Tag Archives: US

Nucleic acid-based memory storage

We’re running out of memory. To be more specific, there are two problems: the supply of silicon and a limit to how much silicon-based memory can store. An April 27, 2016 news item on Nanowerk announces a nucleic acid-based approach to solving the memory problem,

A group of Boise State [Boise State University in Idaho, US] researchers, led by associate professor of materials science and engineering and associate dean of the College of Innovation and Design Will Hughes, is working toward a better way to store digital information using nucleic acid memory (NAM).

An April 25, 2016 Boise State University news release, which originated the news item, expands on the theme of computer memory and provides more details about the approach,

It’s no secret that as a society we generate vast amounts of data each year. So much so that the 30 billion watts of electricity used annually by server farms today is roughly equivalent to the output of 30 nuclear power plants.

And the demand keeps growing. The global flash memory market is predicted to reach $30.2 billion this year, potentially growing to $80.3 billion by 2025. Experts estimate that by 2040, the demand for global memory will exceed the projected supply of silicon (the raw material used to store flash memory). Furthermore, electronic memory is rapidly approaching its fundamental size limits because of the difficulty in storing electrons in small dimensions.

Hughes, with post-doctoral researcher Reza Zadegan and colleagues Victor Zhirnov (Semiconductor Research Corporation), Gurtej Sandhun (Micron Technology Inc.) and George Church (Harvard University), is looking to DNA molecules to solve the problem. Nucleic acid — the “NA” in “DNA” — far surpasses electronic memory in retention time, according to the researchers, while also providing greater information density and energy of operation.

Their conclusions are outlined in an invited commentary in the prestigious journal Nature Materials published earlier this month.

“DNA is the data storage material of life in general,” said Hughes. “Because of its physical and chemical properties, it also may become the data storage material of our lives.” It may sound like science fiction, but Hughes will participate in an invitation-only workshop this month at the Intelligence Advanced Research Projects Activity (IARPA) Agency to envision a portable DNA hard drive that would have 500 Terabytes of searchable data – that’s about the the size of the Library of Congress Web Archive.

“When information bits are encoded into polymer strings, researchers and manufacturers can manage and manipulate physical, chemical and biological information with standard molecular biology techniques,” the paper [in Nature Materials?] states.

Cost-competitive technologies to read and write DNA could lead to real-world applications ranging from artificial chromosomes, digital hard drives and information-management systems, to a platform for watermarking and tracking genetic content or next-generation encryption tools that necessitate physical rather than electronic embodiment.

Here’s how it works. Current binary code uses 0’s and 1’s to represent bits of information. A computer program then accesses a specific decoder to turn the numbers back into usable data. With nucleic acid memory, 0’s and 1’s are replaced with the nucleotides A, T, C and G. Known as monomers, they are covalently bonded to form longer polymer chains, also known as information strings.

Because of DNA’s superior ability to store data, DNA can contain all the information in the world in a small box measuring 10 x 10 x 10 centimeters cubed. NAM could thus be used as a sustainable time capsule for massive, scientific, financial, governmental, historical, genealogical, personal and genetic records.

Better yet, DNA can store digital information for a very long time – thousands to millions of years. Currently, usable information has been extracted from DNA in bones that are 700,000 years old, making nucleic acid memory a promising archival material. And nucleic acid memory uses 100 million times less energy than storing data electronically in flash, and the data can live on for generations.

At Boise State, Hughes and Zadegan are examining DNA’s stability under extreme conditions. DNA strands are subjected to temperatures varying from negative 20 degrees Celsius to 100 degrees Celsius, and to a variety of UV exposures to see if they can still retain their information. What they’re finding is that much less information is lost with NAM than with the current state of the industry.

Here’s a link to and a citation for the Nature Materials paper,

Nucleic acid memory by Victor Zhirnov, Reza M. Zadegan, Gurtej S. Sandhu, George M. Church, & William L. Hughes. Nature Materials 15, 366–370 (2016)  doi:10.1038/nmat4594 Published online 23 March 2016

This paper is behind a paywall.

“One minus one equals zero” has been disproved

Two mirror-image molecules can be optically active according to an April 27, 2016 news item on ScienceDaily,

In 1848, Louis Pasteur showed that molecules that are mirror images of each other had exactly opposite rotations of light. When mixed in solution, they cancel the effects of the other, and no rotation of light is observed. Now, a research team has demonstrated that a mixture of mirror-image molecules crystallized in the solid state can be optically active.

An April 26, 2016 Northwestern University news release (also on EurekAlert), which originated the news item, expands on the theme,

In the world of chemistry, one minus one almost always equals zero.

