Tag Archives: University of Wisconsin

CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 in the forest

It seems lignin is a bit of a problem. Its presence in a tree makes processing the wood into various products more difficult. (Of course, some people appreciate trees for other reasons both practical [carbon sequestration?] and/or aesthetic.)

In any event, scientists have been working on ways to reduce the amount of lignin in poplar trees since at least 2014 (see my April 7, 2014 posting titled ‘Good lignin, bad lignin: Florida researchers use plant waste to create lignin nanotubes while researchers in British Columbia develop trees with less lignin’; scroll down about 40% of the way for the ‘less lignin’ story).

(I don’t believe the 2014 research was accomplished with the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 technique as it had only been developed in 2012.)

The latest in the quest to reduce the amount of lignin of poplar trees comes from a Belgian/US team, from an Oct. 6, 2020 news item on ScienceDaily,

Researchers led by prof. Wout Boerjan (VIB-UGent [Ghent University] Center for Plant Systems Biology) have discovered a way to stably finetune the amount of lignin in poplar by applying CRISPR/Cas9 technology. Lignin is one of the main structural substances in plants and it makes processing wood into, for example, paper difficult. This study is an important breakthrough in the development of wood resources for the production of paper with a lower carbon footprint, biofuels, and other bio-based materials. Their work, in collaboration with VIVES University College (Roeselare, Belgium) and University of Wisconsin (USA) appears in Nature Communications.

Picture Tailoring lignin and growth by creating CCR2 allelic variants (From left to right: wild type, CCR2(-/-), CCR2(-/*) line 206, CCR2(-/*) line 12) Courtesy: VIB (Flanders Institute of Biotechnology)

An Oct. 6, 2020 VIB (Vlaams Instituut voor Biotechnologie; Flanders Institute of Biotechnology) press release (also on EurekAlert), which originated the news item, explains the reason for this research and how CRISPR (clustered regularly interspaced short palindromic repeats) technology could help realize it,

Towards a bio-based economy

Today’s fossil-based economy results in a net increase of CO2 in the Earth’s atmosphere and is a major cause of global climate change. To counter this, a shift towards a circular and bio-based economy is essential. Woody biomass can play a crucial role in such a bio-based economy by serving as a renewable and carbon-neutral resource for the production of many chemicals. Unfortunately, the presence of lignin hinders the processing of wood into bio-based products.

Prof. Wout Boerjan (VIB-UGent): “A few years ago, we performed a field trial with poplars that were engineered to make wood containing less lignin. Most plants showed large improvements in processing efficiency for many possible applications. The downside, however, was that the reduction in lignin accomplished with the technology we used then – RNA interference – was unstable and the trees grew less tall.”

New tools

Undeterred, the researchers went looking for a solution. They employed the recent CRISPR/Cas9 technology in poplar to lower the lignin amount in a stable way, without causing a biomass yield penalty. In other words, the trees grew just as well and as tall as those without genetic changes.

Dr. Barbara De Meester (VIB-UGent): “Poplar is a diploid species, meaning every gene is present in two copies. Using CRISPR/Cas9, we introduced specific changes in both copies of a gene that is crucial for the biosynthesis of lignin. We inactivated one copy of the gene, and only partially inactivated the other. The resulting poplar line had a stable 10% reduction in lignin amount while it grew normally in the greenhouse. Wood from the engineered trees had an up to 41% increase in processing efficiency”.

Dr. Ruben Vanholme (VIB-UGent): “The mutations that we have introduced through CRISPR/Cas9 are similar to those that spontaneously arise in nature. The advantage of the CRISPR/Cas9 method is that the beneficial mutations can be directly introduced into the DNA of highly productive tree varieties in only a fraction of the time it would take by a classical breeding strategy.”

The applications of this method are not only restricted to lignin but might also be useful to engineer other traits in crops, providing a versatile new breeding tool to improve agricultural productivity.

Here’s a link to and a citation for the paper,

Tailoring poplar lignin without yield penalty by combining a null and haploinsufficient CINNAMOYL-CoA REDUCTASE2 allele by Barbara De Meester, Barbara Madariaga Calderón, Lisanne de Vries, Jacob Pollier, Geert Goeminne, Jan Van Doorsselaere, Mingjie Chen, John Ralph, Ruben Vanholme & Wout Boerjan. Nature Communications volume 11, Article number: 5020 (2020) DOI: https://doi.org/10.1038/s41467-020-18822-w Published 06 October 2020

This paper is open access.

