, pesticide use, disease and climate change. 75% of flowering plants rely on pollinators to set seed and we humans get one-third of our food from flowering plants.

I invite you to enter this beautiful dining room and consider the importance of pollinators to the enjoyment of your next meal.

Bio

Tracey Lawko employs contemporary textile techniques to showcase changes in our environment. Building on a base of traditional hand-embroidery, free-motion longarm stitching and a love of drawing, her representational work is detailed and “drawn with thread”. Her nature studies draw attention to our native pollinators as she observes them around her studio in the Niagara Escarpment. Many are stitched using a centuries-old, three-dimensional technique called “Stumpwork”.

Tracey’s extensive exhibition history includes solo exhibitions at leading commercial galleries and public museums. Her work has been selected for major North American and International exhibitions, including the Concours International des Mini-Textiles, Musée Jean Lurçat, France, and is held in the permanent collection of the US National Quilt Museum and in private collections in North America and Europe.

Bzzz!