Tag Archives: University of Twente

Barnacle footprints could be useful

An Aug. 18, 2016 news item on Nanowerk describes efforts by scientists at the University of Twente (The Netherlands) and A*STAR (Singapore) to trace a barnacle’s footprints (Note: A link has been removed),

Barnacle’s larvae leave behind tiny protein traces on a ship hull: but what is the type of protein and what is the protein-surface interaction? Conventional techniques can only identify dissolved proteins, and in large quantities. Using a modified type of an Atomic Force Microscope, scientists of the University of Twente in The Netherlands and A*STAR in Singapore, can now measure protein characteristics of even very small traces on a surface. They present the new technique in Nature Nanotechnology (“Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample”).

An Aug. 16, 2016 University of Twente press release, which originated the news item, explains how the ‘footprints’ could lead to new applications for ships and boats and briefly describes the technical aspects of the research,

In infection diseases, membrane fouling, interaction with bacteria, as well as in rapid healing of wounds for example, the way proteins interact with a surface plays an important role. On a surface, they function in a different way than in solution. On a ship hull, the larvae of the barnacle will leave tiny traces of protein to test if the surface is attractive for long-term attachment. If we get to know more about this interaction, it will be possible to develop surface conditions that are less attractive for the barnacle. Large amounts of barnacles on a ship will have a destructive effect on flow resistance and will lead to more fuel consumption. The new measuring method makes use of a modified Atomic Force Microscope: a tiny ball glued to the cantilever of the microscope will attract protein molecules.

Modified AFM tip with a tiny ball that can attract protein molecules


An amount of just hundreds of protein molecules will be sufficient to determine a crucial value, called the iso-electric point (pI): this is the pH-value at which the protein has net zero electric charge. The pI value says a lot about the surroundings a protein will ‘feel comfortable’ in, and to which it preferably moves. Using the AFM microscope, of which the modified tip has collected protein molecules, it is possible to perform force measurements for different pH values. The tip will be attracted or repelled, or show no movement when the pI point is reached. For these measurement, the researchers made a special reference material consisting of several layers. Using this, the effect of a number of pH-values can be tested until the pI value is found.

The traces the larve leaves behind (left) and force measurements (right)


The tests have been successfully performed for a number of known proteins like fibrinogen, myoglobine and bovine albumin. And returning to the barnacle: the tiny protein footprint will contain enough molecules to determine the pI value. This quantifies the ideal surface conditions, and using this knowledge, new choices can be made for e.g. the paint that is used on a ship hull.

The research has been done within the group Materials Science and Technology of Polymers of Professor Julius Vancso, in close collaboration with colleagues of A*STAR in Singapore – Prof Vancso is a Visiting Professor there as well. His group is part of UT’s MESA+ Institute for Nanotechnology.

Here’s a link to and a citation for the paper,

Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample by Shifeng Gu, Xiaoying Zhu, Dominik Jańczewski, Serina Siew Chen Lee, Tao He, Serena Lay Ming Teo, & G. Julius Vancso.  Nature Nanotechnology (2016) doi:10.1038/nnano.2016.118 Published online 25 July 2016

This paper is behind a paywall.

3D brain-on-a-chip from the University of Twente

Dutch researchers have developed a 3D brain-on-a-chip according to a June 23, 2016 news item on Nanowerk,

To study brain cell’s operation and test the effect of medication on individual cells, the conventional Petri dish with flat electrodes is not sufficient. For truly realistic studies, cells have to flourish within three-dimensional surroundings.

Bart Schurink, researcher at University of Twente’s MESA+ Institute for Nanotechnology, has developed a sieve with 900 openings, each of which has the shape of an inverted pyramid. On top of this array of pyramids, a micro-reactor takes care of cell growth. Schurink defends his PhD thesis June 23 [2016].

A June 23, 2016 University of Twente press release, which originated the news item, provides more detail,

A brain-on-a-chip demands more than a series of electrodes in 2D, on which brain cells can be cultured. To mimic the brain in a realistic way, you need facilities for fluid flow, and the cells need some freedom for themselves even when they are kept at predefined spaces. Schurink therefore developed a micro sieve structure with hundreds of openings on a 2 by 2 mm surface. Each of these holes has the shape of  an inverted pyramid. Each pyramid, in turn, is equipped with an electrode, for measuring electrical signals or sending stimuli to the network. At the same time, liquids can flow through tiny holes, needed to capture the cells and for sending nutrients or medication to a single cell.


After neurons have been placed inside all the pyramids, they will start to form a network. This is not just a 2D network between the holes: by placing a micro reactor on top of the sieve, a neuron network can develop in the vertical direction as well. Growth and electrical activity can be monitored subsequently: each individual cell can be identified by the pyramid it is in. Manufacturing this system, demands a lot of both the production facilities at UT’s NanoLab and of creative solutions the designers come up with. For example, finding the proper way of guaranteeing  the same dimensions for every hole, is quite challenging.

Schurink’s new µSEA (micro sieve electrode array) has been tested with living cells, from the brains of laboratory rats. Both the positioning of the cells and neuronal network growth have been tested. The result of this PhD research is a fully new research platform for performing research on the brain, diseases and effects of medication.

