Tag Archives: University of Western Australia

Being solid and liquid over a range of 1000 degrees Fahrenheit means it’s perpetual ice

Duke University researchers along with their international collaborators have made an extraordinary observation. From an Aug. 3, 2016 news item on ScienceDaily,

Imagine pouring a glass of ice water and having the ice cubes remain unchanged hours later, even under a broiler’s heat or in the very back corner of the freezer.

That’s fundamentally the surprising discovery recently made by an international group of researchers led by an electrical engineering professor at Duke University in a paper published online in Nature Matter on July 25, 2016. But instead of a refreshing mixture of H2O in a pint glass, the researchers were working with the chemical element gallium on a nanoscopic scale.

This image shows a single gallium nanoparticle sitting on top of a sapphire base. The black sphere in the center reveals the presence of solid gallium within the liquid drop exterior. The sapphire base is important, as it is rigid with a relatively high surface energy. As the nanoparticle and sapphire try to minimize their total energy, this combination of properties drives the formation and coexistence of the two phases. Courtesy: Duke University

This image shows a single gallium nanoparticle sitting on top of a sapphire base. The black sphere in the center reveals the presence of solid gallium within the liquid drop exterior. The sapphire base is important, as it is rigid with a relatively high surface energy. As the nanoparticle and sapphire try to minimize their total energy, this combination of properties drives the formation and coexistence of the two phases. Courtesy: Duke University

An Aug. 3, 2016 Duke University news release (also on EurekAlert), which originated the news item, explains more about gallium and about this new state,

Gallium is a soft, silvery bluish metal at room temperature. Raise the heat to 86 degrees Fahrenheit, however, and it melts. Drop the temperature to subzero levels, and it becomes hard and brittle. But when gallium nanoparticles sit on top of a sapphire surface, they form a solid core surrounded by a liquid outer layer. The discovery marks the first time that this stable phase coexistence phenomenon at the nanoscale has ever been directly observed.

“This odd combination of a liquid and solid state existing together has been predicted theoretically and observed indirectly in other materials in narrow bands of specific temperatures,” said April Brown, the John Cocke Professor of Electrical and Computer Engineering at Duke. “But this finding was very unexpected, especially because of its stability over such a large temperature range.”

The temperature range Brown is referring to covers more than 1,000 degrees Fahrenheit, all the way from -135 to 980 degrees.

“At a fundamental level, this finding reveals the need to reconsider all our presumptions about solid–liquid equilibrium,” wrote Andrés Aguado, professor of theoretical, atomic and optical physics at the University of Valladolid in Spain, in a News and Views piece appearing in the same edition of Nature Matter. “At a more applied level, the results hold much promise for future nanotechnology applications.”

Gallium is an important element in electronics and is used in microwave circuits, high-speed switching circuits and infrared circuits. The discovery of this novel part-solid, part-liquid nanoparticle phase could be useful in ultraviolet sensors, molecular sensing devices and enhanced photodetectors.

Brown hopes this work is just the tip of the iceberg, as she is planning on creating a facility at Duke to investigate what other nanoparticles might have similar unexpected phase qualities.

The research was conducted in conjunction with researchers at the Institute of Nanotechnology-CNR-Italy, the University of Western Australia, the University of Melbourne and Johannes Kepler University Linz.

This is an atomic view of liquid and solid gallium coexisting in a single nanoparticle taken by a transmission electron microscope. The circular shape on the left-hand side shows gallium atoms in an organized, crystalline, solid structure, while the atoms on the right are in liquid form, showing no organized structure at all. Courtesy: Duke University

This is an atomic view of liquid and solid gallium coexisting in a single nanoparticle taken by a transmission electron microscope. The circular shape on the left-hand side shows gallium atoms in an organized, crystalline, solid structure, while the atoms on the right are in liquid form, showing no organized structure at all. Courtesy: Duke University

Here’s a link to and a citation for the paper,

Thermally stable coexistence of liquid and solid phases in gallium nanoparticles by Maria Losurdo, Alexandra Suvorova, Sergey Rubanov, Kurt Hingerl, & April S. Brown.  Nature Materials (2016) doi:10.1038/nmat4705 Published online 25 July 2016

This paper is behind a paywall.