Fantastic Fungi Futures: a multi-night ArtSci Salon event in late November/early December 2019 in Toronto

In fact, I have two items about fungi and I’m starting with the essay first.

Giving thanks for fungi

These foods are all dependent on microorganisms for their distinctive flavor. Credit: margouillat photo/Shutterstock.com

Antonis Rokas, professor at Venderbilt University (Nashville, Tennessee, US), has written a November 25, 2019 essay for The Conversation (h/t phys.org Nov.26.19) featuring fungi and food, Note: Links have been removed),

I am an evolutionary biologist studying fungi, a group of microbes whose domestication has given us many tasty products. I’ve long been fascinated by two questions: What are the genetic changes that led to their domestication? And how on Earth did our ancestors figure out how to domesticate them?

The hybrids in your lager

As far as domestication is concerned, it is hard to top the honing of brewer’s yeast. The cornerstone of the baking, brewing and wine-making industries, brewer’s yeast has the remarkable ability to turn the sugars of plant fruits and grains into alcohol. How did brewer’s yeast evolve this flexibility?

By discovering new yeast species and sequencing their genomes, scientists know that some yeasts used in brewing are hybrids; that is, they’re descendants of ancient mating unions of individuals from two different yeast species. Hybrids tend to resemble both parental species – think of wholpins (whale-dolphin) or ligers (lion-tiger).

… What is still unknown is whether hybridization is the norm or the exception in the yeasts that humans have used for making fermented beverages for millennia.

To address this question, a team led by graduate student Quinn Langdon at the University of Wisconsin and another team led by postdoctoral fellow Brigida Gallone at the Universities of Ghent and Leuven in Belgium examined the genomes of hundreds of yeasts involved in brewing and wine making. Their bottom line? Hybrids rule.

For example, a quarter of yeasts collected from industrial environments, including beer and wine manufacturers, are hybrids.

The mutants in your cheese

Comparing the genomes of domesticated fungi to their wild relatives helps scientists understand the genetic changes that gave rise to some favorite foods and drinks. But how did our ancestors actually domesticate these wild fungi? None of us was there to witness how it all started. To solve this mystery, scientists are experimenting with wild fungi to see if they can evolve into organisms resembling those that we use to make our food today.

Benjamin Wolfe, a microbiologist at Tufts University, and his team addressed this question by taking wild Penicillium mold and growing the samples for one month in his lab on a substance that included cheese. That may sound like a short period for people, but it is one that spans many generations for fungi.

The wild fungi are very closely related to fungal strains used by the cheese industry in the making of Camembert cheese, but look very different from them. For example, wild strains are green and smell, well, moldy compared to the white and odorless industrial strains.

For Wolfe, the big question was whether he could experimentally recreate, and to what degree, the process of domestication. What did the wild strains look and smell like after a month of growth on cheese? Remarkably, what he and his team found was that, at the end of the experiment, the wild strains looked much more similar to known industrial strains than to their wild ancestor. For example, they were white in color and smelled much less moldy.

… how did the wild strain turn into a domesticated version? Did it mutate? By sequencing the genomes of both the wild ancestors and the domesticated descendants, and measuring the activity of the genes while growing on cheese, Wolfe’s team figured out that these changes did not happen through mutations in the organisms’ genomes. Rather, they most likely occurred through chemical alterations that modify the activity of specific genes but don’t actually change the genetic code. Such so-called epigenetic modifications can occur much faster than mutations.

Fantastic Fungi Futures (FFF) Nov. 29, Dec. 1, and Dec. 4, 2019 events in Toronto, Canada

The ArtSci Salon emailed me a November 23, 2019 announcement about a special series being presented in partnership with the Mycological Society of Toronto (MST) on the topic of fungi,

Fantastic Fungi Futures a discussion, a mini exhibition, a special screening, and a workshop revolving around Fungi and their versatile nature.

NOV 29 [2019], 6:00-8:00 PM Fantastic Fungi Futures (FFF): a roundtable discussion and popup exhibition.

Join us for a roundtable discussion. what are the potentials of fungi? Our guests will share their research, as well as professional and artistic practice dealing with the taxonomy and the toxicology, the health benefits and the potentials for sustainability, as well as the artistic and architectural virtues of fungi and mushrooms. The Exhibition will feature photos and objects created by local and Canadian artists who have been working with mushrooms and fungi.

