Tag Archives: University of Waterloo

Prime Minister Trudeau, the quantum physicist

Prime Minister Justin Trudeau’s apparently extemporaneous response to a joking (non)question about quantum computing by a journalist during an April 15, 2016 press conference at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, Canada has created a buzz online, made international news, and caused Canadians to sit taller.

For anyone who missed the moment, here’s a video clip from the Canadian Broadcasting Corporation (CBC),

Aaron Hutchins in an April 15, 2016 article for Maclean’s magazine digs deeper to find out more about Trudeau and quantum physics (Note: A link has been removed),

Raymond Laflamme knows the drill when politicians visit the Perimeter Institute. A photo op here, a few handshakes there and a tour with “really basic, basic, basic facts” about the field of quantum mechanics.

But when the self-described “geek” Justin Trudeau showed up for a funding announcement on Friday [April 15, 2016], the co-founder and director of the Institute for Quantum Computing at the University of Waterloo wasn’t met with simple nods of the Prime Minister pretending to understand. Trudeau immediately started talking about things being waves and particles at the same time, like cats being dead and alive at the same time. It wasn’t just nonsense—Trudeau was referencing the famous thought experiment of the late legendary physicist Erwin Schrödinger.

“I don’t know where he learned all that stuff, but we were all surprised,” Laflamme says. Soon afterwards, as Trudeau met with one student talking about superconductivity, the Prime Minister asked her, “Why don’t we have high-temperature superconducting systems?” something Laflamme describes as the institute’s “Holy Grail” quest.

“I was flabbergasted,” Laflamme says. “I don’t know how he does in other subjects, but in quantum physics, he knows the basic pieces and the important questions.”

Strangely, Laflamme was not nearly as excited (tongue in cheek) when I demonstrated my understanding of quantum physics during our interview (see my May 11, 2015 posting; scroll down about 40% of the way to the Ramond Laflamme subhead).

As Jon Butterworth comments in his April 16, 2016 posting on the Guardian science blog, the response says something about our expectations regarding politicians,

This seems to have enhanced Trudeau’s reputation no end, and quite right too. But it is worth thinking a bit about why.

The explanation he gives is clear, brief, and understandable to a non-specialist. It is the kind of thing any sufficiently engaged politician could pick up from a decent briefing, given expert help. …

Butterworth also goes on to mention journalists’ expectations,

The reporter asked the question in a joking fashion, not unkindly as far as I can tell, but not expecting an answer either. If this had been an announcement about almost any other government investment, wouldn’t the reporter have expected a brief explanation of the basic ideas behind it? …

As for the announcement being made by Trudeau, there is this April 15, 2016 Perimeter Institute press release (Note: Links have been removed),

Prime Minister Justin Trudeau says the work being done at Perimeter and in Canada’s “Quantum Valley” [emphasis mine] is vital to the future of the country and the world.

Prime Minister Justin Trudeau became both teacher and student when he visited Perimeter Institute today to officially announce the federal government’s commitment to support fundamental scientific research at Perimeter.

Joined by Minister of Science Kirsty Duncan and Small Business and Tourism Minister Bardish Chagger, the self-described “geek prime minister” listened intensely as he received brief overviews of Perimeter research in areas spanning from quantum science to condensed matter physics and cosmology.

“You don’t have to be a geek like me to appreciate how important this work is,” he then told a packed audience of scientists, students, and community leaders in Perimeter’s atrium.

The Prime Minister was also welcomed by 200 teenagers attending the Institute’s annual Inspiring Future Women in Science conference, and via video greetings from cosmologist Stephen Hawking [he was Laflamme’s PhD supervisor], who is a Perimeter Distinguished Visiting Research Chair. The Prime Minister said he was “incredibly overwhelmed” by Hawking’s message.

“Canada is a wonderful, huge country, full of people with big hearts and forward-looking minds,” Hawking said in his message. “It’s an ideal place for an institute dedicated to the frontiers of physics. In supporting Perimeter, Canada sets an example for the world.”

The visit reiterated the Government of Canada’s pledge of $50 million over five years announced in last month’s [March 2016] budget [emphasis mine] to support Perimeter research, training, and outreach.

It was the Prime Minister’s second trip to the Region of Waterloo this year. In January [2016], he toured the region’s tech sector and universities, and praised the area’s innovation ecosystem.

This time, the focus was on the first link of the innovation chain: fundamental science that could unlock important discoveries, advance human understanding, and underpin the groundbreaking technologies of tomorrow.

As for the “quantum valley’ in Ontario, I think there might be some competition here in British Columbia with D-Wave Systems (first commercially available quantum computing, of a sort; my Dec. 16, 2015 post is the most recent one featuring the company) and the University of British Columbia’s Stewart Blusson Quantum Matter Institute.

Getting back to Trudeau, it’s exciting to have someone who seems so interested in at least some aspects of science that he can talk about it with a degree of understanding. I knew he had an interest in literature but there is also this (from his Wikipedia entry; Note: Links have been removed),

Trudeau has a bachelor of arts degree in literature from McGill University and a bachelor of education degree from the University of British Columbia…. After graduation, he stayed in Vancouver and he found substitute work at several local schools and permanent work as a French and math teacher at the private West Point Grey Academy … . From 2002 to 2004, he studied engineering at the École Polytechnique de Montréal, a part of the Université de Montréal.[67] He also started a master’s degree in environmental geography at McGill University, before suspending his program to seek public office.[68] [emphases mine]

Trudeau is not the only political leader to have a strong interest in science. In our neighbour to the south, there’s President Barack Obama who has done much to promote science since he was elected in 2008. David Bruggeman in an April 15, 2016  post (Obama hosts DNews segments for Science Channel week of April 11-15, 2016) and an April 17, 2016 post (Obama hosts White House Science Fair) describes two of Obama’s most recent efforts.

ETA April 19, 2016: I’ve found confirmation that this Q&A was somewhat staged as I hinted in the opening with “Prime Minister Justin Trudeau’s apparently extemporaneous response … .” Will Oremus’s April 19, 2016 article for Slate.com breaks the whole news cycle down and points out (Note: A link has been removed),

Over the weekend, even as latecomers continued to dine on the story’s rapidly decaying scraps, a somewhat different picture began to emerge. A Canadian blogger pointed out that Trudeau himself had suggested to reporters at the event that they lob him a question about quantum computing so that he could knock it out of the park with the newfound knowledge he had gleaned on his tour.

The Canadian blogger who tracked this down is J. J. McCullough (Jim McCullough) and you can read his Oct. 16, 2016 posting on the affair here. McCullough has a rather harsh view of the media response to Trudeau’s lecture. Oremus is a bit more measured,

… Monday brought the countertake parade—smaller and less pompous, if no less righteous—led by Gawker with the headline, “Justin Trudeau’s Quantum Computing Explanation Was Likely Staged for Publicity.”

But few of us in the media today are immune to the forces that incentivize timeliness and catchiness over subtlety, and even Gawker’s valuable corrective ended up meriting a corrective of its own. Author J.K. Trotter soon updated his post with comments from Trudeau’s press secretary, who maintained (rather convincingly, I think) that nothing in the episode was “staged”—at least, not in the sinister way that the word implies. Rather, Trudeau had joked that he was looking forward to someone asking him about quantum computing; a reporter at the press conference jokingly complied, without really expecting a response (he quickly moved on to his real question before Trudeau could answer); Trudeau responded anyway, because he really did want to show off his knowledge.

Trotter deserves credit, regardless, for following up and getting a fuller picture of what transpired. He did what those who initially jumped on the story did not, which was to contact the principals for context and comment.

But my point here is not to criticize any particular writer or publication. The too-tidy Trudeau narrative was not the deliberate work of any bad actor or fabricator. Rather, it was the inevitable product of today’s inexorable social-media machine, in which shareable content fuels the traffic-referral engines that pay online media’s bills.

I suggest reading both McCullough’s and Oremus’s posts in their entirety should you find debates about the role of media compelling.