But new research from Northwestern University and the Centre National de la Recherche Scientifique (CNRS) in France shows that is not always the case. And the discovery will change scientists’ understanding of mirror-image molecules and their optical activity.

Now, Northwestern’s Kenneth R. Poeppelmeier and his research team are the first to demonstrate that a mixture of mirror-image molecules crystallized in the solid state can be optically active. The scientists first designed and made the materials and then measured their optical properties.

“In our case, one minus one does not always equal zero,” said first author Romain Gautier of CNRS. “This discovery will change scientists’ understanding of these molecules, and new applications could emerge from this observation.”

The property of rotating light, which has been known for more than two centuries to exist in many molecules, already has many applications in medicine, electronics, lasers and display devices.

“The phenomenon of optical activity can occur in a mixture of mirror-image molecules, and now we’ve measured it,” said Poeppelmeier, a Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences. “This is an important experiment.”

Although this phenomenon has been predicted for a long time, no one — until now — had created such a racemic mixture (a combination of equal amounts of mirror-image molecules) and measured the optical activity.

“How do you deliberately create these materials?” Poeppelmeier said. “That’s what excites me as a chemist.” He and Gautier painstakingly designed the material, using one of four possible solid-state arrangements known to exhibit circular dichroism (the ability to absorb differently the “rotated” light).

Next, Richard P. Van Duyne, a Morrison Professor of Chemistry at Northwestern, and graduate student Jordan M. Klingsporn measured the material’s optical activity, finding that mirror-image molecules are active when arranged in specific orientations in the solid state.

Here’s a link to and a citation for the paper,

Optical activity from racemates by Romain Gautier, Jordan M. Klingsporn, Richard P. Van Duyne, & Kenneth R. Poeppelmeier. Nature Materials (2016) doi:10.1038/nmat4628 Published online 18 April 2016

This paper is behind a paywall.

A new state for water molecules

ORNL researchers discovered that water in beryl displays some unique and unexpected characteristics. (Photo by Jeff Scovil)

ORNL researchers discovered that water in beryl displays some unique and unexpected characteristics. (Photo by Jeff Scovil)

That striking image from the Oak Ridge National Laboratory (ORNL; US) depicting a new state for water molecules looks like mixed media: photography and drawing/illustration. Thankfully, an April 22, 2016 news item on ScienceDaily provides a text description,

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy’s Oak Ridge National Laboratory [ORNL] describe a new tunneling state of water molecules confined in hexagonal ultra-small channels — 5 angstrom across — of the mineral beryl. An angstrom is 1/10-billionth of a meter, and individual atoms are typically about 1 angstrom in diameter.

The discovery, made possible with experiments at ORNL’s Spallation Neutron Source and the Rutherford Appleton Laboratory in the United Kingdom, demonstrates features of water under ultra confinement in rocks, soil and cell walls, which scientists predict will be of interest across many disciplines.

An April 22, 2016 ORNL news release (also on EurekAlert), which originated the news item, offers more detail,

“At low temperatures, this tunneling water exhibits quantum motion through the separating potential walls, which is forbidden in the classical world,” said lead author Alexander Kolesnikov of ORNL’s Chemical and Engineering Materials Division. “This means that the oxygen and hydrogen atoms of the water molecule are ‘delocalized’ and therefore simultaneously present in all six symmetrically equivalent positions in the channel at the same time. It’s one of those phenomena that only occur in quantum mechanics and has no parallel in our everyday experience.”

The existence of the tunneling state of water shown in ORNL’s study should help scientists better describe the thermodynamic properties and behavior of water in highly confined environments such as water diffusion and transport in the channels of cell membranes, in carbon nanotubes and along grain boundaries and at mineral interfaces in a host of geological environments.

ORNL co-author Lawrence Anovitz noted that the discovery is apt to spark discussions among materials, biological, geological and computational scientists as they attempt to explain the mechanism behind this phenomenon and understand how it applies to their materials.

“This discovery represents a new fundamental understanding of the behavior of water and the way water utilizes energy,” Anovitz said. “It’s also interesting to think that those water molecules in your aquamarine or emerald ring – blue and green varieties of beryl – are undergoing the same quantum tunneling we’ve seen in our experiments.”

While previous studies have observed tunneling of atomic hydrogen in other systems, the ORNL discovery that water exhibits such tunneling behavior is unprecedented. The neutron scattering and computational chemistry experiments showed that, in the tunneling state, the water molecules are delocalized around a ring so the water molecule assumes an unusual double top-like shape.

