Tag Archives: University of Waterloo

Mathematics/Music/Art/Architecture/Education/Culture: Bridges 2017 conference in Waterloo, Canada

Bridges 2017 will be held in Waterloo, Canada from July 27 – 31, 2017. Here’s the invitation which was released last year,

To give you a sense of the range offered, here’s more from Bridges 2017 events page,

Every Bridges conference includes a number of events other than paper presentations. Please click on one of the events below to learn more about it.

UWAG Exhibition

The University of Waterloo Art Gallery (UWAG) has partnered with Bridges to create an exhibition of five local artists who explore mathematical themes in their work. The exhibition runs concurrently with the conference.

 

Theatre Night

An evening dramatic performance that explores themes of art, mathematics and teaching, performed by Peter Taylor and Judy Wearing from Queen’s University.

 

Formal Music Night

An evening concert of mathematical choral music, performed by a specially-formed ensemble of choristers and professional soloists.

 

Family Day

An afternoon of community activities, games, workshops, interactive demonstrations, presentations, performances, and art exhibitions for children and adults, free and open to all.

 

Poetry Reading

A session of invited readings of poetry exploring mathematical themes, in a wide range of styles. Attendees will also be invited to share their own poetry in an open mic session. A printed anthology will be available at the conference.

 

Informal Music Night

A longstanding tradition at Bridges—a casual variety show in which all conference participants are invited to share their talents, musical or otherwise, with a brief performance.

I have some more details about the exhibition at the University of Waterloo Art Gallery (UWAG) from a July 19, 2017 ArtSci Salon notice received via email,

P A S S A G E  +  O B S T A C L E
PATRICK CULL
LAURA DE DECKER
PAUL DIGNAN
SOHEILA ESFAHANI
ANDREW JAMES SMITH

JULY 27–30

OPEN DAILY: 12–5 PM
EXHIBITION RECEPTION: FRIDAY JULY 28, 5–8 PM
PRESENTED IN COOPERATION WITH BRIDGES WATERLOO 2017
BRIDGESMATHART.ORG [8]

PASSAGE + OBSTACLE features a selection of work by multidisciplinary
area artists Patrick Cull, Paul Dignan, Laura De Decker, Soheila
Esfahani, and Andrew James Smith. Sharing a rigorous approach to
materials and subject matter, their artworks parallel Bridges’ stated
goal to explore “mathematical connections in art, music, architecture,
education and culture”. The exhibition sets out to complement and
expand on the theme by contrasting subtle and overt links between the
use of geometry, pattern, and optical effects across mediums ranging
from painting and installation to digital media. Using the bridge as a
metaphor, the artworks can be appreciated as a means of getting from A
to B by overcoming obstructions, whether perceptual or otherwise.

EXHIBITION IS FREE AND OPEN TO BOTH CONFERENCE VISITORS AND THE PUBLIC

ADMIT EVERYONE
University of Waterloo Art Gallery
East Campus Hall 1239
519.888.4567 ext. 33575
uwag.uwaterloo.ca [9]
facebook.com/uwag.waterloo [10]

CONTACT
Ivan Jurakic, Director / Curator
519.888.4567 ext. 36741
ijurakic@uwaterloo.ca

DRIVING
263 Phillip Street, Waterloo
East Campus Hall (ECH) is located north of University Avenue West
across from Engineering 6

PARKING
Visitor Parking is available in Lot E6 or Q for a flat rate of $5
uwaterloo.ca/map/ [11]

MAILING
University of Waterloo Art Gallery
200 University Avenue West
Waterloo, ON, Canada N2L 3G1

You can find out more about Bridges 2017 including how to register here (the column on the left provides links to registration, program, and more information.

 

Quantum Shorts & Quantum Applications event at Vancouver’s (Canada) Science World

This is very short notice but if you do have some free time on Thursday, Feb. 23, 2017 from 6 – 8:30 pm, you can check out Science World’s Quantum: The Exhibition for free and watch a series of short films. Here’s more from the Quantum Shorts & Quantum Applications event page,

Join us for an evening of quantum art and science. Visit Quantum: The Exhibition and view a series of short films inspired by the science, history, and philosophy of quantum. Find some answers to your Quantum questions at this mind-expanding panel discussion.

Thursday, February 23: 

6pm                      Check out Quantum: The Exhibition
7pm                      Quantum Shorts Screening
7:45pm                 Panel Discussion/Presentation
8:30pm                 Q & A

Light refreshments will be available.

There are still spaces as of Weds., Feb. 22, 2017:; you can register for the event here.

This will be of the last chances you’ll have to see Quantum: The Exhibition as the show’s here last day is scheduled for Feb. 26, 2017.

Understanding nanotechnology with Timbits; a peculiarly Canadian explanation

For the uninitiated, Timbits are also known as donut holes. Tim Hortons, founded by ex-National Hockey League player Tim Horton who has since deceased, has taken hold in the Canada’s language and culture such that one of our scientists trying to to explain nanotechnology thought it would be best understood in terms of Timbits. From a Jan. 14, 2017 article (How nanotechnology could change our lives) by Vanessa Lu for thestar.com,

The future is all in the tiny.

Known as nanoparticles, these are the tiniest particles, so small that we can’t see them or even imagine how small they are.

University of Waterloo’s Frank Gu paints a picture of their scale.

“Take a Timbit and start slicing it into smaller and smaller pieces, so small that every Canadian — about 35 million of us — can hold a piece of the treat,” he said. “And those tiny pieces are still a little bigger than a nanoparticle.”

For years, consumers have seen the benefits of nanotechnology in everything from shrinking cellphones to ultrathin televisions. Apple’s iPhones have become more powerful as they have become smaller — where a chip now holds billions of transistors.

“As you go smaller, it creates less footprint and more power,” said Gu, who holds the Canada research chair in advanced targeted delivery systems. “FaceTime, Skype — they are all powered by nanotechnology, with their retina display.”

Lu wrote a second January 14, 2017 article (Researchers developing nanoparticles to purify water) for thestar.com,

When scientists go with their gut or act on a hunch, it can pay off.

For Tim Leshuk, a PhD student in nanotechnology at the University of Waterloo, he knew it was a long shot.

Leshuk had been working with Frank Gu, who leads a nanotechnology research group, on using tiny nanoparticles that have been tweaked with certain properties to purify contaminated water.