Changing the colour of single photons in a diamond quantum memory

An artist’s impression of quantum frequency conversion in a diamond quantum memory. (Credit: Dr. Khabat Heshami, National Research Council Canada)

An artist’s impression of quantum frequency conversion in a diamond quantum memory. (Credit: Dr. Khabat Heshami, National Research Council Canada)

An April 5, 2016 University of Waterloo news release (also on EurekAlert) describes the research,

Researchers from the Institute for Quantum Computing at the University of Waterloo and the National Research Council of Canada (NRC) have, for the first time, converted the colour and bandwidth of ultrafast single photons using a room-temperature quantum memory in diamond.

Shifting the colour of a photon, or changing its frequency, is necessary to optimally link components in a quantum network. For example, in optical quantum communication, the best transmission through an optical fibre is near infrared, but many of the sensors that measure them work much better for visible light, which is a higher frequency. Being able to shift the colour of the photon between the fibre and the sensor enables higher performance operation, including bigger data rates.

The research, published in Nature Communications, demonstrated small frequency shifts that are useful for a communication protocol known as wavelength division multiplexing. This is used today when a sender needs to transmit large amounts of information through a transmission so the signal is broken into smaller packets of slightly different frequencies and sent through together. The information is then organized at the other end based on those frequencies.

In the experiments conducted at NRC, the researchers demonstrated the conversion of both the frequency and bandwidth of single photons using a room-temperature diamond quantum memory.

“Originally there was this thought that you just stop the photon, store it for a little while and get it back out. The fact that we can manipulate it at the same time is exciting,” said Kent Fisher a PhD student at the Institute for Quantum Computing and with the Department of Physics and Astronomy at Waterloo. “These findings could open the door for other uses of quantum memory as well.”

The diamond quantum memory works by converting the photon into a particular vibration of the carbon atoms in the diamond, called a phonon. This conversion works for many different colours of light allowing for the manipulation of a broad spectrum of light. The energy structure of diamond allows for this to occur at room temperature with very low noise. Researchers used strong laser pulses to store and retrieve the photon. By controlling the colours of these laser pulses, researchers controlled the colour of the retrieved photon.

“The fragility of quantum systems means that you are always working against the clock,” remarked Duncan England, researcher at NRC. “The interesting step that we’ve shown here is that by using extremely short pulses of light, we are able to beat the clock and maintain quantum performance.”

The integrated platform for photon storage and spectral conversion could be used for frequency multiplexing in quantum communication, as well as build up a very large entangled state – something called a cluster state. Researchers are interested in exploiting cluster states as the resource for quantum computing driven entirely by measurements.

Here’s a link to and a citation for the paper,

Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory by Kent A. G. Fisher, Duncan G. England, Jean-Philippe W. MacLean, Philip J. Bustard, Kevin J. Resch, & Benjamin J. Sussman. Nature Communications 7, Article number: 11200  doi:10.1038/ncomms11200 Published 05 April 2016

This paper is open access.

Handling massive digital datasets the quantum way

A Jan. 25, 2016 news item on phys.org describes a new approach to analyzing and managing huge datasets,

From gene mapping to space exploration, humanity continues to generate ever-larger sets of data—far more information than people can actually process, manage, or understand.

Machine learning systems can help researchers deal with this ever-growing flood of information. Some of the most powerful of these analytical tools are based on a strange branch of geometry called topology, which deals with properties that stay the same even when something is bent and stretched every which way.

Such topological systems are especially useful for analyzing the connections in complex networks, such as the internal wiring of the brain, the U.S. power grid, or the global interconnections of the Internet. But even with the most powerful modern supercomputers, such problems remain daunting and impractical to solve. Now, a new approach that would use quantum computers to streamline these problems has been developed by researchers at [Massachusetts Institute of Technology] MIT, the University of Waterloo, and the University of Southern California [USC}.

A Jan. 25, 2016 MIT news release (*also on EurekAlert*), which originated the news item, describes the theory in more detail,

… Seth Lloyd, the paper’s lead author and the Nam P. Suh Professor of Mechanical Engineering, explains that algebraic topology is key to the new method. This approach, he says, helps to reduce the impact of the inevitable distortions that arise every time someone collects data about the real world.

In a topological description, basic features of the data (How many holes does it have? How are the different parts connected?) are considered the same no matter how much they are stretched, compressed, or distorted. Lloyd [ explains that it is often these fundamental topological attributes “that are important in trying to reconstruct the underlying patterns in the real world that the data are supposed to represent.”

It doesn’t matter what kind of dataset is being analyzed, he says. The topological approach to looking for connections and holes “works whether it’s an actual physical hole, or the data represents a logical argument and there’s a hole in the argument. This will find both kinds of holes.”

Using conventional computers, that approach is too demanding for all but the simplest situations. Topological analysis “represents a crucial way of getting at the significant features of the data, but it’s computationally very expensive,” Lloyd says. “This is where quantum mechanics kicks in.” The new quantum-based approach, he says, could exponentially speed up such calculations.

Lloyd offers an example to illustrate that potential speedup: If you have a dataset with 300 points, a conventional approach to analyzing all the topological features in that system would require “a computer the size of the universe,” he says. That is, it would take 2300 (two to the 300th power) processing units — approximately the number of all the particles in the universe. In other words, the problem is simply not solvable in that way.

“That’s where our algorithm kicks in,” he says. Solving the same problem with the new system, using a quantum computer, would require just 300 quantum bits — and a device this size may be achieved in the next few years, according to Lloyd.

“Our algorithm shows that you don’t need a big quantum computer to kick some serious topological butt,” he says.

There are many important kinds of huge datasets where the quantum-topological approach could be useful, Lloyd says, for example understanding interconnections in the brain. “By applying topological analysis to datasets gleaned by electroencephalography or functional MRI, you can reveal the complex connectivity and topology of the sequences of firing neurons that underlie our thought processes,” he says.

The same approach could be used for analyzing many other kinds of information. “You could apply it to the world’s economy, or to social networks, or almost any system that involves long-range transport of goods or information,” says Lloyd, who holds a joint appointment as a professor of physics. But the limits of classical computation have prevented such approaches from being applied before.

While this work is theoretical, “experimentalists have already contacted us about trying prototypes,” he says. “You could find the topology of simple structures on a very simple quantum computer. People are trying proof-of-concept experiments.”

Ignacio Cirac, a professor at the Max Planck Institute of Quantum Optics in Munich, Germany, who was not involved in this research, calls it “a very original idea, and I think that it has a great potential.” He adds “I guess that it has to be further developed and adapted to particular problems. In any case, I think that this is top-quality research.”

Here’s a link to and a citation for the paper,

Quantum algorithms for topological and geometric analysis of data by Seth Lloyd, Silvano Garnerone, & Paolo Zanardi. Nature Communications 7, Article number: 10138 doi:10.1038/ncomms10138 Published 25 January 2016

This paper is open access.

ETA Jan. 25, 2016 1245 hours PST,

Shown here are the connections between different regions of the brain in a control subject (left) and a subject under the influence of the psychedelic compound psilocybin (right). This demonstrates a dramatic increase in connectivity, which explains some of the drug’s effects (such as “hearing” colors or “seeing” smells). Such an analysis, involving billions of brain cells, would be too complex for conventional techniques, but could be handled easily by the new quantum approach, the researchers say. Courtesy of the researchers

Shown here are the connections between different regions of the brain in a control subject (left) and a subject under the influence of the psychedelic compound psilocybin (right). This demonstrates a dramatic increase in connectivity, which explains some of the drug’s effects (such as “hearing” colors or “seeing” smells). Such an analysis, involving billions of brain cells, would be too complex for conventional techniques, but could be handled easily by the new quantum approach, the researchers say. Courtesy of the researchers

*’also on EurekAlert’ text and link added Jan. 26, 2016.