“The average kinetic energy of the water protons directly obtained from the neutron experiment is a measure of their motion at almost absolute zero temperature and is about 30 percent less than it is in bulk liquid or solid water,” Kolesnikov said. “This is in complete disagreement with accepted models based on the energies of its vibrational modes.”

Here’s a link to and a citation for the paper,

Quantum Tunneling of Water in Beryl: A New State of the Water Molecule by Alexander I. Kolesnikov, George F. Reiter, Narayani Choudhury, Timothy R. Prisk, Eugene Mamontov, Andrey Podlesnyak, George Ehlers, Andrew G. Seel, David J. Wesolowski, and Lawrence M. Anovitz.
Phys. Rev. Lett. 116, 167802 – Published 22 April 2016

This paper is behind a paywall.

Want better energy storage materials? Add salt

An April 22, 2016 news item on Nanowerk reveals a secret to better energy storage materials,

The secret to making the best energy storage materials is growing them with as much surface area as possible. Like baking, it requires just the right mixture of ingredients prepared in a specific amount and order at just the right temperature to produce a thin sheet of material with the perfect chemical consistency to be useful for storing energy. A team of researchers from Drexel University, Huazhong University of Science and Technology (HUST) and Tsinghua University recently discovered a way to improve the recipe and make the resulting materials bigger and better and soaking up energy — the secret? Just add salt.

An April 22, 2016 Drexel University news release (also on EurekAlert), which originated the news item, provides more detail,

The team’s findings, which were recently published in the journal Nature Communications, show that using salt crystals as a template to grow thin sheets of conductive metal oxides make the materials turn out larger and more chemically pure — which makes them better suited for gathering ions and storing energy.

“The challenge of producing a metal oxide that reaches theoretical performance values is that the methods for making it inherently limit its size and often foul its chemical purity, which makes it fall short of predicted energy storage performance,” said Jun Zhou, a professor at HUST’s Wuhan National Laboratory for Optoelectronics and an author of the research. Our research reveals a way to grow stable oxide sheets with less fouling that are on the order of several hundreds of times larger than the ones that are currently being fabricated.”

In an energy storage device — a battery or a capacitor, for example — energy is contained in the chemical transfer of ions from an electrolyte solution to thin layers of conductive materials. As these devices evolve they’re becoming smaller and capable of holding an electric charge for longer periods of time without needing a recharge. The reason for their improvement is that researchers are fabricating materials that are better equipped, structurally and chemically, for collecting and disbursing ions.

In theory, the best materials for the job should be thin sheets of metal oxides, because their chemical structure and high surface area makes it easy for ions to attach — which is how energy storage occurs. But the metal oxide sheets that have been fabricated in labs thus far have fallen well short of their theoretical capabilities.

According to Zhou, Tang [?] and the team from HUST, the problem lies in the process of making the nanosheets — which involves either a deposition from gas or a chemical etching — often leaves trace chemical residues that contaminate the material and prevent ions from bonding to it. In addition, the materials made in this way are often just a few square micrometers in size.

Using salt crystals as a substrate for growing the crystals lets them spread out and form a larger sheet of oxide material. Think of it like making a waffle by dripping batter into a pan versus pouring it into a big waffle iron; the key to getting a big, sturdy product is getting the solution — be it batter, or chemical compound — to spread evenly over the template and stabilize in a uniform way.

“This method of synthesis, called ‘templating’ — where we use a sacrificial material as a substrate for growing a crystal — is used to create a certain shape or structure,” said Yury Gogotsi, PhD, University and Trustee Chair professor in Drexel’s College of Engineering and head of the A.J. Drexel Nanomaterials Institute, who was an author of the paper. “The trick in this work is that the crystal structure of salt must match the crystal structure of the oxide, otherwise it will form an amorphous film of oxide rather than a thing, strong and stable nanocrystal. This is the key finding of our research — it means that different salts must be used to produce different oxides.”

Researchers have used a variety of chemicals, compounds, polymers and objects as growth templates for nanomaterials. But this discovery shows the importance of matching a template to the structure of the material being grown. Salt crystals turn out to be the perfect substrate for growing oxide sheets of magnesium, molybdenum and tungsten.

The precursor solution coats the sides of the salt crystals as the oxides begin to form. After they’ve solidified, the salt is dissolved in a wash, leaving nanometer-thin two-dimensional sheets that formed on the sides of the salt crystal — and little trace of any contaminants that might hinder their energy storage performance. By making oxide nanosheets in this way, the only factors that limit their growth is the size of the salt crystal and the amount of precursor solution used.