Leshuk was working on the process, treating dirty water such as that found in Alberta’s oilsands, with the nanoparticles combined with ultraviolet light. He wondered what might happen if exposed to actual sunlight.

“I didn’t have high hopes,” he said. “For the heck of it, I took some beakers out and put them on the roof. And when I came back, it was far more effective that we had seen with regular UV light.

“It was high-fives all around,” Leshuk said. “It’s not like a Brita filter or a sponge that just soaks up pollutants. It completely breaks them down.”

Things are accelerating quickly, with a spinoff company now formally created called H2nanO, with more ongoing tests scheduled. The research has drawn attention from oilsands companies, and [a] large pre-pilot project to be funded by the Canadian Oil Sands Innovation Alliance is due to get under way soon.

The excitement comes because it’s an entirely green process, converting solar energy for cleanup, and the nanoparticle material is reuseable, over and over.

It’s good to see a couple of articles about nanotechnology. The work by Tim Leshuk was highlighted here in a Dec. 1, 2015 posting titled:  New photocatalytic approach to cleaning wastewater from oil sands. I see the company wasn’t mentioned in the posting so, it must be new; you can find H2nanO here.

Discussion of a divisive topic: the Oilsands

As for the oilsands, it’s been an interesting few days with the Prime Minister’s (Justin Trudeau) suggestion that dependence would be phased out causing a furor of sorts. From a Jan. 13, 2017 article by James Wood for the Calgary Herald,

Prime Minister Justin Trudeau’s musings about phasing out the oilsands Friday [Jan. 13, 2017] were met with a barrage of criticism from Alberta’s conservative politicians and a pledge from Premier Rachel Notley that the province’s energy industry was “not going anywhere, any time soon.”

Asked at a town hall event in Peterborough [Ontario] about the federal government’s recent approval of Kinder Morgan’s Trans Mountain pipeline expansion, Trudeau reiterated his longstanding remarks that he is attempting to balance economic and environmental concerns.

“We can’t shut down the oilsands tomorrow. We need to phase them out. We need to manage the transition off of our dependence on fossil fuels but it’s going to take time and in the meantime we have to manage that transition,” he added.

Northern Alberta’s oilsands are a prime target for environmentalists because of their significant output of greenhouse gas emissions linked to global climate change.

Trudeau, who will be in Calgary for a cabinet retreat on Jan. 23 and 24 [2017], also said again that it is the responsibility of the national government to get Canadian resources to market.

Meanwhile, Jane Fonda, Hollywood actress, weighed in on the issue of the Alberta oilsands with this (from a Jan. 11, 2017 article by Tristan Hopper for the National Post),

Fort McMurrayites might have assumed the celebrity visits would stop after the city was swept first by recession, and then by wildfire.

Or when the provincial government introduced a carbon tax and started phasing out coal.

And surely, with Donald Trump in the White House, even the oiliest corner of Canada would shift to the activist back burner.

But no; here comes Jane Fonda.

“We don’t need new pipelines,” she told a Wednesday [Jan. 11, 2017] press conference at the University of Alberta where she also dismissed Prime Minister Justin Trudeau as a “good-looking Liberal” who couldn’t be trusted.

Saying that her voice was joined with the “Indigenous people of Canada,” Fonda explained her trip to Alberta by saying “when you’re famous you can help amplify the voices of people that can’t necessarily get a lot of press people to come out.”

Fonda is in Alberta at the invitation of Greenpeace, which has brought her here in support of the Treaty Alliance Against Tar Sands Expansion — a group of Canadian First Nations and U.S. tribes opposed to new pipelines to the Athabasca oilsands.

Appearing alongside Fonda, at a table with a sign reading “Respect Indigenous Decisions,” was Grand Chief Stewart Phillip, who, as leader of the Union of B.C. Indian Chiefs, has led anti-pipeline protests and litigation in British Columbia.

“The future is going to be incredibly litigious,” he said in reference to the approved expansion of the Trans-Mountain pipeline.

The event also included Grand Chief Derek Nepinak of the Assembly of Manitoba Chiefs, which is leading a legal challenge to federal approval of the Line 3 pipeline.

Although much of Athabasca’s oil production now comes from “steam-assisted gravity drainage” projects that requires minimal surface disturbance, on Tuesday Fonda took the requisite helicopter tour of a Fort McMurray-area open pit mine.

As you can see, there are not going to be any easy answers.

2016 thoughts and 2017 hopes from FrogHeart

This is the 4900th post on this blog and as FrogHeart moves forward to 5000, I’m thinking there will be some changes although I’m not sure what they’ll be. In the meantime, here are some random thoughts on the year that was in Canadian science and on the FrogHeart blog.

Changeover to Liberal government: year one

Hopes were high after the Trudeau government was elected. Certainly, there seems to have been a loosening where science communication policies have been concerned although it may not have been quite the open and transparent process people dreamed of. On the plus side, it’s been easier to participate in public consultations but there has been no move (perceptible to me) towards open government science or better access to government-funded science papers.

Open Science in Québec

As far as I know, la crème de la crème of open science (internationally) is the Montreal Neurological Institute (Montreal Neuro; affiliated with McGill University. They bookended the year with two announcements. In January 2016, Montreal Neuro announced it was going to be an “Open Science institution (my Jan. 22, 2016 posting),

The Montreal Neurological Institute (MNI) in Québec, Canada, known informally and widely as Montreal Neuro, has ‘opened’ its science research to the world. David Bruggeman tells the story in a Jan. 21, 2016 posting on his Pasco Phronesis blog (Note: Links have been removed),

The Montreal Neurological Institute (MNI) at McGill University announced that it will be the first academic research institute to become what it calls ‘Open Science.’  As Science is reporting, the MNI will make available all research results and research data at the time of publication.  Additionally it will not seek patents on any of the discoveries made on research at the Institute.