New photocatalytic approach to cleaning wastewater from oil sands

With oil sands in the title, this story had to mention the Canadian province of Alberta, which has been widely castigated and applauded for its oil extraction efforts in their massive oil sands field. A Nov. 24, 2015 news item on Nanotechnology Now describes a new technology for cleaning the wastewater from oil sands extraction processes,

Researchers have developed a process to remove contaminants from oil sands wastewater using only sunlight and nanoparticles that is more effective and inexpensive than conventional treatment methods.

Frank Gu, a professor in the Faculty of Engineering at the University of Waterloo [in the province of Ontario] and Canada Research Chair in Nanotechnology Engineering, is the senior researcher on the team that was the first to find that photocatalysis — a chemical reaction that involves the absorption of light by nanoparticles — can completely eliminate naphthenic acids in oil sands wastewater, and within hours. Naphthenic acids pose a threat to ecology and human health. Water in tailing ponds left to biodegrade naturally in the environment still contains these contaminants decades later.

A Nov. 23, 2015 University of Waterloo news release, which originated the news item, expands on the theme but doesn’t provide much in the way of technical detail,

“With about a billion tonnes of water stored in ponds in Alberta, removing naphthenic acids is one of the largest environmental challenges in Canada,” said Tim Leshuk, a PhD candidate in chemical engineering at Waterloo. He is the lead author of this paper and a recipient of the prestigious Vanier Canada Graduate Scholarship. “Conventional treatments people have tried either haven’t worked, or if they have worked, they’ve been far too impractical or expensive to solve the size of the problem.  Waterloo’s technology is the first step of what looks like a very practical and green treatment method.”

Unlike treating polluted water with chlorine or membrane filtering, the Waterloo technology is energy-efficient and relatively inexpensive. Nanoparticles become extremely reactive when exposed to sunlight and break down the persistent pollutants in their individual atoms, completely removing them from the water. This treatment depends on only sunlight for energy, and the nanoparticles can be recovered and reused indefinitely.

Next steps for the Waterloo research include ensuring that the treated water meets all of the objectives Canadian environmental legislation and regulations required to ensure it can be safely discharged from sources larger than the samples, such as tailing ponds.

Here’s a link to and a citation for the paper,

Solar photocatalytic degradation of naphthenic acids in oil sands process-affected water by Tim Leshuk, Timothy Wong, Stuart Linley, Kerry M. Peru, John V. Headley, Frank Gu. Chemosphere Volume 144, February 2016, Pages 1854–1861 doi:10.1016/j.chemosphere.2015.10.073

This paper is behind a paywall.

Nanomaterials and UV (ultraviolet) light for environmental cleanups

I think this is the first time I’ve seen anything about a technology that removes toxic materials from both water and soil; it’s usually one or the other. A July 22, 2015 news item on Nanowerk makes the announcement (Note: A link has been removed),

Many human-made pollutants in the environment resist degradation through natural processes, and disrupt hormonal and other systems in mammals and other animals. Removing these toxic materials — which include pesticides and endocrine disruptors such as bisphenol A (BPA) — with existing methods is often expensive and time-consuming.

In a new paper published this week in Nature Communications (“Nanoparticles with photoinduced precipitation for the extraction of pollutants from water and soil”), researchers from MIT [Massachusetts Institute of Technology] and the Federal University of Goiás in Brazil demonstrate a novel method for using nanoparticles and ultraviolet (UV) light to quickly isolate and extract a variety of contaminants from soil and water.

A July 21, 2015 MIT news release by Jonathan Mingle, which originated the news item, describes the inspiration and the research in more detail,

Ferdinand Brandl and Nicolas Bertrand, the two lead authors, are former postdocs in the laboratory of Robert Langer, the David H. Koch Institute Professor at MIT’s Koch Institute for Integrative Cancer Research. (Eliana Martins Lima, of the Federal University of Goiás, is the other co-author.) Both Brandl and Bertrand are trained as pharmacists, and describe their discovery as a happy accident: They initially sought to develop nanoparticles that could be used to deliver drugs to cancer cells.

Brandl had previously synthesized polymers that could be cleaved apart by exposure to UV light. But he and Bertrand came to question their suitability for drug delivery, since UV light can be damaging to tissue and cells, and doesn’t penetrate through the skin. When they learned that UV light was used to disinfect water in certain treatment plants, they began to ask a different question.

“We thought if they are already using UV light, maybe they could use our particles as well,” Brandl says. “Then we came up with the idea to use our particles to remove toxic chemicals, pollutants, or hormones from water, because we saw that the particles aggregate once you irradiate them with UV light.”

A trap for ‘water-fearing’ pollution

The researchers synthesized polymers from polyethylene glycol, a widely used compound found in laxatives, toothpaste, and eye drops and approved by the Food and Drug Administration as a food additive, and polylactic acid, a biodegradable plastic used in compostable cups and glassware.

Nanoparticles made from these polymers have a hydrophobic core and a hydrophilic shell. Due to molecular-scale forces, in a solution hydrophobic pollutant molecules move toward the hydrophobic nanoparticles, and adsorb onto their surface, where they effectively become “trapped.” This same phenomenon is at work when spaghetti sauce stains the surface of plastic containers, turning them red: In that case, both the plastic and the oil-based sauce are hydrophobic and interact together.

If left alone, these nanomaterials would remain suspended and dispersed evenly in water. But when exposed to UV light, the stabilizing outer shell of the particles is shed, and — now “enriched” by the pollutants — they form larger aggregates that can then be removed through filtration, sedimentation, or other methods.

The researchers used the method to extract phthalates, hormone-disrupting chemicals used to soften plastics, from wastewater; BPA, another endocrine-disrupting synthetic compound widely used in plastic bottles and other resinous consumer goods, from thermal printing paper samples; and polycyclic aromatic hydrocarbons, carcinogenic compounds formed from incomplete combustion of fuels, from contaminated soil.

The process is irreversible and the polymers are biodegradable, minimizing the risks of leaving toxic secondary products to persist in, say, a body of water. “Once they switch to this macro situation where they’re big clumps,” Bertrand says, “you won’t be able to bring them back to the nano state again.”

The fundamental breakthrough, according to the researchers, was confirming that small molecules do indeed adsorb passively onto the surface of nanoparticles.

“To the best of our knowledge, it is the first time that the interactions of small molecules with pre-formed nanoparticles can be directly measured,” they write in Nature Communications.

Nano cleansing

Even more exciting, they say, is the wide range of potential uses, from environmental remediation to medical analysis.

The polymers are synthesized at room temperature, and don’t need to be specially prepared to target specific compounds; they are broadly applicable to all kinds of hydrophobic chemicals and molecules.

“The interactions we exploit to remove the pollutants are non-specific,” Brandl says. “We can remove hormones, BPA, and pesticides that are all present in the same sample, and we can do this in one step.”

And the nanoparticles’ high surface-area-to-volume ratio means that only a small amount is needed to remove a relatively large quantity of pollutants. The technique could thus offer potential for the cost-effective cleanup of contaminated water and soil on a wider scale.

“From the applied perspective, we showed in a system that the adsorption of small molecules on the surface of the nanoparticles can be used for extraction of any kind,” Bertrand says. “It opens the door for many other applications down the line.”

This approach could possibly be further developed, he speculates, to replace the widespread use of organic solvents for everything from decaffeinating coffee to making paint thinners. Bertrand cites DDT, banned for use as a pesticide in the U.S. since 1972 but still widely used in other parts of the world, as another example of a persistent pollutant that could potentially be remediated using these nanomaterials. “And for analytical applications where you don’t need as much volume to purify or concentrate, this might be interesting,” Bertrand says, offering the example of a cheap testing kit for urine analysis of medical patients.

The study also suggests the broader potential for adapting nanoscale drug-delivery techniques developed for use in environmental remediation.

“That we can apply some of the highly sophisticated, high-precision tools developed for the pharmaceutical industry, and now look at the use of these technologies in broader terms, is phenomenal,” says Frank Gu, an assistant professor of chemical engineering at the University of Waterloo in Canada, and an expert in nanoengineering for health care and medical applications.