Schurink (1982) has conducted his research within the group Meso Scale Chemical Systems, of Prof Han Gardeniers. The group is part of the MESA+ Institute for Nanotechnology of the University of Twente. Schurink’s thesis is titled ‘Microfabrication and microfluidics for 3D brain-on-chip’ …

I have written about one other piece about a ‘3D’ organ-on-a-chip project in China (my Jan. 29, 2016 posting).

Computer chips derived in a Darwinian environment

Courtesy: University of Twente

Courtesy: University of Twente

If that ‘computer chip’ looks a brain to you, good, since that’s what the image is intended to illustrate assuming I’ve correctly understood the Sept. 21, 2015 news item on Nanowerk (Note: A link has been removed),

Researchers of the MESA+ Institute for Nanotechnology and the CTIT Institute for ICT Research at the University of Twente in The Netherlands have demonstrated working electronic circuits that have been produced in a radically new way, using methods that resemble Darwinian evolution. The size of these circuits is comparable to the size of their conventional counterparts, but they are much closer to natural networks like the human brain. The findings promise a new generation of powerful, energy-efficient electronics, and have been published in the leading British journal Nature Nanotechnology (“Evolution of a Designless Nanoparticle Network into Reconfigurable Boolean Logic”).

A Sept. 21, 2015 University of Twente press release, which originated the news item, explains why and how they have decided to mimic nature to produce computer chips,

One of the greatest successes of the 20th century has been the development of digital computers. During the last decades these computers have become more and more powerful by integrating ever smaller components on silicon chips. However, it is becoming increasingly hard and extremely expensive to continue this miniaturisation. Current transistors consist of only a handful of atoms. It is a major challenge to produce chips in which the millions of transistors have the same characteristics, and thus to make the chips operate properly. Another drawback is that their energy consumption is reaching unacceptable levels. It is obvious that one has to look for alternative directions, and it is interesting to see what we can learn from nature. Natural evolution has led to powerful ‘computers’ like the human brain, which can solve complex problems in an energy-efficient way. Nature exploits complex networks that can execute many tasks in parallel.

Moving away from designed circuits

The approach of the researchers at the University of Twente is based on methods that resemble those found in Nature. They have used networks of gold nanoparticles for the execution of essential computational tasks. Contrary to conventional electronics, they have moved away from designed circuits. By using ‘designless’ systems, costly design mistakes are avoided. The computational power of their networks is enabled by applying artificial evolution. This evolution takes less than an hour, rather than millions of years. By applying electrical signals, one and the same network can be configured into 16 different logical gates. The evolutionary approach works around – or can even take advantage of – possible material defects that can be fatal in conventional electronics.

Powerful and energy-efficient

It is the first time that scientists have succeeded in this way in realizing robust electronics with dimensions that can compete with commercial technology. According to prof. Wilfred van der Wiel, the realized circuits currently still have limited computing power. “But with this research we have delivered proof of principle: demonstrated that our approach works in practice. By scaling up the system, real added value will be produced in the future. Take for example the efforts to recognize patterns, such as with face recognition. This is very difficult for a regular computer, while humans and possibly also our circuits can do this much better.”  Another important advantage may be that this type of circuitry uses much less energy, both in the production, and during use. The researchers anticipate a wide range of applications, for example in portable electronics and in the medical world.

Here’s a link to and a citation for the paper,

Evolution of a designless nanoparticle network into reconfigurable Boolean logic by S. K. Bose, C. P. Lawrence, Z. Liu, K. S. Makarenko, R. M. J. van Damme, H. J. Broersma, & W. G. van der Wiel. Nature Nanotechnology (2015) doi:10.1038/nnano.2015.207 Published online 21 September 2015

This paper is behind a paywall.

Final comment, this research, especially with the reference to facial recognition, reminds me of memristors and neuromorphic engineering. I have written many times on this topic and you should be able to find most of the material by using ‘memristor’ as your search term in the blog search engine. For the mildly curious, here are links to two recent memristor articles, Knowm (sounds like gnome?) A memristor company with a commercially available product in a Sept. 10, 2015 posting and Memristor, memristor, you are popular in a May 15, 2015 posting.

Opals, Diana Ross, and nanophotonic hybridization

It was a bit of a stretch to include Diana Ross in a Jan. 12, 2015 news item on Nanowerk about nanophotonic research at the University of Twente’s MESA+ Institute for Nano­technology  but I’m glad they did,

Ever since the early 1900s work of Niels Bohr and Hendrik Lorentz, it is known that atoms display characteristic resonant behavior to light. The hallmark of a resonance is its characteristic peak-trough behavior of the refractive index with optical frequency. Scientists from the Dutch MESA+ Institute for Nano­technology at the University of Twente have recently infiltrated cesium atoms in a self-assembled opal to create a hybrid nanophotonic system. By tuning the opal’s forbidden gap relative to the atomic resonance, dra­matic changes are observed in reflectivity. In the most extreme case, the atomic reflection spectrum is turned upside down[1] compared to the traditional case. Since dispersion is crucial in the control of optical signal pulses, the new results offer opportunities for optical information manipulation. As atoms are exquisite storage de­vices for light quanta, the results open vistas on quantum information processing, as well as on new nanoplasmonics.