A tooth and art installation in Vancouver (Canada) and bodyhacking and DIY (do-it-yourself) culture in the US

After a chat with artist David Khang, about various mergings of flesh and nonliving entities, I saw his installation, Amelogenesis Imperfecta (How Deep is the Skin of Teeth)  at Vancouver’s grunt gallery with  an enhanced appreciation for the shadowy demarcation between living entities (human and nonhuman) and between living and nonliving entities (this was à propos the work being done at the SymbioticA Centre in Australia, which is mentioned in the following excerpt) and some of the social and ethical questions that arise. Robin Laurence in her Sept. 13, 2012 article for the Georgia Straight newspaper/website describes both the installation and its influences,

With Khang’s newly launched works, Amelogenesis Imperfecta (How Deep Is the Skin of Teeth), on view at the grunt gallery until September 22, and Beautox Me, at CSA Space [#5–2414 Main Street] through October 7, he has again found formally and intellectually complex ways to meld his seemingly disparate professions. The grunt gallery installation includes microscopic laser drawings on epithelial cells and an animated short of a human tooth evolving into a fearsome, all-devouring shark. This work developed out of experiments Khang conducted during his 2010 residency at SymbioticA Centre for Biological Arts in Perth, Australia. “It began as a goal-oriented project to manufacture enamel,” he says, “but ended up being a meditation on ethical interspecies relations.” Fetal calf serum, he explains, is used “to fuel” all stem-cell research.

In our far ranging discussion, Khang (whose show at the Grunt [350 E. 2nd Avenue, Vancouver, ends on Saturday, Sept. 22, 2012) and I discussed not only interspecies relations but also the integration of flesh with machine/technology,which is being explored and discussed at SymbioticA and elsewhere.

Coincidentally, one day after my chat with Khang I found this Sept. 19, 2012 article (Biohackers And DIY Cyborgs Clone Silicon Valley Innovation) by Neal Ungerleider for Fast Company (Note: I have removed links),

The grinders (DIY cybernetics enthusiasts) and their comrades in arms–biohackers working on improving human source code, quantified self enthusiasts who arm themselves with constant bodily data feeds, and independent DIY biotechnology enthusiasts–are moonlighting for now in basements, shared spaces, and makeshift labs. But they’re ultimately aiming to change the world. Think of how bionic [sic] legs like those belonging to Oscar Pistorius and cochlear implants that let the deaf hear have changed everyday life for so many people. Then multiply that by a million. A million people. And millions of dollars.

Not only has the new wave of do-it-yourself (DIY) cybernetics moved well beyond science fiction, it’s going to cause a business boom in the not-too-distant future.

I have two comments. (1) Pistorius does not have bionic legs but he does use some very high tech racing prosthetics, which I describe briefly in my July 27, 2009 posting in part 4 of a series on human enhancement. On the basis of this error, you may want to apply a little caution when reading the rest of Ungerleider’s  article. (2) Prior to this article, I hadn’t considered machine/flesh integration as a business opportunity but clearly I’ve been shortsighted.

I was particularly interested in this following passage where Ungerleider mentions the fusion of the living and of the electronic.

In Brooklyn, a small “community biolab” called Genspace is home to approximately a dozen DIY biology experimenters whose work often involves the fusion of the living and the electronic. Classes are offered to the public in synthetic biology, which engineers living organisms as if they were biological machines.

A workshop recently held at Genspace, Crude Control, showed how in-vitro meat and leather could be created via tissue engineering, and it explored the possibility of creating semi-living “products” from them. Although the Genspace workshop was for educational purposes, similar technologies are already being monetized elsewhere–Peter Thiel recently sank six figures into a startup that will make 3-D printed in vitro meat commercially available.