“When you think about field deployment, that’s far down the road, but this paper offers a really exciting opportunity to crack a problem that is persistently present,” says Gu, who was not involved in the research. “If you take the normal conventional civil engineering or chemical engineering approach to treating it, it just won’t touch it. That’s where the most exciting part is.”

The researchers have made this illustration of their work available,

Nanoparticles that lose their stability upon irradiation with light have been designed to extract endocrine disruptors, pesticides, and other contaminants from water and soils. The system exploits the large surface-to-volume ratio of nanoparticles, while the photoinduced precipitation ensures nanomaterials are not released in the environment. Image: Nicolas Bertrand Courtesy: MIT

Nanoparticles that lose their stability upon irradiation with light have been designed to extract endocrine disruptors, pesticides, and other contaminants from water and soils. The system exploits the large surface-to-volume ratio of nanoparticles, while the photoinduced precipitation ensures nanomaterials are not released in the environment.
Image: Nicolas Bertrand Courtesy: MIT

Here’s a link to and a citation for the paper,

Nanoparticles with photoinduced precipitation for the extraction of pollutants from water and soil by Ferdinand Brandl, Nicolas Bertrand, Eliana Martins Lima & Robert Langer. Nature Communications 6, Article number: 7765 doi:10.1038/ncomms8765 Published 21 July 2015

This paper is open access.

7th (2015) Canadian Science Policy Conference line-up

The Seventh Canadian Science Policy Conference, being held in Ottawa, Ontario from Nov. 25 – 27, 2015 at the Delta Ottawa City Centre Hotel, has announced its programme and speakers in a July 16, 2015 Canadian Science Policy Centre newsletter,

Presentations

Theme 1: Transformative and Converging Technologies on
Private Sector Innovation and Productivity

New technologies, from 3D printing to quantum computing, present risks and opportunities for Canadian industries and the economy. Join CSPC 2015 in a discussion of how Canada’s mining industry and digital economy can best take advantage of these technological innovations.

Challenges Associated with Transferring New Technologies to the Mining Industry,
Centre for Excellence in Mining Innovation

Creating Digital Opportunity for Canada: challenges and emerging trends,
Munk School of Global Affairs

Disruptive Technologies,
Ryerson University

Theme 2: Big Science in Canada – Realizing the Benefits

ENCode, the LHC, the Very Large Array: Big Science is reshaping modern research and with it, Canada’s scientific landscape. Join the conversation at CSPC 2015 on how Canada navigates those vast new waters.

Science Without Boundaries,
TRIUMF

Are we Jupiters in the celestial field of science? How ‘Big Science’ and major facilities influence Canadian Science Culture,
SNOLAB

Theme 3: Transformation of Science, Society and Research
in the Digital Age: Open science, participation, security and
confidentiality

The digital age has brought important changes to the Canadian scientific landscape. Come discuss and think about the effects of those changes on our society.

The Role of Innovation in Addressing Antimicrobial Resistance,
Industry Canada

Digital Literacy: What is going to make the real difference?,
Actua

Science Blogging: The Next Generation,
Science Borealis

Proposals for Advancing Canadian Open Science Policy,
Environment Canada

Theme 4: Science and Innovation for Development

Innovation and sciences are among the key driver of development. Come and find out how Canadian creativity creates unique opportunities.

Role of Open Science in Innovation for Development,
International Development Research Centre (IDRC)

Learning Creativity in STEM Education,
University of Calgary

Theme 5: Evidence-Based Decision Making: The challenge
of connecting science and policy making

GMOs, climate change, energy: Many of the big major issues facing Canada fall at the nexus of science and policymaking. Join CSPC 2015 in a discussion of the role of big data and evidence-based decision-making in government.

Beating Superbugs: Innovative Genomics and Policies to Tackle AMR,
Genome Canada

Addressing Concerns Over GMOs – Striking the Right Balance,
Agriculture and Agri-food Canada

Who Should be the Voice for Science Within Government?,
Evidence for Democracy

Data Driven Decisions: Putting IoT, Big Data and Analytics to Work For Better Public Policy,
Cybera

The future of university support for Canada’s Science, Technology & Innovation Strategy,
York University

Please note, there will be more panels announced soon.

Keynote Session

Science Advice to Governments
Innovation, science and technologies never had a more critical role in decision making than today. CSPC 2015 keynote session will address the importance and role of the input from the scientific world to decision making in political affairs.

Speakers:

Sir Peter Gluckman,
Chief Science Adviser to New Zealand Government

Rémi Quirion,
Chief Scientist, Quebec

Arthur Carty,
Executive Director, Inst. Nanotechnology U Waterloo, Former science adviser to PM Paul Martin [emphasis mine]

I have a few comments. First, I’m glad to see the balance between the “money, money, money” attitude and more scholarly/policy interests has been evened out somewhat as compared to last year’s conference in Halifax (Nova Scotia). Second, I see there aren’t any politicians listed as speakers in the website’s banner as is the usual case (Ted Hsu, Member of Parliament and current science critic for the Liberal Party, is on the speaker list but will not be running in the 2015 election). This makes some sense since there is a federal election coming up in October 2015 and changes are likely. Especially, since it seems to be a three-horse race at this point. (For anyone unfamiliar with the term, it means that any one of the three main political parties could win and lead should they possess a majority of the votes in the House of Commons. There are other possibilities such as a minority government led by one party (the Harper Conservatives have been in that situation). Or, should two parties, with enough combined votes to outnumber the third party, be able to agree, there could be a coalition government of some kind.) As for other politicians at the provincial and municipal levels, perhaps it’s too early to commit? Third, Arthur Carty, as he notes, was a science advisor to Prime Minister Paul Martin. Martin was the leader of the country for approximately two years from Dec. 2003 – Nov. 2005 when a motion of non confidence was passed in Parliament (more about Paul Martin and his political career in his Wikipedia entry) an election was called for January 2006 when Stephen Harper and the conservatives were voted in to form a minority government. Arthur Carty’s tenure as Canada’s first science advisor began in 2004 and ended in 2008, according to Carty’s Wikipedia entry. It seems Carty is not claiming to have been Stephen Harper’s science advisor although arguably he was the Harper government’s science advisor for the same amount of time. This excerpt from a March 6, 2008 Canada.com news item seems to shed some light on why the Harper sojourn is not mentioned in Cary’s conference biography,

The need for a national science adviser has never been greater and the government is risking damage to Canada’s international reputation as a science leader by cutting the position, according to the man who holds the job until the end of the month.

Appearing before a Commons committee on Thursday, Arthur Carty told MPs that he is “dismayed and disappointed” that the Conservative government decided last fall to discontinue the office of the national science adviser.

“There are, I think, negative consequences of eliminating the position,” said Carty. He said his international counterparts have expressed support for him and that Canada eliminating the position has the “potential to tarnish our image,” as a world leader in science and innovation.

Carty was head of the National Research Council in 2004 when former prime minister Paul Martin asked him to be his science adviser.

In October 2006, [months] after Prime Minister Stephen Harper was elected, Carty’s office was shifted to Industry Canada. After that move, he and his staff were “increasingly marginalized,” Carty told the industry, science and technology committee, and they had little input in crafting the government’s new science and technology strategy.

But Conservative members of the committee questioned whether taxpayers got their money’s worth from the national adviser and asked Carty to explain travel and meal expenses he had claimed during his time in the public service, including lunch and dinner meetings that cost around $1,000 each. Some of the figures they cited were from when Carty was head of the National Research Council.

The suggestions that Carty took advantage of the public purse prompted Liberal MP Scott Brison to accuse the Tories of launching a “smear campaign” against Carty, whom he described as a “great public servant.”

“I have never overcharged the government for anything,” Carty said in his own defence.

The keynote has the potential for some liveliness based on Carty’s history as a science advisor but one never knows.  It would have been nice if the organizers had been able to include someone from South Korea, Japan, India, China, etc. to be a keynote speaker on the topic of science advice. After all, those countries have all invested heavily in science and made some significant social and economic progress based on those investments. If you’re going to talk about the global science enterprise perhaps you could attract a few new people (and let’s not forget Latin America, Africa, and the Middle East) to the table, so to speak.