A Jan. 12, 2015 MESA+ Institute for Nano­technology at the University of Twente press release, which originated the news item, provides an illustrative diagram and a wealth of technical detail about the research,

Courtesy of the University of Twente

Courtesy of the University of Twente

While the speed of light c is proverbial, it can readily be modified by sending light through a medium with a certain refractive index n. In the medium, the speed will be decreased by the index to c/n. In any material, the refractive index depends on the frequency of the light. Usually the refractive index increases with frequency, called normal dispersion as it prevails at most frequencies in most materials such as a glass of water, a telecom fiber, or an atomic vapor. Close to the resonance frequency of the material, the index strongly decreases, called anomalous dispersion.

Dispersion is essential to control how optical bits of information – encoded as short pulses – is manipulated optical circuits. In modern optics at the nanoscale, called nanophotonics, dispersion is controlled with classes of complex nanostruc­tures that cause novel behavior to emerge. An example is a photonic crystal fiber, which does not consist of only glass like a traditional fiber, but of an intricate arrange­ment of holes and glass nanostructures.

The Twente team led by Harding devised a hybrid system consisting of an atomic vapor infiltrated in an opal photonic crystal. Photonic crystals have attracted considerable attention for their ability to radically control propagation and emission of light. These nanostructures are well-known for their ability to control the emission and propagation of light. The opals have a periodic variation of the refractive index (see Figure 1) that ensures that a certain color of light is forbidden to exist inside the opal. The light cannot enter the opal as it is reflected, which is called a gap (see Figure 1). In an analogy to semiconductors, such an effect is called a “photonic band gap”. Photonic gaps are at the basis of tiny on-chip light sources and lasers, efficient solar cells, invisibility cloaks, and devices to process optical information.

The Twente team changed the index of refraction of the voids in a photonic crystal by substituting the air by a vapor of atoms with a strong resonance, as shown in Figure 1. The contrast of the refractive index between the vapor and the opal’s silica nano­spheres was effectively used as a probe. The density of the cesium vapor was greatly varied by changing the temperature in the cell up to 420 K. At the same time, the photonic gap of the opal shifted relative to the atomic resonance due to a slow chemical reaction between the opal’s backbone material (silica) and the cesium.

On resonance, light excites an atom to a higher state and subsequently the atom reemits the light. Hence, an atom behaves like a little cavity that stores light. Simultaneously the index of refraction changes strongly for colors near resonance. For slightly longer wavelengths the index of refraction is high, on resonance it is close to one, and slightly shorter wavelengths it can even decrease below one. This effect of the cesium atoms is clearly visible in the reflectivity spectra, shown in Figure 2 [not included here], as a sharp increase and decrease of the reflectivity near the atomic resonance. Intriguingly, the characteristic peak-and-trough behavior of atoms (seen at 370 K) was turned upside down at the highest temperature (420 K), where the ce­sium reso­nance was on the red side of the opal’s stopgap.

In nanophotonics, many efforts are currently being devoted to create arrays of nanoresonators in photonic crystals, for exquisite optical signal control on a chip. Unfortunately, however, there is a major challenge in engineering high-quality pho­tonic resonators: they are all different due to inevitable fabrication variations. Hence, it is difficult to tune every resonator in sync. “Our atoms in the opal may be consid­ered as the equivalent of an carefully engineered array of nano-resonators” explains Willem Vos, “Nature takes care that all resonators are all exactly the same. Our hy­brid system solves the variability problem and could perhaps be used to make pho­tonic memories, sensors or switches that are naturally tuned.” And leading Spanish theorist Javier Garcia de Abajo (ICFO) enthuses: “This is a fine and exciting piece of work, initiating the study of atomic resonances with photonic modes in a genuinely new fashion, and suggesting many exciting possibilities, for example through the extension of this study towards combinations with metal nanoplasmonics.”

Here’s a link to and a citation for the paper published in Physical Review B,

Nanophotonic hybridization of narrow atomic cesium resonances and photonic stop gaps of opaline nanostructures by Philip J. Harding, Pepijn W. H. Pinkse, Allard P. Mosk, and Willem L. Vos. Phys. Rev. B 91, 045123 – Published 20 January 2015 DOI: http://dx.doi.org/10.1103/PhysRevB.91.045123

This paper is behind a paywall but there is an earlier iteration of the paper available on the open access arXiv.org website operated by Cornell University,

Nanophotonic hybridization of narrow atomic cesium resonances and photonic stop gaps of opaline nanostructures by Philip J. Harding, Pepijn W.H. Pinkse, Allard P. Mosk, Willem L. Vos. (Submitted on 11 Sep 2014) arXiv:1409.3417

As I understand it, the arXiv.org website is intended to open up access to research and to offer an informal peer review process.