This discussion is in anticipation of the special screening of Fantastic Fungi at the HotDocs Cinema on Dec 1 [2019] our guests:James Scott,Occupational & Environmental Health, Dalla Lana School of Public Health, UofT; Marshall Tyler, Director of Research, Field Trip, Toronto; Rotem Petranker, PhD student, Social Psychology, York University; Nourin Aman, PhD student, fungal biology and Systematics lab, Punjab University; Sydney Gram, PhD student, Ecology & Evolutionary Biology student researcher (UofT/ROM); [and] Tosca Teran, Interdisciplinary artist.

DEC. 1 [2019], 6:15 pm join us to the screening of Fantastic Fungi, at the HotDocs Cinemaget your tickets herehttps://boxoffice.hotdocs.ca/websales/pages/info.aspx?evtinfo=104145~fff311b7-cdad-4e14-9ae4-a9905e1b9cb0 afterward, some of us will be heading to the Pauper’s Pub, just across from the HotDocs Cinema

DEC. 4 [2019], 7:00-10:00PM Multi-species entanglements:Sculpting with Mycelium, @InterAccess, 950 Dupont St., Unit 1 

This workshop is a continuation of ArtSci Salon’s Fantastic Fungi Futures event and the HotDocs screening of Fantastic Fungi.this workshop is open to public to attend, however, pre-registration is required. $5.00 to form a mycelium bowl to take home.

During this workshop Tosca Teran introduces the amazing potential of Mycelium for collaboration at the intersection of art and science. Participants learn how to transform their kitchens and closets in to safe, mini-Mycelium biolabs and have the option to leave the workshop with a live Mycelium planter/bowl form, as well as a wide array of possibilities of how they might work with this sustainable bio-material. 

Bios

Nourin Aman is a PhD student at fungal biology and Systematics lab at Punjab University, Lahore, Pakistan. She is currently a visiting PhD student at the Mycology lab, Royal Ontario Museum. Her research revolves around comparison between macrofungal biodiversity of some reserve forests of Punjab, Pakistan.Her interest is basically to enlist all possible macrofungi of reserve forests under study and describe new species as well from area as our part of world still has many species to be discovered and named. She will be discussing factors which are affecting the fungal biodiversity in these reserve forests.

Sydney Gram is an Ecology & Evolutionary Biology student researcher (UofT/ROM)

Rotem Petranker- Bsc in psychology from the University of Toronto and a MA in social psychology from York University. Rotem is currently a PhD student in York’s clinical psychology program. His main research interest is affect regulation, and the way it interacts with sustained attention, mind wandering, and creativity. Rotem is a founding member oft the Psychedelic Studies Research Program at the University of Toronto, has published work on microdosing, and presented original research findings on psychedelic research in several conferences. He feels strongly that the principles of Open Science are necessary in order to do good research, and is currently in the process of starting the first lab study of microdosing in Canada.

James Scott– PhD, is a ARMCCM Professor and Head Division of Occupational & Environmental Health, Dalla Lana School of Public Health, University of TorontoUAMH Fungal Biobank: http://www.uamh.caUniversity Profile: http://www.dlsph.utoronto.ca/faculty-profile/scott-james-a/Research Laboratory: http://individual.utoronto.ca/jscottCommercial Laboratory: http://www.sporometrics.com

Marshall Tyler– Director of Research, Field Trip. Marshall is a scientist with a deep interest in psychoactive molecules. His passion lies in guiding research to arrive at a deeper understanding of consciousness with the ultimate goal of enhancing wellbeing. At Field Trip, he is helping to develop a lab in Jamaica to explore the chemical and biological complexities of psychoactive fungi.

Tosca Teran, aka Nanotopia, is an Multi-disciplinary artist. Her work has been featured at SOFA New York, Culture Canada, and The Toronto Design Exchange. Tosca has been awarded artist residencies with The Ayatana Research Program in Ottawa and The Icelandic Visual Artists Association through Sím, Reykjavik Iceland and Nes artist residency in Skagaströnd, Iceland. In 2019 she was one of the first Bio-Artists in residence at the Museum of Contemporary Art Toronto in partnership with the Ontario Science Centre as part of the Alien Agencies Collective. A recipient of the 2019 BigCi Environmental Award at Wollemi National Park within the UNESCO World Heritage site in the Greater Blue Mountains. Tosca started collaborating artistically with Algae, Physarum polycephalum, and Mycelium in 2016, translating biodata from non-human organisms into music.@MothAntler @nanopodstudio www.toscateran.com www.nanotopia.net8 

A trailer has been provided for the movie mentioned in the announcement (from the Fantastic Fungi screening webpage on the Mycological Society of Toronto website),

You can find the ArtSci Salon here and the Mycological Society of Toronto (MST) here.