Will this catch on?  I have no idea if this particular combination of open access research data and results with no patents will spread to other university research institutes.  But I do believe that those elements will continue to spread.  More universities and federal agencies are pursuing open access options for research they support.  Elon Musk has opted to not pursue patent litigation for any of Tesla Motors’ patents, and has not pursued patents for SpaceX technology (though it has pursued litigation over patents in rocket technology). …

Then, there’s my Dec. 19, 2016 posting about this Montreal Neuro announcement,

It’s one heck of a Christmas present. Canadian businessmen Larry Tannenbaum and his wife Judy have given the Montreal Neurological Institute (Montreal Neuro), which is affiliated with McGill University, a $20M donation. From a Dec. 16, 2016 McGill University news release,

The Prime Minister of Canada, Justin Trudeau, was present today at the Montreal Neurological Institute and Hospital (MNI) for the announcement of an important donation of $20 million by the Larry and Judy Tanenbaum family. This transformative gift will help to establish the Tanenbaum Open Science Institute, a bold initiative that will facilitate the sharing of neuroscience findings worldwide to accelerate the discovery of leading edge therapeutics to treat patients suffering from neurological diseases.

‟Today, we take an important step forward in opening up new horizons in neuroscience research and discovery,” said Mr. Larry Tanenbaum. ‟Our digital world provides for unprecedented opportunities to leverage advances in technology to the benefit of science.  That is what we are celebrating here today: the transformation of research, the removal of barriers, the breaking of silos and, most of all, the courage of researchers to put patients and progress ahead of all other considerations.”

Neuroscience has reached a new frontier, and advances in technology now allow scientists to better understand the brain and all its complexities in ways that were previously deemed impossible. The sharing of research findings amongst scientists is critical, not only due to the sheer scale of data involved, but also because diseases of the brain and the nervous system are amongst the most compelling unmet medical needs of our time.

Neurological diseases, mental illnesses, addictions, and brain and spinal cord injuries directly impact 1 in 3 Canadians, representing approximately 11 million people across the country.

“As internationally-recognized leaders in the field of brain research, we are uniquely placed to deliver on this ambitious initiative and reinforce our reputation as an institution that drives innovation, discovery and advanced patient care,” said Dr. Guy Rouleau, Director of the Montreal Neurological Institute and Hospital and Chair of McGill University’s Department of Neurology and Neurosurgery. “Part of the Tanenbaum family’s donation will be used to incentivize other Canadian researchers and institutions to adopt an Open Science model, thus strengthening the network of like-minded institutes working in this field.”

Chief Science Advisor

Getting back to the federal government, we’re still waiting for a Chief Science Advisor. Should you be interested in the job, apply here. The job search was launched in early Dec. 2016 (see my Dec. 7, 2016 posting for details) a little over a year after the Liberal government was elected. I’m not sure why the process is taking so long. It’s not like the Canadian government is inventing a position or trailblazing in this regard. Many, many countries and jurisdictions have chief science advisors. Heck the European Union managed to find their first chief science advisor in considerably less time than we’ve spent on the project. My guess, it just wasn’t a priority.

Prime Minister Trudeau, quantum, nano, and Canada’s 150th birthday

In April 2016, Prime Minister Justin Trudeau stunned many when he was able to answer, in an articulate and informed manner, a question about quantum physics during a press conference at the Perimeter Institute in Waterloo, Ontario (my April 18, 2016 post discussing that incident and the so called ‘quantum valley’ in Ontario).

In Sept. 2016, the University of Waterloo publicized the world’s smallest Canadian flag to celebrate the country’s upcoming 150th birthday and to announce its presence in QUANTUM: The Exhibition (a show which will tour across Canada). Here’s more from my Sept. 20, 2016 posting,

The record-setting flag was unveiled at IQC’s [Institute of Quantum Computing at the University of Waterloo] open house on September 17 [2016], which attracted nearly 1,000 visitors. It will also be on display in QUANTUM: The Exhibition, a Canada 150 Fund Signature Initiative, and part of Innovation150, a consortium of five leading Canadian science-outreach organizations. QUANTUM: The Exhibition is a 4,000-square-foot, interactive, travelling exhibit IQC developed highlighting Canada’s leadership in quantum information science and technology.

“I’m delighted that IQC is celebrating Canadian innovation through QUANTUM: The Exhibition and Innovation150,” said Raymond Laflamme, executive director of IQC. “It’s an opportunity to share the transformative technologies resulting from Canadian research and bring quantum computing to fellow Canadians from coast to coast to coast.”

The first of its kind, the exhibition will open at THEMUSEUM in downtown Kitchener on October 14 [2016], and then travel to science centres across the country throughout 2017.

You can find the English language version of QUANTUM: The Exhibition website here and the French language version of QUANTUM: The Exhibition website here.

There are currently four other venues for the show once finishes its run in Waterloo. From QUANTUM’S Join the Celebration webpage,

2017

  • Science World at TELUS World of Science, Vancouver
  • TELUS Spark, Calgary
  • Discovery Centre, Halifax
  • Canada Science and Technology Museum, Ottawa

I gather they’re still looking for other venues to host the exhibition. If interested, there’s this: Contact us.

Other than the flag which is both nanoscale and microscale, they haven’t revealed what else will be included in their 4000 square foot exhibit but it will be “bilingual, accessible, and interactive.” Also, there will be stories.

Hmm. The exhibition is opening in roughly three weeks and they have no details. Strategy or disorganization? Only time will tell.

Calgary and quantum teleportation

This is one of my favourite stories of the year. Scientists at the University of Calgary teleported photons six kilometers from the university to city hall breaking the teleportation record. What I found particularly interesting was the support for science from Calgary City Hall. Here’s more from my Sept. 21, 2016 post,

Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometres using The City of Calgary’s fibre optic cable infrastructure. The project began with an Urban Alliance seed grant in 2014.

This accomplishment, which set a new record for distance of transferring a quantum state by teleportation, has landed the researchers a spot in the prestigious Nature Photonics scientific journal. The finding was published back-to-back with a similar demonstration by a group of Chinese researchers.

The research could not be possible without access to the proper technology. One of the critical pieces of infrastructure that support quantum networking is accessible dark fibre. Dark fibre, so named because of its composition — a single optical cable with no electronics or network equipment on the alignment — doesn’t interfere with quantum technology.

The City of Calgary is building and provisioning dark fibre to enable next-generation municipal services today and for the future.

“By opening The City’s dark fibre infrastructure to the private and public sector, non-profit companies, and academia, we help enable the development of projects like quantum encryption and create opportunities for further research, innovation and economic growth in Calgary,” said Tyler Andruschak, project manager with Innovation and Collaboration at The City of Calgary.