Finally, for anyone who’s nostalgic or perhaps has never heard Diana Ross sing ‘Upside Down’,

Cleaning water with palladium nanoparticle catalysts

A Jan. 16, 2015 news item on Nanowerk describes research into using palladium as a catalyst for water remediation efforts,

One way of removing harmful nitrate from drinking water is to catalyse its conversion to nitrogen. This process suffers from the drawback that it often produces ammonia. By using palladium nanoparticles as a catalyst, and by carefully controlling their size, this drawback can be partially eliminated. It was research conducted by Yingnan Zhao of the University of Twente’s MESA+ Institute for Nanotechnology that led to this discovery.

A Jan. 14, 2015 University of Twente press release, which originated the news item, describes the problem and suggested solution; this was research for a PhD thesis,

Due to the excessive use of fertilizers, our groundwater is contaminated with nitrates, which pose a problem if they enter the mains water supply. Levels have fallen significantly in recent years, as a result of various European directives. In addition, the Integrated Approach to Nitrogen programme was launched in various Dutch nature reserves at the start of January. Tackling the problem at source is one thing, but it will still be necessary to treat the mains water supply. While this can be achieved through biological conversion – bacteria convert the nitrate to nitrogen gas-, this is a slow process. Using palladium to catalyse the conversion of nitrate to nitrogen speeds up the process enormously. However, this reaction suffers from the drawback that it produces a harmful by-product – ammonia.

Exposed surface

The amount of ammonia produced appears to depend on the method used to prepare the palladium and on the catalyst’s physical structure. Yingnan Zhao decided to use nanometre-sized colloidal palladium particles, as their dimensions can be easily controlled. These particles are fixed to a surface, so they do not end up in the mains water supply. However, it is important to stop them clumping together, so stabilizers such as polyvinyl alcohol are added. Unfortunately, these stabilizers tend to shield the surface of the palladium particles, which reduces their effectiveness as a catalyst. By introducing additional treatments, Yingnan Zhao has managed to fully expose the catalytic surface once again or to manipulate it in a controlled manner. This has resulted in palladium nanoparticles that can catalyse the conversion to nitrogen, while producing very little ammonia. This has brought the further development of catalytic water treatment (in compact devices for home use, for example) one step closer.

Yingnan Zhao, who is from Heze, Shandong, China, conducted his research in Prof. Leon Lefferts’ Catalytic Processes and Materials group. He defended his thesis, which is entitled “Colloidal Nanoparticles as Catalysts and Catalyst Precursors for Nitrite Hydrogenation” on Thursday 15 January [2015].

I trust Zhao successfully defended this thesis and perhaps more importantly helped to develop a new and better method for water remediation made necessary by the effects of fertilizers.

Suicide at the nanoscale: the truth about silicene

Researchers at the University of Twente (Netherlands) have shown that silicene, a material of great interest to the semi-conductor industry, has a serious drawback according to a Jan. 14, 2014 news item on Nanowerk,

The semiconductor industry of the future had high expectations of the new material silicene, which shares a lot of similarities with the ‘wonder material’ graphene. However, researchers of the MESA+ Research Institute of the University of Twente – who recently managed to directly and in real time film the formation of silicene – are harshly bursting the bubble: their research shows that silicene has suicidal tendencies.

The Jan. 8, 2014 University of Twente news release, which originated the news item, describes the problem in detail starting with an explanation of silicene,

The material silicene was first created in 2010. Just like graphene, it consists of a single layer of atoms arranged in a honeycomb pattern. Graphene consists of carbon atoms, silicene of silicon atoms.

Because of their special properties – both materials are very strong, thin and flexible and have good electrical conductivity – graphene and silicene seem very well suited for the semiconductor industry of the future. After all, the parts on computer chips have to become smaller and smaller and the limits of the miniaturization of parts made of silicon are drawing closer and closer. The material silicene seems to be several steps ahead of graphene, because the semiconductor industry has been using silicon (which, like silicene, consists of silicon atoms) for many years now. In addition, it is easier to realize a so-called bandgap in silicene, which is a prerequisite for a transistor.

Researchers of the MESA+ Research Institute of the University of Twente have, for the first time, managed to directly and in real time capture the formation of silicene on film. They let evaporated silicon atoms precipitate on a surface of silver, so that a nice, almost closed, singular layer of silicene was formed.

So far so good, but the moment that a certain amount of silicon atoms fall on top of the formed silicene layer, a silicon crystal (silicon in a diamond crystal structure instead of in a honeycomb structure) is formed, which triggers the further crystallization of the material; an irreversible process. From that moment, the newly formed silicon eats the silicene, so to speak.

The reason for this is that the regular crystal structure (diamond) of silicon is energetically more favourable than the honeycomb structure of silicene and therefore more stable. Because of this property, the researchers did not succeed in covering more than 97 per cent of the silver surface with silicene, nor were they able to create multi-layered silicene. In other words: the moment a surface is almost completely covered with silicene, the material commits suicide and simple silicon is formed. The researchers do not expect it to be possible to create multi-layered silicene on a different type of surface, because the influence of the surface on the formation of the second layer of silicene is negligible.