You can find out more about the conference and register (there’s a 30% supersaver discount at the moment) here.

Canada and some graphene scene tidbits

For a long time It seemed as if every country in the world, except Canada, had some some sort of graphene event. According to a July 16, 2015 news item on Nanotechnology Now, Canada has now stepped up, albeit, in a peculiarly Canadian fashion. First the news,

Mid October [Oct. 14 -16, 2015], the Graphene & 2D Materials Canada 2015 International Conference & Exhibition (www.graphenecanada2015.com) will take place in Montreal (Canada).

I found a July 16, 2015 news release (PDF) announcing the Canadian event on the lead organizer’s (Phantoms Foundation located in Spain) website,

On the second day of the event (15th October, 2015), an Industrial Forum will bring together top industry leaders to discuss recent advances in technology developments and business opportunities in graphene commercialization.
At this stage, the event unveils 38 keynote & invited speakers. On the Industrial Forum 19 of them will present the latest in terms of Energy, Applications, Production and Worldwide Initiatives & Priorities.

Plenary:
Gary Economo (Grafoid Inc., Canada)
Khasha Ghaffarzadeh (IDTechEx, UK)
Shu-Jen Han (IBM T.J. Watson Research Center, USA)
Bor Z. Jang (Angstron Materials, USA)
Seongjun Park (Samsung Advanced Institute of Technology (SAIT), Korea)
Chun-Yun Sung (Lockheed Martin, USA)

Parallel Sessions:
Gordon Chiu (Grafoid Inc., Canada)
Jesus de la Fuente (Graphenea, Spain)
Mark Gallerneault (ALCERECO Inc., Canada)
Ray Gibbs (Haydale Graphene Industries, UK)
Masataka Hasegawa (AIST, Japan)
Byung Hee Hong (SNU & Graphene Square, Korea)
Tony Ling (Jestico + Whiles, UK)
Carla Miner (SDTC, Canada)
Gregory Pognon (THALES Research & Technology, France)
Elena Polyakova (Graphene Laboratories Inc, USA)
Federico Rosei (INRS–EMT, Université du Québec, Canada)
Aiping Yu (University of Waterloo, Canada)
Hua Zhang (MSE-NTU, Singapore)

Apart from the industrial forum, several industry-related activities will be organized:
– Extensive thematic workshops in parallel (Standardization, Materials & Devices Characterization, Bio & Health and Electronic Devices)
– An exhibition carried out with the latest graphene trends (Grafoid, RAYMOR NanoIntegris, Nanomagnetics Instruments, ICEX and Xerox Research Centre of Canada (XRCC) already confirmed)
– B2B meetings to foster technical cooperation in the field of Graphene

It’s still possible to contribute to the event with an oral presentation. The call for abstracts is open until July, 20 [2015]. [emphasis mine]

Graphene Canada 2015 is already supported by Canada’s leading graphene applications developer, Grafoid Inc., Tourisme Montréal and Université de Montréal.

This is what makes the event peculiarly Canadian: multiculturalism, anyone? From the news release,

Organisers: Phantoms Foundation www.phantomsnet.net & Grafoid Foundation (lead organizers)

CEMES/CNRS (France) | Grafoid (Canada) | Catalan Institute of Nanoscience and Nanotechnology – ICN2 (Spain) | IIT (Italy) | McGill University, Canada | Texas Instruments (USA) | Université Catholique de Louvain (Belgium) | Université de Montreal, Canada

It’s billed as a ‘Canada Graphene 2015’ and, as I recall, these types of events don’t usually have so many other countries listed as organizers. For example, UK Graphene 2015 would have mostly or all of its organizers (especially the leads) located in the UK.

Getting to the Canadian content, I wrote about Grafoid at length tracking some of its relationships to companies it owns, a business deal with Hydro Québec, and a partnership with the University of Waterloo, and a nonrepayable grant from the Canadian federal government (Sustainable Development Technology Canada [SDTC]) in a Feb. 23, 2015 posting. Do take a look at the post if you’re curious about the heavily interlinked nature of the Canadian graphene scene and take another look at the list of speakers and their agencies (Mark Gallerneault of ALCERECO [partially owned by Grafoid], Carla Miner of SDTC [Grafoid received monies from the Canadian federal department],  Federico Rosei of INRS–EMT, Université du Québec [another Quebec link], Aiping Yu, University of Waterloo [an academic partner to Grafoid]). The Canadian graphene community is a small one so it’s not surprising there are links between the Canadian speakers but it does seem odd that Lomiko Metals is not represented here. Still, new speakers have been announced since the news release (e.g., Frank Koppens of ICFO, Spain, and Vladimir Falko of Lancaster University, UK) so  time remains.

Meanwhile, Lomiko Metals has announced in a July 17, 2015 news item on Azonano that Graphene 3D labs has changed the percentage of its outstanding shares affecting the percentage that Lomiko owns, amid some production and distribution announcements. The bit about launching commercial sales of its graphene filament seems more interesting to me,

On March 16, 2015 Graphene 3D Lab (TSXV:GGG) (OTCQB:GPHBF) announced that it launched commercial sales of its Conductive Graphene Filament for 3D printing. The filament incorporates highly conductive proprietary nano-carbon materials to enhance the properties of PLA, a widely used thermoplastic material for 3D printing; therefore, the filament is compatible with most commercially available 3D printers. The conductive filament can be used to print conductive traces (similar to as used in circuit boards) within 3D printed parts for electronics.

So, that’s all I’ve got for Canada’s graphene scene.

Mystery of glass—shattered and Happy Canada Day!

I’m pretty sure I’ve said this before but a repetition can’t hurt, “I love glass both for the art and the mystery.” Naturally, I am of two minds about this ‘shattered’ glass mystery from the University of Waterloo (Canada).

A June 29, 2015 University of Waterloo news release (also on EurekAlert) provides a teasing (for impatient people like me) introduction before describing the solution to the mystery,

A physicist at the University of Waterloo is among a team of scientists who have described how glasses form at the molecular level and provided a possible solution to a problem that has stumped scientists for decades.

Their simple theory is expected to open up the study of glasses to non-experts and undergraduates as well as inspire breakthroughs in novel nanomaterials.

The paper published by physicists from the University of Waterloo, McMaster University, ESPCI ParisTech and Université Paris Diderot appeared in the prestigious peer-reviewed journal, Proceedings of the National Academy of Sciences (PNAS).

Glasses are much more than silicon-based materials in bottles and windows. In fact, any solid without an ordered, crystalline structure — metal, plastic, a polymer — that forms a molten liquid when heated above a certain temperature is a glass. Glasses are an essential material in technology, pharmaceuticals, housing, renewable energy and increasingly nano electronics.

“We were surprised — delighted — that the model turned out to be so simple,” said author James Forrest, a University Research Chair and professor in the Faculty of Science. “We were convinced it had already been published.”

The theory relies on two basic concepts: molecular crowding and string-like co-operative movement. [emphasis mine] Molecular crowding describes how molecules within glasses move like people in a crowded room. As the number of people increase, the amount of free volume decreases and the slower people can move through the crowd. Those people next to the door are able to move more freely, just as the surfaces of glasses never actually stop flowing, even at lower temperatures.

The more crowded the room, the more you rely on the co-operative movement with your neighbours to get where you’re going. Likewise, individual molecules within a glass aren’t able to move totally freely. They move with, yet are confined by, strings of weak molecular bonds with their neighbours.

Theories of crowding and cooperative movement are decades old. This is the first time scientists combined both theories to describe how a liquid turns into a glass.

“Research on glasses is normally reserved for specialists in condensed matter physics,” said Forrest, who is also an associate faculty member at Perimeter Institute for Theoretical Physics and a member of the Waterloo Institute for Nanotechnology.  “Now a whole new generation of scientists can study and apply glasses just using first-year calculus.”