“Lateral growth of the 2D oxides was guided by salt crystal geometry and promoted by lattice matching and the thickness was restrained by the raw material supply. The dimensions of the salt crystals are tens of micrometers and guide the growth of the 2D oxide to a similar size,” the researchers write in the paper. “On the basis of the naturally non-layered crystal structures of these oxides, the suitability of salt-assisted templating as a general method for synthesis of 2D oxides has been convincingly demonstrated.”

As predicted, the larger size of the oxide sheets also equated to a greater ability to collect and disburse ions from an electrolyte solution — the ultimate test for its potential to be used in energy storage devices. Results reported in the paper suggest that use of these materials may help in creating an aluminum-ion battery that could store more charge than the best lithium-ion batteries found in laptops and mobile devices today.

Gogotsi, along with his students in the Department of Materials Science and Engineering, has been collaborating with Huazhong University of Science and Technology since 2012 to explore a wide variety of materials for energy storage application. The lead author of the Nature Communications article, Xu Xiao, and co-author Tiangi Li, both Zhou’s doctoral students, came to Drexel as exchange students to learn about the University’s supercapacitor research. Those visits started a collaboration, which was supported by Gogotsi’s annual trips to HUST. While the partnership has already yielded five joint publications, Gogotsi speculates that this work is only beginning.

“The most significant result of this work thus far is that we’ve demonstrated the ability to generate high-quality 2D oxides with various compositions,” Gogotsi said. “I can certainly see expanding this approach to other oxides that may offer attractive properties for electrical energy storage, water desalination membranes, photocatalysis and other applications.”

Here’s a link to and a citation for the paper,

Scalable salt-templated synthesis of two-dimensional transition metal oxides by Xu Xiao, Huaibing Song, Shizhe Lin, Ying Zhou, Xiaojun Zhan, Zhimi Hu, Qi Zhang, Jiyu Sun, Bo Yang, Tianqi Li, Liying Jiao, Jun Zhou, Jiang Tang, & Yury Gogotsi. Nature Communications 7, Article number:  11296 doi:10.1038/ncomms11296 Published 22 April 2016

This is an open access paper.

Artificial intelligence used for wildlife protection

PAWS (Protection Assistant for Wildlife Security), an artificial intelligence (AI) program, has been tested in Uganda and Malaysia. according to an April 22, 2016 US National Science Foundation (NSF) news release (also on EurekAlert but dated April 21, 2016), Note: Links have been removed,

A century ago, more than 60,000 tigers roamed the wild. Today, the worldwide estimate has dwindled to around 3,200. Poaching is one of the main drivers of this precipitous drop. Whether killed for skins, medicine or trophy hunting, humans have pushed tigers to near-extinction. The same applies to other large animal species like elephants and rhinoceros that play unique and crucial roles in the ecosystems where they live.

Human patrols serve as the most direct form of protection of endangered animals, especially in large national parks. However, protection agencies have limited resources for patrols.

With support from the National Science Foundation (NSF) and the Army Research Office, researchers are using artificial intelligence (AI) and game theory to solve poaching, illegal logging and other problems worldwide, in collaboration with researchers and conservationists in the U.S., Singapore, Netherlands and Malaysia.

“In most parks, ranger patrols are poorly planned, reactive rather than pro-active, and habitual,” according to Fei Fang, a Ph.D. candidate in the computer science department at the University of Southern California (USC).

Fang is part of an NSF-funded team at USC led by Milind Tambe, professor of computer science and industrial and systems engineering and director of the Teamcore Research Group on Agents and Multiagent Systems.

Their research builds on the idea of “green security games” — the application of game theory to wildlife protection. Game theory uses mathematical and computer models of conflict and cooperation between rational decision-makers to predict the behavior of adversaries and plan optimal approaches for containment. The Coast Guard and Transportation Security Administration have used similar methods developed by Tambe and others to protect airports and waterways.

“This research is a step in demonstrating that AI can have a really significant positive impact on society and allow us to assist humanity in solving some of the major challenges we face,” Tambe said.

PAWS puts the claws in anti-poaching

The team presented papers describing how they use their methods to improve the success of human patrols around the world at the AAAI Conference on Artificial Intelligence in February [2016].

The researchers first created an AI-driven application called PAWS (Protection Assistant for Wildlife Security) in 2013 and tested the application in Uganda and Malaysia in 2014. Pilot implementations of PAWS revealed some limitations, but also led to significant improvements.