The teacher at the Crude Control workshop, Oron Catts, [emphasis mine] walked participants through “basic tissue culture and tissue engineering protocols, including developing some DIY tools and isolating cells from a bone we got from a local butcher.” Some of Catts’ previous projects include bioengineering a steak from pre-natal sheep cells (in his words, “steak grown from an animal that was not yet born“) and victimless leather grown from cell lines. [emphases mine]
 

I emphasized Oron Catts because he is SymbioticA Centre’s director.From his biographical page on the SynbioticA Centre website,

Oron Catts is an artist, researcher and curator whose work with the Tissue Culture and Art Project (which he founded in 1996 with Ionat Zurr) is part of the NY MoMA design collection and has been exhibited and presented internationally. In 2000 he co-founded SymbioticA, an artistic research laboratory housed within the School of Anatomy and Human Biology, The University of Western Australia. Under Oron’s leadership, SymbioticA has gone on to win the Prix Ars Electronica Golden Nica in Hybrid Art (2007) and became a Centre for Excellence in 2008.

Oron has been a researcher at The University of Western Australia since 1996 and was a Research Fellow at the Tissue Engineering and Organ Fabrication Laboratory, Harvard Medical School, Massachusetts General Hospital, Boston from 2000-2001. He worked with numerous other bio-medical laboratories around the world. In 2007 he was a visiting Scholar at the Department of Art and Art History, Stanford University. He is currently undertaking a “Synthetic Atheistic” residency which is jointly funded by the National Science Foundation (USA) and the Engineering and Physical Sciences Research Council (UK) to exploring the impactions of synthetic Biology; and is a Visiting Professor of Design Interaction, Royal College of Arts, London.

You can find out more about the SymbioticA Centre here.

As for the “steak grown from an animal that was not yet born” and “victimless leather,” the terminology hints   while the description of the work demonstrates how close we are to a new reality in our relationships with nonhumans. Some readers may find the rest of Ungerleider’s article even more eyebrow-raising/disturbing/exciting.

Australians weigh in on Open Access publication proposal in UK

Misguided is the word used in the June 20, 2012 editorial for The Conversation by Jason Norrie to describe the UK proposal to adopt ‘open access’ publishing, from physorg.com,

The British government has enlisted the services of Wikipedia founder Jimmy Wales in a bid to support open access publishing for all scholarly work by UK researchers, regardless of whether it is also published in a subscription-only journal.

The cost of doing so would range from £50 to £60 million a year, according to an independent study commissioned by the government. Professor Dame Janet Finch, who led the study, said that “in the longer term, the future lies with open access publishing.” Her report says that “the principle that the results of research that has been publicly funded should be freely accessible in the public domain is a compelling one, and fundamentally unanswerable.”

Norrie’s June 20,2012  editorial can also be found on The Conversation website where he includes responses from academics to the proposal,

Emeritus Professor Colin Steele, former librarian of the Australian National University, said that although report was supportive of the principles of open access, it proposed a strategy that was unnecessarily costly and could not be duplicated in Australia.

“The way they’ve gone about it almost totally focuses, presumably due to publisher pressure, on the gold model of open access,” he said. “As a result of that, the amount of money needed to carry out the transition – the money needed for article processing charges – is very large. It’s not surprising that the publishers have come out in favour of the report, because it will guarantee they retain their profits.

“It certainly wouldn’t work in Australia because there simply isn’t that amount of research council funding available.

Stevan Harnad, a Professor in the Department of Psychology at Université du Québec à Montréal, said the report had scrubbed the green model from the UK policy agenda and replaced it with a “vague, slow evolution toward gold open access publishing, at the publishers’ pace and price. The result would be very little open access, very slowly, and at a high price … taken out of already scarce UK research funds, instead of the rapid and cost-free open access growth vouchsafed by green open access mandates from funders and universities.”