Emerging technology and the law

I have three news bits about legal issues that are arising as a consequence of emerging technologies.

Deep neural networks, art, and copyright

Caption: The rise of automated art opens new creative avenues, coupled with new problems for copyright protection. Credit: Provided by: Alexander Mordvintsev, Christopher Olah and Mike Tyka

Presumably this artwork is a demonstration of automated art although they never really do explain how in the news item/news release. An April 26, 2017 news item on ScienceDaily announces research into copyright and the latest in using neural networks to create art,

In 1968, sociologist Jean Baudrillard wrote on automatism that “contained within it is the dream of a dominated world […] that serves an inert and dreamy humanity.”

With the growing popularity of Deep Neural Networks (DNN’s), this dream is fast becoming a reality.

Dr. Jean-Marc Deltorn, researcher at the Centre d’études internationales de la propriété intellectuelle in Strasbourg, argues that we must remain a responsive and responsible force in this process of automation — not inert dominators. As he demonstrates in a recent Frontiers in Digital Humanities paper, the dream of automation demands a careful study of the legal problems linked to copyright.

An April 26, 2017 Frontiers (publishing) news release on EurekAlert, which originated the news item, describes the research in more detail,

For more than half a century, artists have looked to computational processes as a way of expanding their vision. DNN’s are the culmination of this cross-pollination: by learning to identify a complex number of patterns, they can generate new creations.

These systems are made up of complex algorithms modeled on the transmission of signals between neurons in the brain.

DNN creations rely in equal measure on human inputs and the non-human algorithmic networks that process them.

Inputs are fed into the system, which is layered. Each layer provides an opportunity for a more refined knowledge of the inputs (shape, color, lines). Neural networks compare actual outputs to expected ones, and correct the predictive error through repetition and optimization. They train their own pattern recognition, thereby optimizing their learning curve and producing increasingly accurate outputs.

The deeper the layers are, the higher the level of abstraction. The highest layers are able to identify the contents of a given input with reasonable accuracy, after extended periods of training.

Creation thus becomes increasingly automated through what Deltorn calls “the arcane traceries of deep architecture”. The results are sufficiently abstracted from their sources to produce original creations that have been exhibited in galleries, sold at auction and performed at concerts.

The originality of DNN’s is a combined product of technological automation on one hand, human inputs and decisions on the other.

DNN’s are gaining popularity. Various platforms (such as DeepDream) now allow internet users to generate their very own new creations . This popularization of the automation process calls for a comprehensive legal framework that ensures a creator’s economic and moral rights with regards to his work – copyright protection.

Form, originality and attribution are the three requirements for copyright. And while DNN creations satisfy the first of these three, the claim to originality and attribution will depend largely on a given country legislation and on the traceability of the human creator.

Legislation usually sets a low threshold to originality. As DNN creations could in theory be able to create an endless number of riffs on source materials, the uncurbed creation of original works could inflate the existing number of copyright protections.

Additionally, a small number of national copyright laws confers attribution to what UK legislation defines loosely as “the person by whom the arrangements necessary for the creation of the work are undertaken.” In the case of DNN’s, this could mean anybody from the programmer to the user of a DNN interface.

Combined with an overly supple take on originality, this view on attribution would further increase the number of copyrightable works.

The risk, in both cases, is that artists will be less willing to publish their own works, for fear of infringement of DNN copyright protections.

In order to promote creativity – one seminal aim of copyright protection – the issue must be limited to creations that manifest a personal voice “and not just the electric glint of a computational engine,” to quote Deltorn. A delicate act of discernment.

DNN’s promise new avenues of creative expression for artists – with potential caveats. Copyright protection – a “catalyst to creativity” – must be contained. Many of us gently bask in the glow of an increasingly automated form of technology. But if we want to safeguard the ineffable quality that defines much art, it might be a good idea to hone in more closely on the differences between the electric and the creative spark.