Here’s a video describing the issues and PAWS,

For those who prefer to read about details rather listen, there’s more from the news release,

PAWS uses data on past patrols and evidence of poaching. As it receives more data, the system “learns” and improves its patrol planning. Already, the system has led to more observations of poacher activities per kilometer.

Its key technical advance lies in its ability to incorporate complex terrain information, including the topography of protected areas. That results in practical patrol routes that minimize elevation changes, saving time and energy. Moreover, the system can also take into account the natural transit paths that have the most animal traffic – and thus the most poaching – creating a “street map” for patrols.

“We need to provide actual patrol routes that can be practically followed,” Fang said. “These routes need to go back to a base camp and the patrols can’t be too long. We list all possible patrol routes and then determine which is most effective.”

The application also randomizes patrols to avoid falling into predictable patterns.

“If the poachers observe that patrols go to some areas more often than others, then the poachers place their snares elsewhere,” Fang said.

Since 2015, two non-governmental organizations, Panthera and Rimbat, have used PAWS to protect forests in Malaysia. The research won the Innovative Applications of Artificial Intelligence award for deployed application, as one of the best AI applications with measurable benefits.

The team recently combined PAWS with a new tool called CAPTURE (Comprehensive Anti-Poaching Tool with Temporal and Observation Uncertainty Reasoning) that predicts attacking probability even more accurately.

In addition to helping patrols find poachers, the tools may assist them with intercepting trafficked wildlife products and other high-risk cargo, adding another layer to wildlife protection. The researchers are in conversations with wildlife authorities in Uganda to deploy the system later this year. They will present their findings at the 15th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2016) in May.

“There is an urgent need to protect the natural resources and wildlife on our beautiful planet, and we computer scientists can help in various ways,” Fang said. “Our work on PAWS addresses one facet of the problem, improving the efficiency of patrols to combat poaching.”

There is yet another potential use for PAWS, the prevention of illegal logging,

While Fang and her colleagues work to develop effective anti-poaching patrol planning systems, other members of the USC team are developing complementary methods to prevent illegal logging, a major economic and environmental problem for many developing countries.

The World Wildlife Fund estimates trade in illegally harvested timber to be worth between $30 billion and $100 billion annually. The practice also threatens ancient forests and critical habitats for wildlife.

Researchers at USC, the University of Texas at El Paso and Michigan State University recently partnered with the non-profit organization Alliance Vohoary Gasy to limit the illegal logging of rosewood and ebony trees in Madagascar, which has caused a loss of forest cover on the island nation.

Forest protection agencies also face limited budgets and must cover large areas, making sound investments in security resources critical.

The research team worked to determine the balance of security resources in which Madagascar should invest to maximize protection, and to figure out how to best deploy those resources.

Past work in game theory-based security typically involved specified teams — the security workers assigned to airport checkpoints, for example, or the air marshals deployed on flight tours. Finding optimal security solutions for those scenarios is difficult; a solution involving an open-ended team had not previously been feasible.

To solve this problem, the researchers developed a new method called SORT (Simultaneous Optimization of Resource Teams) that they have been experimentally validating using real data from Madagascar.

The research team created maps of the national parks, modeled the costs of all possible security resources using local salaries and budgets, and computed the best combination of resources given these conditions.

“We compared the value of using an optimal team determined by our algorithm versus a randomly chosen team and the algorithm did significantly better,” said Sara Mc Carthy, a Ph.D. student in computer science at USC.

The algorithm is simple and fast, and can be generalized to other national parks with different characteristics. The team is working to deploy it in Madagascar in association with the Alliance Vohoary Gasy.

“I am very proud of what my PhD students Fei Fang and Sara Mc Carthy have accomplished in this research on AI for wildlife security and forest protection,” said Tambe, the team lead. “Interdisciplinary collaboration with practitioners in the field was key in this research and allowed us to improve our research in artificial intelligence.”

Moreover, the project shows other computer science researchers the potential impact of applying their research to the world’s problems.

“This work is not only important because of the direct beneficial impact that it has on the environment, protecting wildlife and forests, but on the way that it can inspire other to dedicate their efforts into making the world a better place,” Mc Carthy said.

The curious can find out more about Panthera here and about Alliance Vohoary Gasy here (be prepared to use your French language skills). Unfortunately, I could not find more information about Rimbat.