As for the science of it (also from my post),

A Sept. 20, 2016 article by Robson Fletcher for CBC (Canadian Broadcasting News) online provides a bit more insight from the lead researcher (Note: A link has been removed),

“What is remarkable about this is that this information transfer happens in what we call a disembodied manner,” said physics professor Wolfgang Tittel, whose team’s work was published this week in the journal Nature Photonics.

“Our transfer happens without any need for an object to move between these two particles.”

A Sept. 20, 2016 University of Calgary news release by Drew Scherban, which originated the news item, provides more insight into the research,

“Such a network will enable secure communication without having to worry about eavesdropping, and allow distant quantum computers to connect,” says Tittel.

Experiment draws on ‘spooky action at a distance’

The experiment is based on the entanglement property of quantum mechanics, also known as “spooky action at a distance” — a property so mysterious that not even Einstein could come to terms with it.

“Being entangled means that the two photons that form an entangled pair have properties that are linked regardless of how far the two are separated,” explains Tittel. “When one of the photons was sent over to City Hall, it remained entangled with the photon that stayed at the University of Calgary.”

Next, the photon whose state was teleported to the university was generated in a third location in Calgary and then also travelled to City Hall where it met the photon that was part of the entangled pair.

“What happened is the instantaneous and disembodied transfer of the photon’s quantum state onto the remaining photon of the entangled pair, which is the one that remained six kilometres away at the university,” says Tittel.

Council of Canadian Academies and The State of Science and Technology and Industrial Research and Development in Canada

Preliminary data was released by the CCA’s expert panel in mid-December 2016. I reviewed that material briefly in my Dec. 15, 2016 post but am eagerly awaiting the full report due late 2017 when, hopefully, I’ll have the time to critique the material, and which I hope will have more surprises and offer greater insights than the preliminary report did.

Colleagues

Thank you to my online colleagues. While we don’t interact much it’s impossible to estimate how encouraging it is to know that these people continually participate and help create the nano and/or science blogosphere.

David Bruggeman at his Pasco Phronesis blog keeps me up-to-date on science policy both in the US, Canada, and internationally, as well as, keeping me abreast of the performing arts/science scene. Also, kudos to David for raising my (and his audience’s) awareness of just how much science is discussed on late night US television. Also, I don’t know how he does it but he keeps scooping me on Canadian science policy matters. Thankfully, I’m not bitter and hope he continues to scoop me which will mean that I will get the information from somewhere since it won’t be from the Canadian government.

Tim Harper of Cientifica Research keeps me on my toes as he keeps shifting his focus. Most lately, it’s been on smart textiles and wearables. You can download his latest White Paper titled, Fashion, Smart Textiles, Wearables and Disappearables, from his website. Tim consults on nanotechnology and other emerging technologies at the international level.

Dexter Johnson of the Nanoclast blog on the IEEE (Institute of Electrical and Electronics Engineers) website consistently provides informed insight into how a particular piece of research fits into the nano scene and often provides historical details that you’re not likely to get from anyone else.

Dr. Andrew Maynard is currently the founding Director of the Risk Innovation Lab at the University of Arizona. I know him through his 2020 Science blog where he posts text and videos on many topics including emerging technologies, nanotechnologies, risk, science communication, and much more. Do check out 2020 Science as it is a treasure trove.

2017 hopes and dreams

I hope Canada’s Chief Science Advisor brings some fresh thinking to science in government and that the Council of Canadian Academies’ upcoming assessment on The State of Science and Technology and Industrial Research and Development in Canada is visionary. Also, let’s send up some collective prayers for the Canada Science and Technology Museum which has been closed since 2014 (?) due to black mold (?). It would be lovely to see it open in time for Canada’s 150th anniversary.

I’d like to see the nanotechnology promise come closer to a reality, which benefits as many people as possible.

As for me and FrogHeart, I’m not sure about the future. I do know there’s one more Steep project (I’m working with Raewyn Turner on a multiple project endeavour known as Steep; this project will involve sound and gold nanoparticles).

Should anything sparkling occur to me, I will add it at a future date.

In the meantime, Happy New Year and thank you from the bottom of my heart for reading this blog!

Nanotechnology at the University of McGill (Montréal, Canada) and other Canadian universities

On the occasion of the McGill University’s new minor program in nanotechnology, I decided to find other Canadian university nanotechnology programs.

First, here’s more about the McGill program from an Oct. 25, 2016 article by Miguel Principe for The McGill Tribune (Note: Links have been removed),

McGill’s Faculty of Engineering launched a new minor program this year that explores into the world of nanotechnology. It’s a relatively young field that focuses on nanomaterials—materials that have one dimension measuring 100 nanometres or less. …

“Nanomaterials are going to be very prominent in our everyday lives,” Assistant Professor Nathalie Tufenkji, of McGill’s Department of Chemical Engineering, said.  “We’re incorporating these materials into our everyday consumer products […] we’re putting these materials on our skin, […] in our paints, and electronics that we are contacting everyday.”

The new engineering minor program aims to introduce undergraduates to techniques in nanomaterial characterization and detection, as well as nanomaterial synthesis and processing. These concepts will be covered in courses such as Nanoscience and Nanotechnology, Supramolecular Chemistry, and Design and Manufacture of Microdevices.

Tufenkji, along with Professor Peter Grutter in the Department of Physics were instrumental in organizing this program. The minor is interdepartmental and includes courses in physics and engineering.

“Of course there’s a flipside on how do we best develop nanotechnology to […] take advantage of its promise,” Tufenkji said. “One of the questions […] is what are the potential impacts on our health and environment of nanomaterials?”

Tufenkji believes it is important that Canada has scientists and engineers that are educated in emerging scientific concepts and cutting-edge technology. Giving undergraduate students exposure to nanotechnology research early in their studies is a good stepping stone for further investigation into the evolving field.

The most comprehensive list of nanotechnology degree programs in Canada (16 programs) is at Nanowerk (Note: Links have been removed and you may find some repetition),

Carleton University – BSc Chemistry with a concentration in Nanotechnology
This concentration allows students to study atoms and molecules used to create computer chips and other devices that are the size of a few nanometres – thousands of times smaller than current technology permits. Such discoveries will be useful in a number of fields, including aerospace, medicine, and electronics.