For anyone not familiar with the differences between the ‘green’ and ‘gold models, the Wikipedia essay on Open Access offers a definition (Note: I have removed links and footnotes),

OA can be provided in two ways

  • Green OA Self Archiving – authors publish in any journal and then self-archive a version of the article for free public use in their institutional repository, in a central repository (such as PubMed Central), or on some other OA website What is deposited is the peer-reviewed postprint – either the author’s refereed, revised final draft or the publisher’s version of record. Green OA journal publishers endorse immediate OA self-archiving by their authors. OA self-archiving was first formally proposed in 1994 by Stevan Harnad [emphasis mine]. However, self-archiving was already being done by computer scientists in their local FTP archives in the ’80s, later harvested into Citeseer. High-energy physicists have been self-archiving centrally in arXiv since 1991.
  • Gold OA Publishing – authors publish in an open access journal that provides immediate OA to all of its articles on the publisher’s website. (Hybrid open access journals provide Gold OA only for those individual articles for which their authors (or their author’s institution or funder) pay an OA publishing fee.) Examples of OA publishers are BioMed Central and the Public Library of Science.

I guess that Wikipedia entry explains why Hamad is quoted in Norrie’s editorial.

While money is one of the most discussed issues surrounding the ‘open access publication’ discussion, I am beginning to wonder why there isn’t more mention of the individual career-building, institution science reputation-building and national science reputation-building that the current publication model helps make possible.

I have posted on this topic previously, the May 28, 2012 posting is my most comprehensive (huge) take on the subject.

As for The Conversation, it’s my first encounter with this very interesting Australian experiment in communicating research to the public, from the Who We Are page,

The Conversation is an independent source of analysis, commentary and news from the university and research sector — written by acknowledged experts and delivered directly to the public. Our team of professional editors work with more than 3,100 registered academics and researchers to make this wealth of knowledge and expertise accessible to all.

We aim to be a site you can trust. All published work will carry attribution of the authors’ expertise and, where appropriate, will disclose any potential conflicts of interest, and sources of funding. Where errors or misrepresentations occur, we will correct these promptly.

Sincere thanks go to our Founding Partners who gave initial funding support: CSIRO, Monash University, University of Melbourne, University of Technology Sydney and University of Western Australia.

Our initial content partners include those institutions, Strategic Partner RMIT University and a growing list of member institutions. More than 180 institutions contribute content, including Australia’s research-intensive, Group of Eight universities.

We are based in Melbourne, Australia, and wholly owned by The Conversation Media Trust, a not-for-profit company.

The copyright notice at the bottom of The Conversation’s web pages suggest it was founded in 2010. It certainly seems to have been embraced by Australian academics and other interested parties as per the Home page,

The Conversation is an independent source of analysis, commentary and news from the university and research sector viewed by 350,000 readers each month. Our team of professional editors work with more than 2,900 registered academics and researchers from 200 institutions.

I wonder if there’s any chance we’ll see something like this here in Canada?

Fish and Chips: Singapore style and Australia style

A*STAR’s Institute of Bioengineering and Nanotechnology (IBN), located in Singapore, has announced a new platform for testing drug applications. From the April 4, 2012 news item on Nanowerk,

A cheaper, faster and more efficient platform for preclinical drug discovery applications has been invented by scientists at the Institute of Bioengineering and Nanotechnology (IBN), the world’s first bioengineering and nanotechnology research institute. Called ‘Fish and Chips’, the novel multi-channel microfluidic perfusion platform can grow and monitor the development of various tissues and organs inside zebrafish embryos for drug toxicity testing. This research, published recently in Lab on a Chip (“Fish and Chips: a microfluidic perfusion platform for monitoring zebrafish development”) …

From the IBN April 4, 2012 media release,

The conventional way of visualizing tissues and organs in embryos is a laborious process, which includes first mounting the embryos in a viscous medium such as gel, and then manually orienting the embryos using fine needles. The embryos also need to be anesthetized to restrict their motion and a drop of saline needs to be continuously applied to prevent the embryos from drying. These additional precautions could further complicate the drug testing results.