The researchers have produced a video demonstrating their findings,

SiliceneDeposition from University of Twente on Vimeo.

 Caption: Formation of silicene on a silver surface (grey, start of the film). On top of the silver, silicene islands gradually start to form (black, halfway through the film). When the surface is almost completely covered, these collapse into silicon crystals again (black dots in grey areas, end of the film).

The news release ends on a personal note,

The research has been conducted by Adil Acun, Bene Poelsema, Harold Zandvliet and Raoul van Gastel of the department of Physics of Interfaces and Nanomaterials (PIN) of the University of Twente’s MESA+ Research Institute. The research has been published by the renowned academic journal Applied Physics Letters.  What’s even more special about this publication is that it has resulted from the final thesis research of Adil Acun, who was following the master’s programme Applied Physics at the time. He is now working as a PhD candidate at the PIN department.

Here’s link to and a citation for the paper,

The instability of silicene on Ag(111) by A. Acun, B. Poelsema, H. J. W. Zandvliet, and R. van Gastel.  Appl. Phys. Lett. 103, 263119 (2013); http://dx.doi.org/10.1063/1.4860964

This paper is open access as of Jan. 14, 2014.

Graphene hype; the emerging story in an interview with Carla Alvial Palavicino (University of Twente, Netherlands)

i’m delighted to be publishing this interview with Carla Alvial Palavicino, PhD student at the University of Twente (Netherlands), as she is working on the topicof  graphene ‘hype’. Here’s a bit more about the work from her University of Twente webpage (Note: A link has been removed),

From its origins the field of nanotechnology has been populated of expectations. Pictured as “the new industrial revolution” the economic promise holds strong, but also nanotechnologies as a cure for almost all the human ills, sustainers of future growth, prosperity and happiness. In contrast to these promises, the uncertainties associated to the introduction of such a new and revolutionary technology, and mainly risks of nanomaterials, have elicited concerns among governments and the public. Nevertheless, the case of the public can be characterized as concerns about concerns, based on the experience of previous innovations (GMO, etc.).

Expectations, both as promises and concerns, have played and continue playing a central role in the “real-time social and political constitution of nanotechnology” (Kearnes and Macnaghten 2006). A circulation of visions, promises and concerns in observed in the field, from the broadly defined umbrella promises to more specific expectations, and references to grand challenges as moral imperatives. These expectations have become such an important part of the social repertoire of nano applications that we observe the proliferation of systematic and intentional modes of expectation building such as roadmaps, technology assessment, etc.; as well as a considerable group of reports on risk, concerns, and ethical and social aspects. This different modes of expectation building (Konrad 2010) co-exist and contribute to the articulation of the nano field.

This project seeks to identify, characterize and contextualize the existing modes of expectations building, being those intentional (i.e. foresight, TA, etc.) or implicit in arenas of public discourse, associated to ongoing and emerging social processes in the context of socio-technical change.

This dynamics are being explored in relation to the new material graphene.

Before getting to the interview, here’s Alvial Palavicino’s biography,

Carla Alvial Palavicino has a bachelor degree in Molecular Biology Engineering, School of Science, University of Chile, Chile and a Master’s degree on Sustainability Sciences, Graduate School of Frontier Science, University of Tokyo, Japan. She has worked in technology transfer and more recently, in Smart Grids and local scale renewable energy provision.

Finally, here’s the interview (Note: At the author’s request, there have been some grammatical changes made to conform with Canadian English.),

  • What is it that interests you about the ‘hype’ that some technologies receive and how did you come to focus on graphene in particular?

My research belongs to a field called the Sociology of Expectations, which deals with the role of promises, visions, concerns and ideas of the future in the development of technologies, and how these ideas actually affect people’s strategies in technology development. Part of the dynamic found for these expectations are hype-disappointment cycles, much like the ones the Gartner Group uses. And hype has become an expectation itself; people expect that there will be too many promises and some, maybe many of them are not going to be fulfilled, followed by disappointment.

I came to know about graphene because, initially, I was broadly interested in nanoelectronics (my research project is part of NanoNextNL a large Dutch Nano research programme), due to the strong future orientation in the electronics industry. The industry has been organizing, and continues to organize around the promise of Moore’s law for more than 50 years! So I came across graphene as thriving to some extent on the expectations around the end of Moore’s law and because simply everybody was talking about it as the next big thing! Then I thought, this is a great opportunity to investigate hype in real-time

  • Is there something different about the hype for graphene or is this the standard ‘we’ve found a new material and it will change everything’?

I guess with every new technology and new material you find a portion of genuine enthusiasm which might lead to big promises. But that doesn’t necessarily turn into big hype. One thing is that all hype is not the same and you might have technologies that disappeared after the hype such as High Temperature Semiconductors, or technologies that go through a number of hype cycles and disappointment cycles throughout their development (for example, Fuel Cells). Now with graphene what you certainly have is very ‘loud’ hype – the amount of attention it has received in so little time is extraordinary. If that is a characteristic of graphene or a consequence of the current conditions in which the hype has been developed, such as faster ways of communication (social media for example) or different incentives for science and innovation well, this is part of what I am trying to find out.