Carleton University – BSc Nanoscience
At Carleton, you will examine nanoscience through the disciplines of physical chemistry and electrical engineering to understand the physical, chemical and electronic characteristics of matter in this size regime. The combination of these two areas of study will equip you to fully understand nanoscience in photonic, electronic, energy and communication technologies. The focus of the program will be on materials – their use in electronic devices, their scalability and control of their properties.

McGill University – Bachelor of Engineering, Minor Nanotechnology
Through courses already offered in the Faculties of Science, Engineering, and Medicine, depending on the courses completed, undergraduate students will acquire knowledge in areas related to nanotechnology.

Northern Alberta Institute of Technology – Nanotechnology Systems Diploma Program
The two year program will provide graduates with the skills to operate systems and equipment associated with Canada’s emerging nanotechnology industry and lead to a Diploma in Nanotechnology Systems.

University of Alberta – BSc Computer Engineering with Nanoscale System Design Option
This options provides an introduction to the processes involved in the fabrication of nanoscale integrated circuits and to the computer aided design (CAD) tools necessary for the engineering of large scale system on a chip. By selecting this option, students will learn about fault tolerance in nanoscale systems and gain an understanding of quantum phenomena in systems design.

University of Alberta – BSc Electrical Engineering with Nanoengineering Option
This option provides an introduction to the principles of electronics, electromagnetics and photonics as they apply at the nanoscale level. By selecting this option, students will learn about the process involved in the fabrication of nanoscale structures and become familiar with the computer aided design (CAD) tools necessary for analyzing phenomena at these very high levels of miniaturization.

University of Alberta – BSc Engineering Physics with Nanoengineering Option
The Nanoengineering Option provides broad skills suitable for entry to the nanotechnology professions, combining core Electrical Engineering and Physics courses with additional instruction in biochemistry and chemistry, and specialized instruction in nanoelectronics, nanobioengineering, and nanofabrication.

University of Alberta – BSc Materials Engineering with Nano and Functional Materials Option
Students entering this option will be exposed to the exciting and emerging field of nano and functional materials. Subject areas covered include electronic, optical and magnetic materials, nanomaterials and their applications, nanostructured molecular sieves, nano and functional materials processing and fabrication. Employment opportunities exist in several sectors of Canadian industry, such as microelectronic/optoelectronic device fabrication, MEMS processing and fuel cell development.

University of Calgary – B.Sc. Concentration in Nanoscience
Starting Fall 2008/Winter 2009, students can enroll in the only process learning driven Nanoscience program in North America. Courses offered are a B.Sc. Minor in Nanoscience and a B.Sc. Concentration in Nanoscience.

University of Calgary – B.Sc. Minor in Nanoscience
Starting Fall 2008/Winter 2009, students can enroll in the only process learning driven Nanoscience program in North America. Courses offered are a B.Sc. Minor in Nanoscience and a B.Sc. Concentration in Nanoscience.

University of Guelph – Nanoscience B.Sc. Program
At Guelph we have created a unique approach to nanoscience studies. Fundamental science course are combined with specially designed courses in nanoscience covering material that would previously only be found in graduate programs.

University of Toronto – BASc in Engineering Science (Nanoengineering Option)
This option transcends the traditional boundaries between physics, chemistry, and biology. Starting with a foundation in materials engineering and augmented by research from the leading-edge of nanoengineering, students receive an education that is at the forefront of this constantly evolving area.

University of Waterloo – Bachelor of Applied Science Nanotechnology Engineering
The Nanotechnology Engineering honours degree program is designed to provide a practical education in key areas of nanotechnology, including the fundamental chemistry, physics, and engineering of nanostructures or nanosystems, as well as the theories and techniques used to model, design, fabricate, or characterize them. Great emphasis is placed on training with modern instrumentation techniques as used in the research and development of these emerging technologies.

University of Waterloo – Master of Applied Science Nanotechnology
The interdisciplinary research programs, jointly offered by three departments in the Faculty of Science and four in the Faculty of Engineering, provide students with a stimulating educational environment that spans from basic research through to application. The goal of the collaborative programs is to allow students to gain perspectives on nanotechnology from a wide community of scholars within and outside their disciplines in both course and thesis work. The MASc and MSc degree collaborative programs provide a strong foundation in the emerging areas of nano-science or nano-engineering in preparation for the workforce or for further graduate study and research leading to a doctoral degree.

University of Waterloo – Master of Science Nanotechnology
The interdisciplinary research programs, jointly offered by three departments in the Faculty of Science and four in the Faculty of Engineering, provide students with a stimulating educational environment that spans from basic research through to application. The goal of the collaborative programs is to allow students to gain perspectives on nanotechnology from a wide community of scholars within and outside their disciplines in both course and thesis work. The MASc and MSc degree collaborative programs provide a strong foundation in the emerging areas of nano-science or nano-engineering in preparation for the workforce or for further graduate study and research leading to a doctoral degree.

University of Waterloo – Ph.D. Program in Nanotechnology
The objective of the PhD program is to prepare students for careers in academia, industrial R&D and government research labs. Students from Science and Engineering will work side-by-side in world class laboratory facilities namely, the Giga-to-Nano Electronics Lab (G2N), Waterloo Advanced Technology Lab (WatLAB) and the new 225,000 gross sq. ft. Quantum-Nano Center expected to be completed in early 2011.

The Wikipedia entry for Nanotechnology education lists a few Canadian university programs that seem to have been missed, as well as a few previously seen in the Nanowerk list (Note: Links have been removed),

  • University of Alberta – B.Sc in Engineering Physics with Nanoengineering option
  • University of Toronto – B.A.Sc in Engineering Science with Nanoengineering option
  • University of Waterloo – B.A.Sc in Nanotechnology Engineering
    • Waterloo Institute for Nanotechnology -B.Sc, B.A.Sc, master’s, Ph.D, Post Doctorate
  • McMaster University – B.Sc in Engineering Physics with Nanotechnology option
  • University of British Columbia – B.A.Sc in Electrical Engineering with Nanotechnology & Microsystems option
  • Carleton University – B.Sc in Chemistry with Concentration in Nanotechnology
  • University of Calgary – B.Sc Minor in Nanoscience, B.Sc Concentration in Nanoscience
  • University of Guelph – B.Sc in Nanoscience

So, there you have it.