The IBN ‘Fish and Chips’ has been designed for dynamic long-term culturing and live imaging of the zebrafish embryos. The microfluidic platform comprises three parts: 1) a row of eight fish tanks, in which the embryos are placed and covered with an oxygen permeable membrane, 2) a fluidic concentration gradient generator to dispense the growth medium and drugs, and 3) eight output channels for the removal of the waste products (see Image 2). The novelty of the ‘Fish and Chips’ lies in its unique diagonal flow architecture, which allows the embryos to be continually submerged in a uniform and consistent flow of growth medium and drugs (…), and the attached gradient generator, which can dispense different concentrations of drugs to eight different embryos at the same time for dose-dependent drug studies.

Professor Hanry Yu, IBN Group Leader, who led the research efforts at IBN, said, “Toxicity is a major cause of drug failures in clinical trials and our novel ‘Fish and Chips’ device can be used as the first step in drug screening during the preclinical phase to complement existing animal models and improve toxicity testing. The design of our platform can also be modified to accommodate more zebrafish embryos, as well as the embryos of other animal models. Our next step will involve investigating cardiotoxicity and hepatoxicity on the chip.”

As a pragmatist I realize that, to date, we have no substitute for testing drugs on animals prior to clinical human trials so this ‘type of platform’ is necessary but it always gives me pause. Just as the relationship between human and animals did the first time I came across a ‘Fish and Chips’ project in the context of a performance at the 2001 Ars Electronica event in Linz, Austria. As I recall Fish and Chips was made up fish neurons grown on silicon chips then hooked up to hardware and software to create a performance both visual and auditory.

Here’s an image of the 2001 Fish and Chips performance at Ars Electronica,

Ars Electronica Festival 2001: Fish & Chips / SymbioticA Research Group, Oron Catts, Ionat Zurr, Guy Ben-Ary

You can find a full size version of the image here on Flickr along with the Creative Commons Licence.

The Fish and Chips performance was developed at SymbioticA (University of Western Australia). From SymbioticA’s Research page,

SymbioticA is a research facility dedicated to artistic inquiry into knowledge and technology in the life sciences.

Our research embodies:

  • identifying and developing new materials and subjects for artistic manipulation
  • researching strategies and implications of presenting living-art in different contexts
  • developing technologies and protocols as artistic tool kits.

Having access to scientific laboratories and tools, SymbioticA is in a unique position to offer these resources for artistic research. Therefore, SymbioticA encourages and favours research projects that involve hands on development of technical skills and the use of scientific tools.

The research undertaken at SymbioticA is speculative in nature. SymbioticA strives to support non-utilitarian, curiosity based and philosophically motivated research.

They list six research areas:

  • Art and biology
  • Art and ecology
  • Bioethics
  • Neuroscience
  • Tissue engineering
  • Sleep science

SymbioticA’s Fish and Chips project has since been retitled MEART, from the SymbioticA Research Group (SARG) page,

Meart – The semi-living artist

The project was originally entitled Fish and Chips and later evolved into MEART – the semi living artist. The project is by the SymbioticA Research group in collaboration with the Potter Lab.

The Potter Lab or Potter Group is located at the Georgia (US) Institute of Technology. Here’s some more information about MEART from the  Potter Group MEART page,

The Semi living artist

Its ‘brain’ of dissociated rat neurons is cultured on an MEA in our lab in Atlanta while the geographically detached ‘body’ lives in Perth. The body itself is a set of pneumatically actuated robotic arms moving pens on a piece of paper …

A camera located above the workspace captures the progress of drawings created by the neurally-controlled movement of the arms. The visual data then instructed stimulation frequencies for the 60 electrodes on the MEA.

The brain and body talk through the internet over TCP/IP in real time providing closed loop communication for a neurally controlled ‘semi-living artist’. We see this as a medium from which to address various scientific, philosophical, and artistic questions.