Quite clearly, the hype in graphene seems to be more ‘reflexive’ than others, that is, people seem to be more conscious about hype now. We have had the experience with carbon nanotubes only recently and scientist, companies and investors are less naïve about what can be expected of the technology, and what needs to be done to move it forward ‘in the right direction’. And they do act in ways that try to soften the slope of the hype-disappointment curve. Having said that, actors [Ed. Note: as in actor-network theory] are also aware of how they can take some advantage of the hype (for funding, investment, or another interest), how to make use of it and hopefully leave safely, before disappointment. In the end, it is rather hard to ask accountability of big promises over the long-term.

  • In the description of your work you mention intentional and implicit modes of building expectations, could explain the difference between the two?

One striking feature of technology development today is that we found more and more activities directed at learning about, assess, and shaping the future, such as forecasts, foresights, Delphi, roadmaps and so on. There are even specialized future actors such as consultancy organisations or foresight experts,  Cientifica among them. And these formalized ways of anticipating  the future are expected to be performative by those who produce them and use them, that is, influence the way the future – and the present- turns out. But this is not a linear story, it’s not like 100% of a roadmap can be turned practice (not even for the ITRS roadmap [Ed. Note: International Technology Roadmap for Semi-conductors] that sustains Moore’s law, some expectations change quite radically between editions of the roadmap). Besides that, there are other forms of building expectations which are embedded in practices around new technologies. Think of the promises made in high profile journals or grant applications; and of expectations incorporated in patents and standards. All these embody particular forms and directions for the future, and exclude others. These are implicit forms of expectation-building, even if not primarily intended as such. These forms are shaped by particular expectations which themselves shape further development. So, in order to understand how these practices, both intentional and implicit, anticipate futures you need to look at the interplay between the various types.

  • Do you see a difference internationally with regard to graphene hype? Is it more prevalent in Europe than in the North America? Is it particularly prevalent in some jurisdiction, e.g. UK?

I think the graphene ‘hype’ has been quite global, but it is moving to different communities, or actors groups, as Tim Harper from Cientifica has mentioned in his recent report about graphene

What is interesting in relation to the different ‘geographical’ responses to graphene is that they exemplify nicely how a big promise (graphene, in this case) is connected to other circulating visions, expectations or concerns. In the case of the UK, the *Nobel prize on Graphene and the following investment was connected to the idea of a perceived crisis of innovation in the country. Thus, the decision to invest in graphene was presented and discussed in reference to global competitiveness, showing a political commitment for science and innovation that was in doubt at that time.

In the European case with its *Graphene flagship, something similar happened. While there is no doubt of the scientific excellence of the flagship project, the reasons why it finally became a winner in the flagship competition might have been related to the attention on graphene. The project itself started quite humbly, and it differed from the other flagship proposals that were much more oriented towards economic or societal challenges. But the attention graphene received after the Nobel Prize, plus the engagement of some large companies, helped to frame the project in terms of its economic profitability.  And. this might have helped to bring attention and make sense of the project in the terms the European Commission was interested in.

In contrast, if you think of the US, the hype has been there (the number of companies engaged in graphene research is only increasing) but it has not had a big echo in policy. One of the reasons might be because this idea of global competition and being left behind is not so present in the US. And in the case of Canada for example, graphene has been taken up by the graphite (mining) community, which is a very local feature.

So answering your questions, the hype has been quite global and fed in a global way (developments in one place resonate in the other) but different geographical areas have reacted in relation to their contingent expectations to what this hype dynamic provided.

  • What do you think of graphene?

I think it’s the new material with more YouTube videos (this one is particularly good in over promising for example)  and the coolest superhero (Mr G from the Flagship). But seriously,  I often get asked that question when I do interviews with actors in the field, since they are curious to learn about the outsider perspective. But to be honest I try to remain as neutral and distant as possible regarding my research object… and not getting caught in the hype!

Thanks so much for a fascinating interview Carla and I very much appreciate the inclusion of Canada in your response to the question about the international response to graphene hype. (Here are three of my postings on graphite and mining in Canada: Canada’s contribution to graphene research: big graphite flakes [Feb. 6, 2012]; A ‘graphite today, graphene tomorrow’ philosophy from Focus Graphite [April 17, 2013[; and Lomiko’s Quatre Milles graphite flakes—pure and ultra pure [April 17, 2013] There are others you can find by searching ‘graphite’ in the blog’s search box.)

* For anyone curious about the Nobel prize and graphene, there’s this Oct.7, 2010 posting. Plus, the Graphene Flagship was one of several projects competing for one of the two 1B Euro research prizes awarded in January 2013 (the win is mentioned in my Jan. 28, 2013 posting).

Merry Christmas, Happy New Year, and Happy Holidays to all!