The State of Science and Technology (S&T) and Industrial Research and Development (IR&D) in Canada

Earlier this year I featured (in a July 1, 2016 posting) the announcement of a third assessment of science and technology in Canada by the Council of Canadian Academies. At the time I speculated as to the size of the ‘expert panel’ making the assessment as they had rolled a second assessment (Industrial Research and Development) into this one on the state of science and technology. I now have my answer thanks to an Oct. 17, 2016 Council of Canadian Academies news release announcing the chairperson (received via email; Note: Links have been removed and emphases added for greater readability),

The Council of Canadian Academies (CCA) is pleased to announce Dr. Max Blouw, President and Vice-Chancellor of Wilfrid Laurier University, as Chair of the newly appointed Expert Panel on the State of Science and Technology (S&T) and Industrial Research and Development (IR&D) in Canada.

“Dr. Blouw is a widely respected leader with a strong background in research and academia,” said Eric M. Meslin, PhD, FCAHS, President and CEO of the CCA. “I am delighted he has agreed to serve as Chair for an assessment that will contribute to the current policy discussion in Canada.”

As Chair of the Expert Panel, Dr. Blouw will work with the multidisciplinary, multi-sectoral Expert Panel to address the following assessment question, referred to the CCA by Innovation, Science and Economic Development Canada (ISED):

What is the current state of science and technology and industrial research and development in Canada?

Dr. Blouw will lead the CCA Expert Panel to assess the available evidence and deliver its final report by late 2017. Members of the panel include experts from different fields of academic research, R&D, innovation, and research administration. The depth of the Panel’s experience and expertise, paired with the CCA’s rigorous assessment methodology, will ensure the most authoritative, credible, and independent response to the question.

“I am very pleased to accept the position of Chair for this assessment and I consider myself privileged to be working with such an eminent group of experts,” said Dr. Blouw. “The CCA’s previous reports on S&T and IR&D provided crucial insights into Canada’s strengths and weaknesses in these areas. I look forward to contributing to this important set of reports with new evidence and trends.”

Dr. Blouw was Vice-President Research, Associate Vice-President Research, and Professor of Biology, at the University of Northern British Columbia, before joining Wilfrid Laurier as President. Dr. Blouw served two terms as the chair of the university advisory group to Industry Canada and was a member of the adjudication panel for the Ontario Premier’s Discovery Awards, which recognize the province’s finest senior researchers. He recently chaired the International Review Committee of the NSERC Discovery Grants Program.

For a complete list of Expert Panel members, their biographies, and details on the assessment, please visit the assessment page. The CCA’s Member Academies – the Royal Society of Canada, the Canadian Academy of Engineering, and the Canadian Academy of Health Sciences – are a key source of membership for expert panels. Many experts are also Fellows of the Academies.

The Expert Panel on the State of S&T and IR&D
Max Blouw, (Chair) President and Vice-Chancellor of Wilfrid Laurier University
Luis Barreto, President, Dr. Luis Barreto & Associates and Special Advisor, NEOMED-LABS
Catherine Beaudry, Professor, Department of Mathematical and Industrial Engineering, Polytechnique Montréal
Donald Brooks, FCAHS, Professor, Pathology and Laboratory Medicine, and Chemistry, University of British Columbia
Madeleine Jean, General Manager, Prompt
Philip Jessop, FRSC, Professor, Inorganic Chemistry and Canada Research Chair in Green Chemistry, Department of Chemistry, Queen’s University; Technical Director, GreenCentre Canada
Claude Lajeunesse, FCAE, Corporate Director and Interim Chair of the Board of Directors, Atomic Energy of Canada Ltd.
Steve Liang, Associate Professor, Geomatics Engineering, University of Calgary; Director, GeoSensorWeb Laboratory; CEO, SensorUp Inc.
Robert Luke, Vice-President, Research and Innovation, OCAD University
Douglas Peers, Professor, Dean of Arts, Department of History, University of Waterloo
John M. Thompson, O.C., FCAE, Retired Executive Vice-Chairman, IBM Corporation
Anne Whitelaw, Associate Dean Research, Faculty of Fine Arts and Associate Professor, Department of Art History, Concordia University
David A. Wolfe, Professor, Political Science and Co-Director, Innovation Policy Lab, Munk School of Global Affairs, University of Toronto

You can find more information about the expert panel here and about this assessment and its predecesors here.

A few observations, given the size of the task this panel is lean. As well, there are three women in a group of 13 (less than 25% representation) in 2016? It’s Ontario and Québec-dominant; only BC and Alberta rate a representative on the panel. I hope they will find ways to better balance this panel and communicate that ‘balanced story’ to the rest of us. On the plus side, the panel has representatives from the humanities, arts, and industry in addition to the expected representatives from the sciences.

Bob McDonald: How is Canada on the ‘forefront of pushing nanotechnology forward’?

Mr. Quirks & Quarks, also known as the Canadian Broadcasting Corporation’s (CBC) Bob McDonald, host of the science radio programme Quirks & Quarks, published an Oct. 9, 2016 posting on the programme’s CBC blog about the recently awarded 2016 Nobel Prize for Chemistry and Canada’s efforts in the field of nanotechnology (Links have been removed),

The Nobel Prize in Chemistry awarded this week for developments in nanotechnology heralds a new era in science, akin to the discovery of electromagnetic induction 185 years ago. And like electricity, nanotechnology could influence the world in dramatic ways, not even imaginable today.

The world’s tiniest machines

The Nobel Laureates developed molecular machines, which are incredibly tiny devices assembled one molecule at a time, including a working motor, a lifting machine, a micro-muscle, and even a four wheel drive vehicle, all of which can only be seen with the most powerful electron microscopes. While these lab experiments are novel curiosities, the implications are huge, and Canada is on the forefront of pushing this research forward. [emphasis mine]

McDonald never explains how Canadians are pushing nanotechnology research further but there is this (Note: Links have been removed),

Many universities offer degree programs on the subject while organizations such as the National Institute for Nanotechnology at the University of Alberta, and the Waterloo Institute for Nanotechnology at the University of Waterloo in Ontario, are conducting fundamental research on these new novel materials.