Their theory successfully predicts everything from bulk behaviour to surface flow to the once-elusive phenomenon of the glass transition itself. Forrest and colleagues worked for 20 years to bring theory in agreement with decades of observation on glassy materials.

An accurate theory becomes particularly important when trying to understand glass dynamics at the nanoscale. This finding has implications for developing and manufacturing new nanomaterials, such as glasses with conductive properties, or even calculating the uptake of glassy forms of pharmaceuticals.

Here’s a link to and a citation for the paper,

Cooperative strings and glassy interfaces by Thomas Salez, Justin Salez, Kari Dalnoki-Veress, Elie Raphaël, and James A. Forrest. PNAS (Proceedings of the National Academy of Sciences) Published online before print June 22, 2015, doi: 10.1073/pnas.1503133112

This paper is behind a paywall.

Finally and again, Happy Canada Day!

D-Wave passes 1000-qubit barrier

A local (Vancouver, Canada-based, quantum computing company, D-Wave is making quite a splash lately due to a technical breakthrough.  h/t’s Speaking up for Canadian Science for Business in Vancouver article and Nanotechnology Now for Harris & Harris Group press release and Economist article.

A June 22, 2015 article by Tyler Orton for Business in Vancouver describes D-Wave’s latest technical breakthrough,

“This updated processor will allow significantly more complex computational problems to be solved than ever before,” Jeremy Hilton, D-Wave’s vice-president of processor development, wrote in a June 22 [2015] blog entry.

Regular computers use two bits – ones and zeroes – to make calculations, while quantum computers rely on qubits.

Qubits possess a “superposition” that allow it to be one and zero at the same time, meaning it can calculate all possible values in a single operation.

But the algorithm for a full-scale quantum computer requires 8,000 qubits.

A June 23, 2015 Harris & Harris Group press release adds more information about the breakthrough,

Harris & Harris Group, Inc. (Nasdaq: TINY), an investor in transformative companies enabled by disruptive science, notes that its portfolio company, D-Wave Systems, Inc., announced that it has successfully fabricated 1,000 qubit processors that power its quantum computers.  D-Wave’s quantum computer runs a quantum annealing algorithm to find the lowest points, corresponding to optimal or near optimal solutions, in a virtual “energy landscape.”  Every additional qubit doubles the search space of the processor.  At 1,000 qubits, the new processor considers 21000 possibilities simultaneously, a search space which is substantially larger than the 2512 possibilities available to the company’s currently available 512 qubit D-Wave Two. In fact, the new search space contains far more possibilities than there are particles in the observable universe.

A June 22, 2015 D-Wave news release, which originated the technical details about the breakthrough found in the Harris & Harris press release, provides more information along with some marketing hype (hyperbole), Note: Links have been removed,

As the only manufacturer of scalable quantum processors, D-Wave breaks new ground with every succeeding generation it develops. The new processors, comprising over 128,000 Josephson tunnel junctions, are believed to be the most complex superconductor integrated circuits ever successfully yielded. They are fabricated in part at D-Wave’s facilities in Palo Alto, CA and at Cypress Semiconductor’s wafer foundry located in Bloomington, Minnesota.

“Temperature, noise, and precision all play a profound role in how well quantum processors solve problems.  Beyond scaling up the technology by doubling the number of qubits, we also achieved key technology advances prioritized around their impact on performance,” said Jeremy Hilton, D-Wave vice president, processor development. “We expect to release benchmarking data that demonstrate new levels of performance later this year.”

The 1000-qubit milestone is the result of intensive research and development by D-Wave and reflects a triumph over a variety of design challenges aimed at enhancing performance and boosting solution quality. Beyond the much larger number of qubits, other significant innovations include:

  •  Lower Operating Temperature: While the previous generation processor ran at a temperature close to absolute zero, the new processor runs 40% colder. The lower operating temperature enhances the importance of quantum effects, which increases the ability to discriminate the best result from a collection of good candidates.​
  • Reduced Noise: Through a combination of improved design, architectural enhancements and materials changes, noise levels have been reduced by 50% in comparison to the previous generation. The lower noise environment enhances problem-solving performance while boosting reliability and stability.
  • Increased Control Circuitry Precision: In the testing to date, the increased precision coupled with the noise reduction has demonstrated improved precision by up to 40%. To accomplish both while also improving manufacturing yield is a significant achievement.
  • Advanced Fabrication:  The new processors comprise over 128,000 Josephson junctions (tunnel junctions with superconducting electrodes) in a 6-metal layer planar process with 0.25μm features, believed to be the most complex superconductor integrated circuits ever built.
  • New Modes of Use: The new technology expands the boundaries of ways to exploit quantum resources.  In addition to performing discrete optimization like its predecessor, firmware and software upgrades will make it easier to use the system for sampling applications.

“Breaking the 1000 qubit barrier marks the culmination of years of research and development by our scientists, engineers and manufacturing team,” said D-Wave CEO Vern Brownell. “It is a critical step toward bringing the promise of quantum computing to bear on some of the most challenging technical, commercial, scientific, and national defense problems that organizations face.”

A June 20, 2015 article in The Economist notes there is now commercial interest as it provides good introductory information about quantum computing. The article includes an analysis of various research efforts in Canada (they mention D-Wave), the US, and the UK. These excerpts don’t do justice to the article but will hopefully whet your appetite or provide an overview for anyone with limited time,

A COMPUTER proceeds one step at a time. At any particular moment, each of its bits—the binary digits it adds and subtracts to arrive at its conclusions—has a single, definite value: zero or one. At that moment the machine is in just one state, a particular mixture of zeros and ones. It can therefore perform only one calculation next. This puts a limit on its power. To increase that power, you have to make it work faster.

But bits do not exist in the abstract. Each depends for its reality on the physical state of part of the computer’s processor or memory. And physical states, at the quantum level, are not as clear-cut as classical physics pretends. That leaves engineers a bit of wriggle room. By exploiting certain quantum effects they can create bits, known as qubits, that do not have a definite value, thus overcoming classical computing’s limits.

… The biggest question is what the qubits themselves should be made from.

A qubit needs a physical system with two opposite quantum states, such as the direction of spin of an electron orbiting an atomic nucleus. Several things which can do the job exist, and each has its fans. Some suggest nitrogen atoms trapped in the crystal lattices of diamonds. Calcium ions held in the grip of magnetic fields are another favourite. So are the photons of which light is composed (in this case the qubit would be stored in the plane of polarisation). And quasiparticles, which are vibrations in matter that behave like real subatomic particles, also have a following.

The leading candidate at the moment, though, is to use a superconductor in which the qubit is either the direction of a circulating current, or the presence or absence of an electric charge. Both Google and IBM are banking on this approach. It has the advantage that superconducting qubits can be arranged on semiconductor chips of the sort used in existing computers. That, the two firms think, should make them easier to commercialise.

Google is also collaborating with D-Wave of Vancouver, Canada, which sells what it calls quantum annealers. The field’s practitioners took much convincing that these devices really do exploit the quantum advantage, and in any case they are limited to a narrower set of problems—such as searching for images similar to a reference image. But such searches are just the type of application of interest to Google. In 2013, in collaboration with NASA and USRA, a research consortium, the firm bought a D-Wave machine in order to put it through its paces. Hartmut Neven, director of engineering at Google Research, is guarded about what his team has found, but he believes D-Wave’s approach is best suited to calculations involving fewer qubits, while Dr Martinis and his colleagues build devices with more.

It’s not clear to me if the writers at The Economist were aware of  D-Wave’s latest breakthrough at the time of writing but I think not. In any event, they (The Economist writers) have included a provocative tidbit about quantum encryption,

Documents released by Edward Snowden, a whistleblower, revealed that the Penetrating Hard Targets programme of America’s National Security Agency was actively researching “if, and how, a cryptologically useful quantum computer can be built”. In May IARPA [Intellligence Advanced Research Projects Agency], the American government’s intelligence-research arm, issued a call for partners in its Logical Qubits programme, to make robust, error-free qubits. In April, meanwhile, Tanja Lange and Daniel Bernstein of Eindhoven University of Technology, in the Netherlands, announced PQCRYPTO, a programme to advance and standardise “post-quantum cryptography”. They are concerned that encrypted communications captured now could be subjected to quantum cracking in the future. That means strong pre-emptive encryption is needed immediately.