MIT.nano building update

A few years ago I featured a story (my May 6, 2014 posting) about a new building, the MIT.nano, being constructed on the Massachusetts Institute of Technology campus. Now at about 1/2 way through the construction (the building is due to open in 2018) MIT has issued an update in an April 20, 2016 news release by Leda Zimmerman,

A spectacular show has been going on outside the windows of central-campus buildings all spring. An enormous steel structure has been growing — piece by piece, and bolt by bolt — out of a giant hole in the ground formerly occupied by Building 12. At a March 24 [2016] “tool talk” information session for the MIT community on the construction of MIT.nano, representatives from MIT Facilities and the contractors who are building the new 200,000 square foot nanoscale characterization and fabrication facility gave an overview not only of where things stand with the project, but how they got stood up.

“In our structural-steel erection progress log, we’ve been averaging around 23 tons per day,” said Peter Johnson of Turner Construction. “We’re putting up 2,101 tons total, and we’re 22 percent complete.”

There is a Canadian connection,

Working with Ontario-based steel fabricator, Canatal, Johnson and his colleagues at Turner developed a four-dimensional plan for steel engineering, delivery, and installation. “We went through a painstaking process to maximize efficiency of this sequence,” says Johnson. “This allows us to avoid times when a crane is down because it’s waiting” for a delivery of steel.

There are some very interesting details in the news release but if you don’t have the time, there is this picture,

MIT.nano steel structure, looking northwest. Photo: Lillie Paquette/School of Engineering

MIT.nano steel structure, looking northwest. Photo: Lillie Paquette/School of Engineering

The colours are quite striking (I suspect they have been enhanced).

New ABCs of research: seminars and a book

David Bruggeman has featured a new book and mentioned its attendant seminars in an April 19, 2016 post on his Pasco Phronesis blog (Note: A link has been removed),

Ben Shneiderman, Professor of Computer Science at the University of Maryland at College Park, recently published The New ABCs of Research: Achieving Breakthrough Collaborations.  It’s meant to be a guide for students and researchers about the various efforts to better integrate different kinds of research and design to improve research outputs and outcomes. …

David has an embedded a video of Schneiderman discussing the principles espoused in his book. There are some upcoming seminars including one on Thursday, April 21, 2016 (today) at New York University (NYU) at 12:30 pm at 44 West 4th St, Kaufman Management Center, Room 3-50. From the description on the NYU event page,

Solving the immense problems of the 21st century will require ambitious research teams that are skilled at producing practical solutions and foundational theories simultaneously – that is the ABC Principle: Applied & Basic Combined.  Then these research teams can deliver high-impact outcomes by applying the SED Principle: Blend Science, Engineering and Design Thinking, which encourages use of the methods from all three disciplines.  These guiding principles (ABC & SED) are meant to replace Vannevar Bush’s flawed linear model from 1945 that has misled researchers for 70+ years.  These new guiding principles will enable students, researchers, business leaders, and government policy makers to accelerate discovery and innovation.

Oxford University Press:  http://ukcatalogue.oup.com/product/9780198758839.do

Book website:  http://www.cs.umd.edu/hcil/newabcs

There is another seminar on Wednesday, April 27, 2016 at 3:00 pm in the Pepco Room, #1105 Kim Engineering Building at the University of Maryland which is handy for anyone in the Washington, DC area.

NASA (US National Aeronautics and Space Administration), one of the world’s largest hackathons, and women

Elizabeth Segran’s April 19, 2016 article for Fast Company profiles some work being done at NASA (US National Aeronautics and Space Administration) to encourage more women to participate in their hackathons (Note: A link has been removed),

For the past four years, NASA has hosted the Space Apps Challenge, one of the biggest hackathons on the planet. Last year, 14,264 people gathered in 133 locations for 48 to 72 hours to create apps using NASA’s data. A team in Lome, Togo, built a clean water mapping app; one in Bangalore, India, created a desktop planetarium; another in Pasadena, California, created a pocket assistant for astronauts. This year’s hackathon happens this upcoming weekend [April 22 – 24, 2016].

While NASA has been able to attract participants from all corners of the globe, it has consistently struggled to get women involved. NASA is working very hard to change this. “The attendance is generally 80% male,” says Beth Beck, NASA’s open innovation project manager, who runs the Space Apps Hackathon. “It’s more everyman than everywoman.”

There is a mention of a 2015 Canadian hackathon and an observation Beth Beck made at the time (from the Segran article),

Beck noticed that female participation in hackathons seemed to drop after the middle school years. At last year’s hackathon in Toronto, for instance, there were two sections: one for students and one for adults. Girls made up at least half of the student participants. “The middle school girls looked like honey bees, running around in little packs to learn about the technology,” she says. “But in the main hacking area, it was all guys. I wanted to know what happens that makes them lose their curiosity and enthusiasm.”