Somehow he never mentions any boundary-pushing research. hmmm

To be blunt, it’s very hard to establish Canada’s position in the field since ‘nanotechnolgy research’ as such doesn’t exist here in the way it does in the United States, Korea, Iran, Germany, China, the United Kingdom, Ireland, Austria, and others. It’s not a federally coordinated effort in Canada despite the fact that we have a Canada National Research Council (NRC) National Institute of Nanotechnology (NINT) in Alberta. (There’s very little information about research on the NINT website.) A Government of Canada NanoPortal is poorly maintained and includes information that is seriously out-of-date. One area where Canadians have been influential has been at the international level where we’ve collaborated on a number of OECD (Organization for Economic and Cooperative Development) projects focused on safety (occupational and environmental, in particular) issues.

Canada’s Ingenuity Lab, a nanotechnology project that appeared promising, hasn’t made many research announcements and seems to be a provincial (Alberta) initiative rather than a federal one. In fact, the most activity in the field of nanotechnology research has been at the provincial level with Alberta and Québec in the lead, if financial investment is your primary measure, and Ontario following, then the other provinces trailing from behind. Unfortunately, I’ve never come across any nanotechnology research from the Yukon or other parts North.

With regard to research announcements, the situation changes and you have Québec and Ontario assuming the lead positions with Alberta following. As McDonald noted, the University of Waterloo has a major nanotechnology education programme and the University of Toronto seems to have a very active research focus in that field (Ted Sargent and solar cells and quantum dots) and the University of Guelph is known for its work in agriculture and nanotechnolgy (search this blog using any of the three universities as a search term). In Québec, they’ve made a number of announcements about cutting edge research. You can search this blog for the names Sylvain Martel, Federico Rosei, and Claude Ostiguy (who seems to work primarily in French), amongst others. CelluForce, based in Quebec, and once  a leader (not sure about the situation these days) in the production of cellulose nanocrystals (CNC). One side comment, CNC was first developed at the University of British Columbia, however, Québec showed more support (provincial funding) and interest and the bulk of that research effort moved.

There’s one more shout out and that’s for Blue Goose Biorefineries in the province of Saskatchewan, which sells CNC and offers services to help companies  research applications for the material.

One other significant area of interest comes to mind, the graphite mines in Québec and Ontario which supply graphite flakes used to produce graphene, a material that is supposed to revolutionize electronics, in particular.

There are other research efforts and laboratories in Canada but these are the institutions and researchers with which I’m most familiar after more than eight years of blogging about Canadian nanotechnology. That said, if I’ve missed any significant, please do let me know in the comments section of this blog.

Graphene Canada and its second annual conference

An Aug. 31, 2016 news item on Nanotechnology Now announces Canada’s second graphene-themed conference,

The 2nd edition of Graphene & 2D Materials Canada 2016 International Conference & Exhibition (www.graphenecanadaconf.com) will take place in Montreal (Canada): 18-20 October, 2016.

– An industrial forum with focus on Graphene Commercialization (Abalonyx, Alcereco Inc, AMO GmbH, Avanzare, AzTrong Inc, Bosch GmbH, China Innovation Alliance of the Graphene Industry (CGIA), Durham University & Applied Graphene Materials, Fujitsu Laboratories Ltd., Hanwha Techwin, Haydale, IDTechEx, North Carolina Central University & Chaowei Power Ltd, NTNU&CrayoNano, Phantoms Foundation, Southeast University, The Graphene Council, University of Siegen, University of Sunderland and University of Waterloo)
– Extensive thematic workshops in parallel (Materials & Devices Characterization, Chemistry, Biosensors & Energy and Electronic Devices)
– A significant exhibition (Abalonyx, Go Foundation, Grafoid, Group NanoXplore Inc., Raymor | Nanointegris and Suragus GmbH)

As I noted in my 2015 post about Graphene Canada and its conference, the group is organized in a rather interesting fashion and I see the tradition continues, i.e., the lead organizers seem to be situated in countries other than Canada. From the Aug. 31, 2016 news item on Nanotechnology Now,

Organisers: Phantoms Foundation [located in Spain] www.phantomsnet.net
Catalan Institute of Nanoscience and Nanotechnology – ICN2 (Spain) | CEMES/CNRS (France) | GO Foundation (Canada) | Grafoid Inc (Canada) | Graphene Labs – IIT (Italy) | McGill University (Canada) | Texas Instruments (USA) | Université Catholique de Louvain (Belgium) | Université de Montreal (Canada)

You can find the conference website here.

Smallest national flag record achieved to celebrate Canada’s 150th birthday

Courtesy University of Waterloo

Courtesy University of Waterloo

This is a partly nanoscale Canadian flag. For those who can’t read the text on the image, it says ‘Cursor Height = 501.7 nanometers [and] Cursor Width = 1.178 micrometers’.

A Sept. 19, 2016 news item on phys.org announces the latest ‘small’ flag,

The Institute for Quantum Computing at the University of Waterloo set a world record for creating a Canadian flag measuring about one one-hundredth the width of a human hair.

Guinness World Records granted the inaugural award for smallest national flag to the Institute for Quantum Computing (IQC) at Waterloo for the flag measuring 1.178 micrometres in length. It is invisible without the aid of an electron microscope.

A Sept. 19, 2016 University of Waterloo (Ontario, Canada) news release, which originated the news item, provides more detail about how the flag was fabricated (Note: A link has been removed),

Nathan Nelson-Fitzpatrick, nanofabrication process engineer at IQC, led the creation of the flag with assistance from Natalie Prislinger Pinchin, a Waterloo co-op student from the Faculty of Engineering. They created it on a silicon wafer bearing the official logo of the Canada 150 celebrations using an electron beam lithography system in the Quantum NanoFab facility at Waterloo.

“Canada 150 celebrates our past, present and future,” said Tobi Day-Hamilton, associate director of communications and strategic initiatives at IQC. “The future of Canadian technology is firmly set in the quantum world and at the nano-scale, so what better way to celebrate the lead up to 2017 than with a record-setting, nano-scale national flag.”