This research is and be will part of a broader Frontiers Research Topic collection of articles on Deep Learning and Digital Humanities.

Here’s a link to and a citation for the paper,

Deep Creations: Intellectual Property and the Automata by Jean-Marc Deltorn. Front. Digit. Humanit., 01 February 2017 | https://doi.org/10.3389/fdigh.2017.00003

This paper is open access.

Conference on governance of emerging technologies

I received an April 17, 2017 notice via email about this upcoming conference. Here’s more from the Fifth Annual Conference on Governance of Emerging Technologies: Law, Policy and Ethics webpage,

The Fifth Annual Conference on Governance of Emerging Technologies:

Law, Policy and Ethics held at the new

Beus Center for Law & Society in Phoenix, AZ

May 17-19, 2017!

Call for Abstracts – Now Closed

The conference will consist of plenary and session presentations and discussions on regulatory, governance, legal, policy, social and ethical aspects of emerging technologies, including (but not limited to) nanotechnology, synthetic biology, gene editing, biotechnology, genomics, personalized medicine, human enhancement technologies, telecommunications, information technologies, surveillance technologies, geoengineering, neuroscience, artificial intelligence, and robotics. The conference is premised on the belief that there is much to be learned and shared from and across the governance experience and proposals for these various emerging technologies.

Keynote Speakers:

Gillian HadfieldRichard L. and Antoinette Schamoi Kirtland Professor of Law and Professor of Economics USC [University of Southern California] Gould School of Law

Shobita Parthasarathy, Associate Professor of Public Policy and Women’s Studies, Director, Science, Technology, and Public Policy Program University of Michigan

Stuart Russell, Professor at [University of California] Berkeley, is a computer scientist known for his contributions to artificial intelligence

Craig Shank, Vice President for Corporate Standards Group in Microsoft’s Corporate, External and Legal Affairs (CELA)

Plenary Panels:

Innovation – Responsible and/or Permissionless

Ellen-Marie Forsberg, Senior Researcher/Research Manager at Oslo and Akershus University College of Applied Sciences

Adam Thierer, Senior Research Fellow with the Technology Policy Program at the Mercatus Center at George Mason University

Wendell Wallach, Consultant, ethicist, and scholar at Yale University’s Interdisciplinary Center for Bioethics

 Gene Drives, Trade and International Regulations

Greg Kaebnick, Director, Editorial Department; Editor, Hastings Center Report; Research Scholar, Hastings Center

Jennifer Kuzma, Goodnight-North Carolina GlaxoSmithKline Foundation Distinguished Professor in Social Sciences in the School of Public and International Affairs (SPIA) and co-director of the Genetic Engineering and Society (GES) Center at North Carolina State University

Andrew Maynard, Senior Sustainability Scholar, Julie Ann Wrigley Global Institute of Sustainability Director, Risk Innovation Lab, School for the Future of Innovation in Society Professor, School for the Future of Innovation in Society, Arizona State University

Gary Marchant, Regents’ Professor of Law, Professor of Law Faculty Director and Faculty Fellow, Center for Law, Science & Innovation, Arizona State University

Marc Saner, Inaugural Director of the Institute for Science, Society and Policy, and Associate Professor, University of Ottawa Department of Geography

Big Data

Anupam Chander, Martin Luther King, Jr. Professor of Law and Director, California International Law Center, UC Davis School of Law

Pilar Ossorio, Professor of Law and Bioethics, University of Wisconsin, School of Law and School of Medicine and Public Health; Morgridge Institute for Research, Ethics Scholar-in-Residence

George Poste, Chief Scientist, Complex Adaptive Systems Initiative (CASI) (http://www.casi.asu.edu/), Regents’ Professor and Del E. Webb Chair in Health Innovation, Arizona State University

Emily Shuckburgh, climate scientist and deputy head of the Polar Oceans Team at the British Antarctic Survey, University of Cambridge

 Responsible Development of AI

Spring Berman, Ira A. Fulton Schools of Engineering, Arizona State University

John Havens, The IEEE [Institute of Electrical and Electronics Engineers] Global Initiative for Ethical Considerations in Artificial Intelligence and Autonomous Systems

Subbarao Kambhampati, Senior Sustainability Scientist, Julie Ann Wrigley Global Institute of Sustainability, Professor, School of Computing, Informatics and Decision Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University

Wendell Wallach, Consultant, Ethicist, and Scholar at Yale University’s Interdisciplinary Center for Bioethics

Existential and Catastrophic Ricks [sic]

Tony Barrett, Co-Founder and Director of Research of the Global Catastrophic Risk Institute

Haydn Belfield,  Academic Project Administrator, Centre for the Study of Existential Risk at the University of Cambridge

Margaret E. Kosal Associate Director, Sam Nunn School of International Affairs, Georgia Institute of Technology

Catherine Rhodes,  Academic Project Manager, Centre for the Study of Existential Risk at CSER, University of Cambridge

These were the panels that are of interest to me; there are others on the homepage.