Journal of Responsible Innovation is launched and there’s a nanotechnology connection

According to an Oct. 30, 2013 news release from the Taylor & Francis Group, there’s a new journal being launched, which is good news for anyone looking to get their research or creative work (which retains scholarly integrity) published in a journal focused on emerging technologies and innovation,

Journal of Responsible Innovation will focus on intersections of ethics, societal outcomes, and new technologies: New to Routledge for 2014 [Note: Routledge is a Taylor & Francis Group brand]

Scholars and practitioners in the emerging interdisciplinary field known as “responsible innovation” now have a new place to publish their work. The Journal of Responsible Innovation (JRI) will offer an opportunity to articulate, strengthen, and critique perspectives about the role of responsibility in the research and development process. JRI will also provide a forum for discussions of ethical, social and governance issues that arise in a society that places a great emphasis on innovation.

Professor David Guston, director of the Center for Nanotechnology in Society at Arizona State University and co-director of the Consortium for Science, Policy and Outcomes, is the journal’s founding editor-in-chief. [emphasis mine] The Journal will publish three issues each year, beginning in early 2014.

“Responsible innovation isn’t necessarily a new concept, but a research community is forming and we’re starting to get real traction in the policy world,” says Guston. “It is our hope that the journal will help solidify what responsible innovation can mean in both academic and industrial laboratories as well as in governments.”

“Taylor & Francis have been working with the scholarly community for over two centuries and over the past 20 years, we have launched more new journals than any other publisher, all offering peer-reviewed, cutting-edge research,” adds Editorial Director Richard Steele. “We are proud to be working with David Guston and colleagues to create a lively forum in which to publish and debate research on responsible technological innovation.”

An emerging and interdisciplinary field

The term “responsible innovation” is often associated with emerging technologies—for example, nanotechnology, synthetic biology, geoengineering, and artificial intelligence—due to their uncertain but potentially revolutionary influence on society. [emphasis mine] Responsible innovation represents an attempt to think through the ethical and social complexities of these technologies before they become mainstream. And due to the broad impacts these technologies may have, responsible innovation often involves people working in a variety of roles in the innovation process.

Bearing this interdisciplinarity in mind, the Journal of Responsible Innovation (JRI) will publish not only traditional journal articles and research reports, but also reviews and perspectives on current political, technical, and cultural events. JRI will publish authors from the social sciences and the natural sciences, from ethics and engineering, and from law, design, business, and other fields. It especially hopes to see collaborations across these fields, as well.

“We want JRI to help organize a research network focused around complex societal questions,” Guston says. “Work in this area has tended to be scattered across many journals and disciplines. We’d like to bring those perspectives together and start sharing our research more effectively.”

Now accepting manuscripts

JRI is now soliciting submissions from scholars and practitioners interested in research questions and public issues related to responsible innovation. [emphasis mine] The journal seeks traditional research articles; perspectives or reviews containing opinion or critique of timely issues; and pedagogical approaches to teaching and learning responsible innovation. More information about the journal and the submission process can be found at www.tandfonline.com/tjri.

About The Center for Nanotechnology in Society at ASU

The Center for Nanotechnology in Society at ASU (CNS-ASU) is the world’s largest center on the societal aspects of nanotechnology. CNS-ASU develops programs that integrate academic and societal concerns in order to better understand how to govern new technologies, from their birth in the laboratory to their entrance into the mainstream.

About Taylor & Francis Group


Taylor & Francis Group partners with researchers, scholarly societies, universities and libraries worldwide to bring knowledge to life.  As one of the world’s leading publishers of scholarly journals, books, ebooks and reference works our content spans all areas of Humanities, Social Sciences, Behavioural Sciences, Science, and Technology and Medicine.

From our network of offices in Oxford, New York, Philadelphia, Boca Raton, Boston, Melbourne, Singapore, Beijing, Tokyo, Stockholm, New Delhi and Johannesburg, Taylor & Francis staff provide local expertise and support to our editors, societies and authors and tailored, efficient customer service to our library colleagues.

You can find out more about the Journal of Responsible Innovation here, including information for would-be contributors,

JRI invites three kinds of written contributions: research articles of 6,000 to 10,000 words in length, inclusive of notes and references, that communicate original theoretical or empirical investigations; perspectives of approximately 2,000 words in length that communicate opinions, summaries, or reviews of timely issues, publications, cultural or social events, or other activities; and pedagogy, communicating in appropriate length experience in or studies of teaching, training, and learning related to responsible innovation in formal (e.g., classroom) and informal (e.g., museum) environments.

JRI is open to alternative styles or genres of writing beyond the traditional research paper or report, including creative or narrative nonfiction, dialogue, and first-person accounts, provided that scholarly completeness and integrity are retained.[emphases mine] As the journal’s online environment evolves, JRI intends to invite other kinds of contributions that could include photo-essays, videos, etc. [emphasis mine]

I like to check out the editorial board for these things (from the JRI’s Editorial board webpage; Note: Links have been removed),,


David. H. Guston , Arizona State University, USA

Associate Editors

Erik Fisher , Arizona State University, USA
Armin Grunwald , ITAS , Karlsruhe Institute of Technology, Germany
Richard Owen , University of Exeter, UK
Tsjalling Swierstra , Maastricht University, the Netherlands
Simone van der Burg, University of Twente, the Netherlands