The record-setting flag was unveiled at IQC’s open house on September 17 [2016], which attracted nearly 1,000 visitors. It will also be on display in QUANTUM: The Exhibition, a Canada 150 Fund Signature Initiative, and part of Innovation150, a consortium of five leading Canadian science-outreach organizations. QUANTUM: The Exhibition is a 4,000-square-foot, interactive, travelling exhibit IQC developed highlighting Canada’s leadership in quantum information science and technology.

“I’m delighted that IQC is celebrating Canadian innovation through QUANTUM: The Exhibition and Innovation150,” said Raymond Laflamme, executive director of IQC. “It’s an opportunity to share the transformative technologies resulting from Canadian research and bring quantum computing to fellow Canadians from coast to coast to coast.”

The first of its kind, the exhibition will open at THEMUSEUM in downtown Kitchener on October 14 [2016], and then travel to science centres across the country throughout 2017.

You can find the English language version of QUANTUM: The Exhibition website here and the French language version of QUANTUM: The Exhibition website here.

There are currently four other venues for the show once finishes its run in Waterloo. From QUANTUM’S Join the Celebration webpage,

2017

  • Science World at TELUS World of Science, Vancouver
  • TELUS Spark, Calgary
  • Discovery Centre, Halifax
  • Canada Science and Technology Museum, Ottawa

I gather they’re still looking for other venues to host the exhibition. If interested, there’s this: Contact us.

Other than the flag which is both nanoscale and microscale, they haven’t revealed what else will be included in their 4000 square foot exhibit but it will be “bilingual, accessible, and interactive.” Also, there will be stories.

Hmm. The exhibition is opening in roughly three weeks and they have no details. Strategy or disorganization? Only time will tell.

Nanotechnology, math, cancer, and a boxing metaphor

Violent metaphors in medicine are not unusual although the reference is often to war rather than boxing as it is in this news from the University of Waterloo (Canada). Still, it seems counter-intuitive to closely link violence with healing but the practice is well entrenched and it seems attempts to counteract it are a ‘losing battle’ (pun intended).

Credit: Gabriel Picolo "2-in-1 punch." Courtesy: University of Waterloo

Credit: Gabriel Picolo “2-in-1 punch.” Courtesy: University of Waterloo

A June 23, 2016 news item on ScienceDaily describes a new approach to cancer therapy,

Math, biology and nanotechnology are becoming strange, yet effective bed-fellows in the fight against cancer treatment resistance. Researchers at the University of Waterloo and Harvard Medical School have engineered a revolutionary new approach to cancer treatment that pits a lethal combination of drugs together into a single nanoparticle.

Their work, published online on June 3, 2016 in the leading nanotechnology journal ACS Nano, finds a new method of shrinking tumors and prevents resistance in aggressive cancers by activating two drugs within the same cell at the same time.

A June 23, 2016 University of Waterloo news release (also on EurekAlert), which originated the news item, provides more information,

Every year thousands of patients die from recurrent cancers that have become resistant to therapy, resulting in one of the greatest unsolved challenges in cancer treatment. By tracking the fate of individual cancer cells under pressure of chemotherapy, biologists and bioengineers at Harvard Medical School studied a network of signals and molecular pathways that allow the cells to generate resistance over the course of treatment.

Using this information, a team of applied mathematicians led by Professor Mohammad Kohandel at the University of Waterloo, developed a mathematical model that incorporated algorithms that define the phenotypic cell state transitions of cancer cells in real-time while under attack by an anticancer agent. The mathematical simulations enabled them to define the exact molecular behavior and pathway of signals, which allow cancer cells to survive treatment over time.

They discovered that the PI3K/AKT kinase, which is often over-activated in cancers, enables cells to undergo a resistance program when pressured with the cytotoxic chemotherapy known as Taxanes, which are conventionally used to treat aggressive breast cancers. This revolutionary window into the life of a cell reveals that vulnerabilities to small molecule PI3K/AKT kinase inhibitors exist, and can be targeted if they are applied in the right sequence with combinations of other drugs.

Previously theories of drug resistance have relied on the hypothesis that only certain, “privileged” cells can overcome therapy. The mathematical simulations demonstrate that, under the right conditions and signaling events, any cell can develop a resistance program.

“Only recently have we begun to appreciate how important mathematics and physics are to understanding the biology and evolution of cancer,” said Professor Kohandel. “In fact, there is now increasing synergy between these disciplines, and we are beginning to appreciate how critical this information can be to create the right recipes to treat cancer.”

Although previous studies explored the use of drug combinations to treat cancer, the one-two punch approach is not always successful. In the new study, led by Professor Aaron Goldman, a faculty member in the division of Engineering in Medicine at Brigham and Women’s Hospital, the scientists realized a major shortcoming of the combination therapy approach is that both drugs need to be active in the same cell, something that current delivery methods can’t guarantee.

“We were inspired by the mathematical understanding that a cancer cell rewires the mechanisms of resistance in a very specific order and time-sensitive manner,” said Professor Goldman. “By developing a 2-in-1 nanomedicine, we could ensure the cell that was acquiring this new resistance saw the lethal drug combination, shutting down the survival program and eliminating the evidence of resistance. This approach could redefine how clinicians deliver combinations of drugs in the clinic.”

The approach the bioengineers took was to build a single nanoparticle, inspired by computer models, that exploit a technique known as supramolecular chemistry. This nanotechnology enables scientists to build cholesterol-tethered drugs together from “tetris-like” building blocks that self-assemble, incorporating multiple drugs into stable, individual nano-vehicles that target tumors through the leaky vasculature. This 2-in-1 strategy ensures that resistance to therapy never has a chance to develop, bringing together the right recipe to destroy surviving cancer cells.

Using mouse models of aggressive breast cancer, the scientists confirmed the predictions from the mathematical model that both drugs must be deterministically delivered to the same cell.

Here’s a link to and a citation for the paper,

Rationally Designed 2-in-1 Nanoparticles Can Overcome Adaptive Resistance in Cancer by Aaron Goldman, Ashish Kulkarni, Mohammad Kohandel, Prithvi Pandey, Poornima Rao, Siva Kumar Natarajan, Venkata Sabbisetti, and Shiladitya Sengupta. ACS Nano, Article ASAP DOI: 10.1021/acsnano.6b00320 Publication Date (Web): June 03, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

The researchers have made this illustration of their work available,

Courtesy: American Chemical Society

Courtesy: American Chemical Society