Getting back to SymbioticA, my most recent mention of them was in a Dec. 28, 2011 posting about Boo Chapple’s (resident at SymbioticA) Transjuicer installation at Dublin’s Science Gallery (I’ve excerpted a portion of an interview with Chapple where she describes what she’s doing),

I’m not sure that Transjuicer is so much about science as it is about belief, the economy of human-animal relations, and the politics of material transformation.

On that note I leave you with these fish and chips (from the Wikipedia essay about the menu item Fish and Chips),

Cod and chips in Horseshoe Bay, B.C., Canada, December 2010. Credit: Robin Miller

Dem bones, dem bones, dem dry bones

Making sounds with bones—but not as you might imagine.

Image from slideshow of Transjuicer exhibit in Science Gallery, Dublin, 2011 and John Curtin Gallery, Perth 2010

Christopher Mims in his Dec. 27, 2011 (?) article for Fast Company explains what artist Boo Chapple is doing with her Transjuicer installation of speakers made from bone tissue,

Turned on its head, bone’s response to physical stress can be used to produce music—or at least musical tones. That’s what artist Boo Chapple discovered during the course of a year-long collaboration at the University of Western Australia’s SymbioticA lab, the only research facility in the world devoted to providing access to wet labs to artists and artistically minded researchers.

When Chapple began this project, she knew that extensive scientific literature suggested bone had what are known as piezoelectric properties. Basically, when a piezoelectric material is bent, compressed, or otherwise physically stressed, it generates an electric charge. Conversely, applying an electric charge to a piezoelectric material can change its shape. This has made piezoelectrics the backbone of countless environmental sensors and tiny actuators.

Poring through this literature, Chapple realized that applying a current to bone at just the right frequency should make it vibrate like the diaphragm in an audio speaker. And because bone retains its piezoelectric properties even when it’s no longer living, it should be fairly straightforward to transform any old bone into the world’s most outre audio component.

Because Chapple is an artist and not a technologist, her goal wasn’t to pursue this technique until it yielded a new product. Rather, the point was to accomplish what all good art can: “making strange” otherwise familiar objects.

I first heard about the SymbioticA lab when they showed their Fish & Chips project (the report I’ve linked to is undated) at the 2001 Ars Electronic annual event in Linz, Austria. I never did get to see the performance (fish neurons grown on silicon chips and hooked up to software and musical instruments) but their work remains a source of great interest to me. (I last mentioned SymbioticA in my July 5, 2011 posting where they were scheduled for the same session that I was, at the 2011 ISEA conference in Istanbul.)

Here’s a bit more about the SymbioticA lab at the University of Western Australia (from their home page),

SymbioticA is a research facility dedicated to artistic inquiry into knowledge and technology in the life sciences.

Our research embodies:

  • identifying and developing new materials and subjects for artistic manipulation
  • researching strategies and implications of presenting living-art in different contexts
  • developing technologies and protocols as artistic tool kits.

Having access to scientific laboratories and tools, SymbioticA is in a unique position to offer these resources for artistic research. Therefore, SymbioticA encourages and favours research projects that involve hands on development of technical skills and the use of scientific tools.

The research undertaken at SymbioticA is speculative in nature. SymbioticA strives to support non-utilitarian, curiosity based and philosophically motivated research.

Boo Chapple, a resident at the SymbioticA Lab, had this to say about her installation, Transjuicer, and science when it was at Dublin’s Science Gallery (excerpted from the Visceral Interview),

Do you think that work like yours helps to open up science to public discussion and debate; and does this interest you?

I’m not sure that Transjuicer is so much about science as it is about belief, the economy of human-animal relations, and the politics of material transformation. These are all things that are inherent to the practice of science but perhaps not what one might think of when one thinks of public debate around particular scientific discoveries, or technologies.

While I am interested in the philosophical parameters of these debates, I do not see my art practice as an instrument of communication in this respect, nor is Transjuicer engaged with any hot topics of the moment, or designed in such a way as to reveal the technical processes that were employed in making the bone audio speakers.

The work being done at the SymbioticA lab is provocative in the best sense, i.e., meant to provoke thought and discussion.