I encourage you to read the Economist article.

Two final comments. (1) The latest piece, prior to this one, about D-Wave was in a Feb. 6, 2015 posting about then new investment into the company. (2) A Canadian effort in the field of quantum cryptography was mentioned in a May 11, 2015 posting (scroll down about 50% of the way) featuring a profile of Raymond Laflamme, at the University of Waterloo’s Institute of Quantum Computing in the context of an announcement about science media initiative Research2Reality.

Research2Reality: a science media engagement experience dedicated to Canadian science

As of May 11, 2015, Canadians will be getting an addition to their science media environment (from the May 4, 2015 news release),

Research2Reality to celebrate Canadian research stars

Social media initiative to popularize scientific innovation

May 4, 2015, TORONTO – On Monday, May 11, Research2Reality.com goes live and launches a social media initiative that will make the scientist a star. Following in the footsteps of popular sites like IFLScience and How Stuff Works, Research2Reality uses a video series and website to engage the community in the forefront of scientific discoveries made here in Canada.

The interviews feature some of Canada’s leading researchers such as Dick Peltier – director of the Centre for Global Change Science at the University of Toronto, Sally Aitken – director of the Centre for Forest Conservation Genetics at the University of British Columbia and Raymond Laflamme – executive director of the Institute for Quantum Computing at the University of Waterloo.

“Right now many Canadians don’t understand the scope of cutting-edge work being done in our backyards,” says Research2Reality co-founder and award-winning professor Molly Shoichet. “This initiative will bridge that gap between researchers and the public.”

Also launching Monday, May 11, courtesy of Research2Reality’s official media partner, Discovery Science, is a complementary website www.sciencechannel.ca/Shows/Research2Reality. The new website will feature the exclusive premieres of a collection of interview sessions. In addition, Discovery Science and Discovery will broadcast an imaginative series of public service announcements through the end of the year, while social media accounts will promote Research2Reality, including Discovery’s flagship science and technology program DAILY PLANET.

About Research2Reality:
Research2Reality is a social media initiative designed to popularize the latest Canadian research. It was founded by Molly Shoichet, Professor of Chemical Engineering & Applied Chemistry and Canada Research Chair in Tissue Engineering at the University of Toronto, and Mike MacMillan, founder and producer of Lithium Studios Productions. Research2Reality’s founding partners are leading research-intensive universities – the University of Alberta, the University of British Columbia, McMaster University, the University of Toronto, the University of Waterloo, and Western University – along with the Ontario Government and Discovery Networks. Discovery Science is the official media partner. Research2Reality is also supported by The Globe and Mail.

Research2Reality details

A Valentine of sorts to Canadian science researchers from Molly Shoichet (pronounced shoy [and] quette as in David Arquette)  and her producing partner Mike MacMillan of Lithium Studios, Research2Reality gives Canadians an opportunity to discover online some of the extraordinary work done by scientists of all stripes, including (unusually) social scientists, in this country. The top tier in this effort is the interview video series ‘The Orange Chair Sessions‘  which can be found and shared across

Shoichet and MacMillan are convinced there’s an appetite for more comprehensive science information. Supporting The Orange Chair Sessions is a complementary website operated by Discovery Channel where there are

  • more interviews
  • backgrounders,
  • biographies,
  • blogs, and
  • links to other resources

Discovery Channel is also going to be airing special one minute  public service announcements (PSA) on topics like water, quantum computing, and cancer. Here’s one of the first of those PSAs,

“I’m very excited about this and really hope that other people will be too,” says Shoichet. The audience for the Research2Reality endeavour is for people who like to know more and have questions when they see news items about science discoveries that can’t be answered by investigating mainstream media programmes or trying to read complex research papers.

This is a big undertaking. ” Mike and I thought about this for about two years.” Building on the support they received from the University of Toronto, “We reached out to the vice-presidents of research at the top fifteen universities in the country.” In the end, six universities accepted the invitation to invest in this project,

  • the University of British Columbia,
  • the University of Alberta,
  • Western University (formerly the University of Western Ontario),
  • McMaster University,
  • Waterloo University, and, of course,
  • the University of Toronto

(Unfortunately, Shoichet was not able to answer a question about the cost for an individual episode but perhaps when there’s time that detail and more about the financing will be made available. [ETA May 11, 2015 1625 PDT: Ivan Semeniuk notes this is a $400,000 project in his Globe and Mail May 11, 2015 article.]) As part of their involvement, the universities decide which of their researchers/projects should be profiled then Research2Reality swings into action. “We shoot our own video, that is, we (Mike and I) come out and conduct interviews that take approximately fifteen minutes. We also shoot a b-roll, that is, footage of the laboratories and other relevant sites so it’s not all ‘talking heads’.” Shoichet and MacMillan are interested in the answer to two questions, “What are you doing? and Why do we care?” Neither interviewer/producer is seen or heard on camera as they wanted to keep the focus on the researcher.

Three videos are being released initially with another 67 in the pipeline for a total of 70.  The focus is on research of an international calibre and one of the first interviews to be released (Shoichet’s will be release later) is Raymond Laflamme’s (he’s also featured in the ‘quantum PSA’.

Raymond Laflamme

Who convinces a genius that he’s gotten an important cosmological concept wrong or ignored it? Alongside Don Page, Laflamme accomplished that feat as one of Stephen Hawking’s PhD students at the University of Cambridge. Today (May 11, 2015), Laflamme is (from his Wikipedia entry)

… co-founder and current director of the Institute for Quantum Computing at the University of Waterloo. He is also a professor in the Department of Physics and Astronomy at the University of Waterloo and an associate faculty member at Perimeter Institute for Theoretical Physics. Laflamme is currently a Canada Research Chair in Quantum Information.

Laflamme changed his focus from quantum cosmology to quantum information while at Los Alamos, “To me, it seemed natural. Not much of a change.” It is the difference between being a theoretician and an experimentalist and anyone who’s watched The Big Bang Theory (US television programme) knows that Laflamme made a big leap.

One of his major research interests is quantum cryptography, a means of passing messages you can ensure are private. Laflamme’s team and a team in Vienna (Austria) have enabled two quantum communication systems, one purely terrestrial version, which can exchange messages with another such system up to 100 km. away. There are some problems yet to be solved with terrestrial quantum communication. First, buildings, trees, and other structures provide interference as does the curvature of the earth. Second, fibre optic cables absorb some of the photons en route.

Satellite quantum communication seems more promising as these problems are avoided altogether. The joint Waterloo/Vienna team of researchers has  conducted successful satellite experiments in quantum communication in the Canary Islands.

While there don’t seem to be any practical, commercial quantum applications, Laflamme says that isn’t strictly speaking the truth, “In the last 10  to 15 years many ideas have been realized.” The talk turns to quantum sensing and Laflamme mentions two startups and notes he can’t talk about them yet. But there is Universal Quantum Devices (UQD), a company that produces parts for quantum sensors. It is Laflamme’s startup, one he co-founded with two partners. (For anyone unfamiliar with the Canadian academic scene, Laflamme’s home institution, the University of Waterloo, is one of the most actively ‘innovative’ and business-oriented universities in Canada.)

LaFlamme’s interests extend beyond laboratory work and business. He’s an active science communicator as can be seen in this 2010 TEDxWaterloo presentation where he takes his audience from the discovery of fire to quantum physics concepts such as a ‘quantum superposition’ and the ‘observer effect’ to the question, ‘What is reality?’ in approximately 18 mins.

For anyone who needs a little more information, a quantum superposition is a term referring the ability of a quantum object to inhabit two states simultaneously, e.g., on/off. yes/no, alive/dead, as in Schrödinger’s cat. (You can find out more about quantum superpositions in this Wikipedia essay and about Schrodinger’s cat in this Wikipedia essay.) The observer effect is a phenomenon whereby the observer of a quantum experiment affects that experiment by the act of observing it. (You can find out more about the observer effect in this Wikipedia essay.)