Here’s some information from the Conference registration webpage,

Early Bird Registration – $50 off until May 1! Enter discount code: earlybirdGETs50

New: Group Discount – Register 2+ attendees together and receive an additional 20% off for all group members!

Click Here to Register!

Conference registration fees are as follows:

  • General (non-CLE) Registration: $150.00
  • CLE Registration: $350.00
  • *Current Student / ASU Law Alumni Registration: $50.00
  • ^Cybsersecurity sessions only (May 19): $100 CLE / $50 General / Free for students (registration info coming soon)

There you have it.

Neuro-techno future laws

I’m pretty sure this isn’t the first exploration of potential legal issues arising from research into neuroscience although it’s the first one I’ve stumbled across. From an April 25, 2017 news item on phys.org,

New human rights laws to prepare for advances in neurotechnology that put the ‘freedom of the mind’ at risk have been proposed today in the open access journal Life Sciences, Society and Policy.

The authors of the study suggest four new human rights laws could emerge in the near future to protect against exploitation and loss of privacy. The four laws are: the right to cognitive liberty, the right to mental privacy, the right to mental integrity and the right to psychological continuity.

An April 25, 2017 Biomed Central news release on EurekAlert, which originated the news item, describes the work in more detail,

Marcello Ienca, lead author and PhD student at the Institute for Biomedical Ethics at the University of Basel, said: “The mind is considered to be the last refuge of personal freedom and self-determination, but advances in neural engineering, brain imaging and neurotechnology put the freedom of the mind at risk. Our proposed laws would give people the right to refuse coercive and invasive neurotechnology, protect the privacy of data collected by neurotechnology, and protect the physical and psychological aspects of the mind from damage by the misuse of neurotechnology.”

Advances in neurotechnology, such as sophisticated brain imaging and the development of brain-computer interfaces, have led to these technologies moving away from a clinical setting and into the consumer domain. While these advances may be beneficial for individuals and society, there is a risk that the technology could be misused and create unprecedented threats to personal freedom.

Professor Roberto Andorno, co-author of the research, explained: “Brain imaging technology has already reached a point where there is discussion over its legitimacy in criminal court, for example as a tool for assessing criminal responsibility or even the risk of reoffending. Consumer companies are using brain imaging for ‘neuromarketing’, to understand consumer behaviour and elicit desired responses from customers. There are also tools such as ‘brain decoders’ which can turn brain imaging data into images, text or sound. All of these could pose a threat to personal freedom which we sought to address with the development of four new human rights laws.”

The authors explain that as neurotechnology improves and becomes commonplace, there is a risk that the technology could be hacked, allowing a third-party to ‘eavesdrop’ on someone’s mind. In the future, a brain-computer interface used to control consumer technology could put the user at risk of physical and psychological damage caused by a third-party attack on the technology. There are also ethical and legal concerns over the protection of data generated by these devices that need to be considered.

International human rights laws make no specific mention to neuroscience, although advances in biomedicine have become intertwined with laws, such as those concerning human genetic data. Similar to the historical trajectory of the genetic revolution, the authors state that the on-going neurorevolution will force a reconceptualization of human rights laws and even the creation of new ones.

Marcello Ienca added: “Science-fiction can teach us a lot about the potential threat of technology. Neurotechnology featured in famous stories has in some cases already become a reality, while others are inching ever closer, or exist as military and commercial prototypes. We need to be prepared to deal with the impact these technologies will have on our personal freedom.”

Here’s a link to and a citation for the paper,

Towards new human rights in the age of neuroscience and neurotechnology by Marcello Ienca and Roberto Andorno. Life Sciences, Society and Policy201713:5 DOI: 10.1186/s40504-017-0050-1 Published: 26 April 2017

©  The Author(s). 2017

This paper is open access.