Beck’s further observations led to these conclusions,

It turns out that women are not significantly more interested in certain subjects than others. What they cared about most was being able to explore these topics in a space that felt friendly and supportive. “They are looking for signals that they will be in a safe space where they feel like they belong,” Beck says. Often, these signals are very straightforward: they seek out pictures of women on the event’s webpage and look for women’s names on the speaker panels and planning committees. …

Another interesting thing that Beck discovered is that women who are brave enough to attend these events want to go a day early to get the lay of the land and perhaps form a team in advance. They want to become more comfortable with the physical space where the hackathon will take place and learn as much as possible about the topics. “When the hackathon then becomes flooded with men, they feel ready for it,” she says.

While men described hacking as something that they did in their spare time, the research showed that many women often had many other family responsibilities and couldn’t just attend a hackathon for fun. And this wasn’t just true in developing countries, where girls were often tasked with childcare and chores, while boys could focus on science. In the U.S., events where there was childcare provided were much more highly attended by women than those that did not have that option. …

NASA’s hackathons are open to people with diverse skill sets—not just people who know code. Beck has found that men are more likely to participate because they are interested in space; they simply show up with ideas. Women, on the other hand, need to feel like they have the appropriate battery of skills to contribute. With this knowledge, Beck has found it helpful to make it clear that each team needs strong storytellers who can explain the value of the app. …

The folks at NASA are still working at implementing these ideas and Segran’s article describes the initiatives and includes this story (Note: A link has been removed),

Last year [2015], for instance, two female students in Cairo noticed that the hackathon has specifically called out to women and they wanted to host a local chapter of the hackathon. Their professor, however, told them that women could not host the event. The women reached out to NASA themselves and Beck wrote to them personally, saying that she highly encouraged them to create their own event. That Cairo event ended up being the largest Space Apps hackathon in the world, with 700 participants and a wait list of 300. …

Kudos to Beth Beck, NASA, and those two women in Cairo.

For anyone (male/female) interested in the 2016 hackathon, it’s being held this weekend (April 22 – 24, 2016), from the NASA Space Apps Challenge homepage,

For 48-72 hours across the world, problem solvers like you join us for NASA’s International Space Apps Challenge, one of the largest hackathons in the universe. Empowered by open data, you collaborate with strangers, colleagues, friends, and family to solve perplexing challenges in new and unexpected ways — from designing an interactive space glove to natural language processing to clean water mapping. Join us on our open data mission, and show us how you innovate.

Not Just For Coders

Beginners, students, experts, engineers, makers, artists, storytellers — Space Apps is for you! We welcome all passionate problem solvers to join our community of innovators. Citizens like you have already created thousands of open-source solutions together through code, data visualizations, hardware and design. How will you make your global impact?

It’s too late to become a host for the hackathon but you may be able to find a location for one somewhere near you on the hackathon website’s Locations page. There are three locations in Canada for the 2016 edition: Toronto (waitlist), Winnipeg (still open), and Waterloo (waitlist).

Teslaphoresis; self-assembling materials from a distance

Getting carbon nanotubes to self-assemble from a distance is possible according to an April 14, 2016 news item on ScienceDaily,

Scientists at Rice University have discovered that the strong force field emitted by a Tesla coil causes carbon nanotubes to self-assemble into long wires, a phenomenon they call “Teslaphoresis.”

An April 14, 2016 Rice University (US) news release, (also on EurekAlert) which originated the news item, expands on the theme,

Cherukuri [Rice chemist Paul Cherukuri] sees this research as setting a clear path toward scalable assembly of nanotubes from the bottom up.

The system works by remotely oscillating positive and negative charges in each nanotube, causing them to chain together into long wires. Cherukuri’s specially designed Tesla coil even generates a tractor beam-like effect as nanotube wires are pulled toward the coil over long distances.

This force-field effect on matter had never been observed on such a large scale, Cherukuri said, and the phenomenon was unknown to Nikola Tesla, who invented the coil in 1891 with the intention of delivering wireless electrical energy.

“Electric fields have been used to move small objects, but only over ultrashort distances,” Cherukuri said. “With Teslaphoresis, we have the ability to massively scale up force fields to move matter remotely.”

The researchers discovered that the phenomenon simultaneously assembles and powers circuits that harvest energy from the field. In one experiment, nanotubes assembled themselves into wires, formed a circuit connecting two LEDs and then absorbed energy from the Tesla coil’s field to light them.