Editorial Board

Wiebe Bijker , University of Maastricht, the Netherlands
Francesca Cavallaro, Fundacion Tecnalia Research & Innovation, Spain
Heather Douglas , University of Waterloo, Canada
Weiwen Duan , Chinese Academy of Social Sciences, China
Ulrike Felt, University of Vienna, Austria
Philippe Goujon , University of Namur, Belgium
Jonathan Hankins , Bassetti Foundation, Italy
Aharon Hauptman , University of Tel Aviv, Israel
Rachelle Hollander , National Academy of Engineering, USA
Maja Horst , University of Copenhagen, Denmark
Noela Invernizzi , Federal University of Parana, Brazil
Julian Kinderlerer , University of Cape Town, South Africa
Ralf Lindner , Frauenhofer Institut, Germany
Philip Macnaghten , Durham University, UK
Andrew Maynard , University of Michigan, USA
Carl Mitcham , Colorado School of Mines, USA
Sachin Chaturvedi , Research and Information System for Developing Countries, India
René von Schomberg, European Commission, Belgium
Doris Schroeder , University of Central Lancashire, UK
Kevin Urama , African Technology Policy Studies Network, Kenya
Frank Vanclay , University of Groningen, the Netherlands
Jeroen van den Hoven, Technical University, Delft, the Netherlands
Fern Wickson , Genok Center for Biosafety, Norway
Go Yoshizawa , Osaka University, Japan

Good luck to the publishers and to those of you who will be making submissions. As for anyone who may be as curious as I was about the connection between Routledge and Francis & Taylor, go here and scroll down about 75% of the page (briefly, Routledge is a brand).

Artificial ‘cricket hair’ sensors from the Dutch

What do you do when the very phenomenon you’re trying to sense (low frequency signals) frustrates your efforts? Scientists at the University of Twente’s MESA+ Institute for Nanotechnology responded by moving the signals into the frequency range for the sensors, which are modeled on cricket hairs. From the June 6, 2013 news item on Nanowerk (Note: A link has been removed),

An “artificial cricket hair” used as a sensitive flow sensor has difficulty detecting weak, low-frequency signals – they tend to be drowned out by noise. But now, a bit of clever tinkering with the flexibility of the tiny hair’s supports has made it possible to boost the signal-to-noise ratio by a factor of 25. This in turn means that weak flows can now be measured. Researchers at the MESA+ Institute for Nanotechnology of the University of Twente (NL) have presented details of this technology in the New Journal of Physics (“Uncovering signals from measurement noise by electro mechanical amplitude modulation”).

The University of Twente June 6, 2013 news release, which originated the news item, describes how  biomimicry (copying cricket hairs) combined with technology in old AM radios were combined to solve the problem,

These tiny hairs, which are manufactured using microtechnology techniques, are neatly arranged in rows and mimic the extremely sensitive body hairs that crickets use to detect predators. When a hair moves, the electrical capacitance at its base changes, making the movement measurable. If there is an entire array of hairs, then this effect can be used to measure flow patterns. In the same way, changes in air flow tell crickets that they are about to be attacked.

Tiny “hairs” of the polymer SU-8 are applied to a flexible, moving surface, the capacitance of which changes with each movement.

Mechanical AM radio

In the case of low-frequency signals, the noise inherent to the measurement system itself tends to throw a spanner in the works by drowning out the very signals that the system was designed to measure. One very appealing idea is to “move” these signals into the high frequency range, where noise is a much less significant factor. The MESA+ researchers achieve this by periodically changing the hairs’ spring rate. They do so by applying an electrical voltage.

The original signal (top), the signal at a sensor vibrating at a higher frequency (centre), and the reconstructed signal (bottom)

This adjustment also causes the hairs to vibrate at a high frequency. This resembles the technology used in old AM radios, where the music signal is encoded on a higher frequency wave. In the case of the sensor, its “radio” is a mechanical device. Low frequency flows are measured by tiny hairs vibrating at a higher frequency. The signal can then be retrieved, with significantly less noise. Suddenly, a previously unmeasurable signal emerges, thanks to this “up-conversion”.

This electromechanical amplitude modulation (EMAM) expands the hair sensors’ range of applications enormously. Now that the signal-to-noise ratio has been improved by a factor of 25, it is possible to measure much weaker signals. According to the researchers, this technology could be a very useful way of boosting the performance of many other types of sensors.

You can find out more about the paper here,

The article by Harmen Droogendijk, Remco Sanders and Gijs Krijnen, entitled “Uncovering signals from measurement noise by electromechanical amplitude modulation” has been published in the New Journal of Physics, an open-access journal.

After reading about this research I got a little curious about crickets and found an online set of instructions for drawing them. From the How to Draw a Cricket webpage on the DragonArt.com website, here’s step 6,

STEP 6. This is what your cricket should end up looking like this. Color him/her in and you have just finished this lesson on "how to draw a cricket insect step by step". Credit: Dawn

This is what your cricket should end up looking like this. Color him/her in and you have just finished this lesson on “how to draw a cricket insect step by step”. Credit: Dawn

Thanks to Dawn for uploading her cricket (insect) drawing instructions.