The topic of reality is much trickier to explain. No one has yet been able to offer a viable theory for why the world at the macro scale behaves one way (classical physics) and the world at the quantum scale behaves another way (quantum physics). As Laflamme notes, “There is no such thing as a superposition in classical physics but we can prove in the laboratory that it exists in quantum physics.” He goes on to suggest that children, raised in an environment where quantum physics and its applications are commonplace, will have an utterly different notion as to what constitutes reality.

Laflamme is also interested in music and consulted on a ‘quantum symphony’. He has this to say about it in an Sept. 20, 2012 piece on the University of Waterlo website,

Science and art share a common goal — to help us understand our universe and ourselves.  Research at IQC [Institute for Quantum Computing] aims to provide important new understanding of nature’s building blocks, and devise methods to turn that understanding into technologies beneficial for society.Since founding IQC a decade ago, I have sought ways to bridge science and the arts, with the belief that scientific discovery itself is a source of beauty and inspiration.  Our collaboration with the Kitchener-Waterloo Symphony was an example — one of many yet to come — of how science and the arts provide different but complementary insights into our universe and ourselves.

I wrote about the IQC and the symphony which debuted at the IQC’s opening in a Sept. 25, 2012 posting.

Music is not the only art which has attracted Laflamme’s talents. He consulted on a documentary, The Quantum Tamers: Revealing our weird and wired future, a co-production between Canada’s Perimeter Institute and Title Entertainment,

From deep inside the sewers of Vienna, site of groundbreaking quantum teleportation experiments, to cutting-edge quantum computing labs, to voyages into the minds of the world’s brightest thinkers, including renowned British scientist Stephen Hawking, this documentary explores the coming quantum technological revolution.

All of this suggests an interest in science not seen since the 19th century when scientists could fill theatres for their lectures. Even Hollywood is capitalizing on this interest. Laflamme, who saw ‘Interstellar’, ‘The Imitation Game’ (Alan Turing), and ‘The Theory of Everything’ (Stephen Hawking) in fall 2014 comments, “I was surprised by how much science there was in The Imitation Game and Interstellar.” As for the Theory of Everything, “I was apprehensive since I know Stephen well. But, the actor, Eddie Redmayne, and the movie surprised me. There were times when he moved his head or did something in a particular way—he was Stephen. Also, most people don’t realize what an incredible sense of humour Stephen has and the movie captured that well.” Laflamme also observed that it was a movie about a relationship and not really concerned with science and its impacts (good and ill) or scientific accomplishments.  Although he allows, “It could have had more science.”

Research2Reality producers

Molly Shoichet

Co-producer Shoichet has sterling scientific credentials of her own. In addition to this science communication project, she runs the Shoichet Lab at the University of Toronto (from the Dr. Molly Shoichet bio page),

Dr. Molly Shoichet holds the Tier 1 Canada Research Chair in Tissue Engineering and is University Professor of Chemical Engineering & Applied Chemistry, Chemistry and Biomaterials & Biomedical Engineering at the University of Toronto. She is an expert in the study of Polymers for Drug Delivery & Regeneration which are materials that promote healing in the body.

Dr. Shoichet has published over to 480 papers, patents and abstracts and has given over 310 lectures worldwide.  She currently leads a laboratory of 25 researchers and has graduated 134 researchers over the past 20 years.  She founded two spin-off companies from research in her laboratory.

Dr. Shoichet is the recipient of many prestigious distinctions and the only person to be a Fellow of Canada’s 3 National Academies: Canadian Academy of Sciences of the Royal Society of Canada, Canadian Academy of Engineering, and Canadian Academy of Health Sciences. Dr. Shoichet holds the Order of Ontario, Ontario’s highest honour and is a Fellow of the American Association for the Advancement of Science. In 2013, her contributions to Canada’s innovation agenda and the advancement of knowledge were recognized with the QEII Diamond Jubilee Award. In 2014, she was given the University of Toronto’s highest distinction, University Professor, a distinction held by less than 2% of the faculty.

Mike MacMillan

MacMIllan’s biography (from the Lithium Studios website About section hints this is his first science-oriented series (Note: Links have been removed),

Founder of Lithium Studios Productions
University of Toronto (‘02)
UCLA’s Professional Producing Program (‘11)

His first feature, the dark comedy / thriller I Put a Hit on You (2014, Telefilm Canada supported), premiered at this year’s Slamdance Film Festival in Park City. Guidance (2014, Telefilm Canada supported, with super producer Alyson Richards over at Edyson), a dark comedy/coming of age story is currently in post-production, expected to join the festival circuit in September 2014.

Mike has produced a dozen short films with Toronto talents Dane Clark and Linsey Stewart (CAN – Long Branch, Margo Lily), Samuel Fluckiger (SWISS – Terminal, Nightlight) and Darragh McDonald (CAN – Love. Marriage. Miscarriage.). They’ve played at the top film fests around the world and won a bunch of awards.

Special skills include kickass hat collection and whiskey. Bam.

Final comments

It’s nice to see the Canadian scene expanding; I’m particularly pleased to learn social scientists will be included.Too often researchers from the physical sciences or natural sciences and researchers from the social sciences remain aloof from each other. In April 2013, I attended a talk by Evelyn Fox Keller, physicist, feminist, and philosopher, who read from a paper she’d written based on a then relatively recent experience in South Africa where researchers had aligned themselves in two different groups and refused to speak to each other. They were all anthropologists but the sticking point was the type of science they practiced. One group were physical anthropologists and the other were cultural anthropologists. That’s an extreme example unfortunately symptomatic of a great divide. Bravo to Research2Reality for bringing the two groups together.

As for the science appetite Shoichet and MacMillan see in Canada, this is not the only country experiencing a resurgence of interest; they’ve been experiencing a science media expansion in the US.  Neil deGrasse Tyson’s Star Talk television talk show, which also exists as a radio podcast, debuted on April 19, 2015 (Yahoo article by Calla Cofield); Public Radio Exchange’s (PRX) Transistor; a STEM (science, technology, engineering, and mathematics) audio project debuted in Feb. 2015; and video podcast Science Goes to the Movies also debuted in Feb. 2015 (more about the last two initiatives in my March 6, 2015 posting [scroll down about 40% of the way]). Finally (for the burgeoning US science media scene) and neither least nor new, David Bruggeman has a series of posts titled, Science and Technology Guests on Late Night, Week of …, on his Pasco Phronesis blog which has been running for many years. Bruggeman’s series is being included here because most people don’t realize that US late night talk shows have jumped into the science scene. You can check  David’s site here as he posts this series on Mondays and this is Monday, May 11, 2015.

It’s early days for Research2Reality and it doesn’t yet have the depth one might wish. The videos are short (the one featured on the Discovery Channel’s complementary website is less than 2 mins. and prepare yourself for ads). They may not be satisfying from an information perspective but what makes The Orange Chair Series fascinating is the peek into the Canadian research scene. Welcome to Research2Reality and I hope to hear more about you in the coming months.

[ETA May 11, 2015 at 1625 PDT: Semeniuk’s May 11, 2015 article mentions a few other efforts to publicize Canadian research (Note: Links have been removed),

For example, Research Matters, a promotional effort by the Council of Ontario Universities, has built up a large bank of short articles on its website that highlight researchers across the province. Similarly, the Canada Foundation for Innovation, which channels federal dollars toward research infrastructure and projects, produces features stories with embedded videos about the scientists who are enabled by their investments.

What makes Research2Reality different, said Dr. Shoichet, is an approach that doesn’t speak for one region, field of research of  [sic] funding stream.

One other aspect which distinguishes Research2Reality from the other science promotion efforts is the attempt to reach out to the audience. The Canada Foundation for Innovation and Council for Ontario Universities are not known for reaching out directly to the general public.]