Cherukuri realized a redesigned Tesla coil could create a powerful force field at distances far greater than anyone imagined. His team observed alignment and movement of the nanotubes several feet away from the coil. “It is such a stunning thing to watch these nanotubes come alive and stitch themselves into wires on the other side of the room,” he said.

Nanotubes were a natural first test material, given their heritage at Rice, where the HiPco production process was invented. But the researchers envision many other nanomaterials can be assembled as well.

Lindsey Bornhoeft, the paper’s lead author and a biomedical engineering graduate student at Texas A&M University, said the directed force field from the bench-top coil at Rice is restricted to just a few feet. To examine the effects on matter at greater distances would require larger systems that are under development. Cherukuri suggested patterned surfaces and multiple Tesla coil systems could create more complex self-assembling circuits from nanoscale-sized particles.

Cherukuri and his wife, Tonya, also a Rice alum and a co-author of the paper, noted that their son Adam made some remarkable observations while watching videos of the experiment. “I was surprised that he noticed patterns in nanotube movements that I didn’t see,” Cherukuri said. “I couldn’t make him an author on the paper, but both he and his little brother John are acknowledged for helpful discussions.”

Cherukuri knows the value of youthful observation — and imagination — since he started designing Tesla coils as a teen. “I would have never thought, as a 14-year-old kid building coils, that it was going to be useful someday,” he said.

Cherukuri and his team self-funded the work, which he said made it more meaningful for the group. “This was one of the most exciting projects I’ve ever done, made even more so because it was an all-volunteer group of passionate scientists and students. But because Rice has this wonderful culture of unconventional wisdom, we were able to make an amazing discovery that pushes the frontiers of nanoscience.”

The teammates look forward to seeing where their research leads. “These nanotube wires grow and act like nerves, and controlled assembly of nanomaterials from the bottom up may be used as a template for applications in regenerative medicine,” Bornhoeft said.

“There are so many applications where one could utilize strong force fields to control the behavior of matter in both biological and artificial systems,” Cherukuri said. “And even more exciting is how much fundamental physics and chemistry we are discovering as we move along. This really is just the first act in an amazing story.”

Rice University has produced a video featuring the research and the researchers,

Here’s a link to and a citation for the paper,

Teslaphoresis of Carbon Nanotubes by Lindsey R. Bornhoeft, Aida C. Castillo, Preston R. Smalley, Carter Kittrell, Dustin K. James, Bruce E. Brinson, Thomas R. Rybolt, Bruce R. Johnson, Tonya K. Cherukuri†, and Paul Cherukuri. ACS Nano, Article ASAP DOI: 10.1021/acsnano.6b02313 Publication Date (Web): April 13, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

The Tesla coil was created by Nikola Tesla, a renowned Serbian-American scientist and engineer.

Embroidering electronics into clothing

Researchers at The Ohio State University are developing embroidered antennas and circuits with 0.1 mm precision—the perfect size to integrate electronic components such as sensors and computer memory devices into clothing. Photo by Jo McCulty, courtesy of The Ohio State University.

Researchers at The Ohio State University are developing embroidered antennas and circuits with 0.1 mm precision—the perfect size to integrate electronic components such as sensors and computer memory devices into clothing. Photo by Jo McCulty, courtesy of The Ohio State University.

An April 13, 2016 news item on Nanowerk describes an advance in the field of wearable electronics,

Researchers who are working to develop wearable electronics have reached a milestone: They are able to embroider circuits into fabric with 0.1 mm precision—the perfect size to integrate electronic components such as sensors and computer memory devices into clothing.

With this advance, the Ohio State University researchers have taken the next step toward the design of functional textiles—clothes that gather, store, or transmit digital information. With further development, the technology could lead to shirts that act as antennas for your smart phone or tablet, workout clothes that monitor your fitness level, sports equipment that monitors athletes’ performance, a bandage that tells your doctor how well the tissue beneath it is healing—or even a flexible fabric cap that senses activity in the brain.

That last item is one that John Volakis, director of the ElectroScience Laboratory at Ohio State, and research scientist Asimina Kiourti are investigating. The idea is to make brain implants, which are under development to treat conditions from epilepsy to addiction, more comfortable by eliminating the need for external wiring on the patient’s body.

An April 13, 2016 Ohio State University news release by Pam Frost Gorder, which originated the news item, expands on the theme (Note: Links have been removed),

“A revolution is happening in the textile industry,” said Volakis, who is also the Roy & Lois Chope Chair Professor of Electrical Engineering at Ohio State. “We believe that functional textiles are an enabling technology for communications and sensing—and one day even medical applications like imaging and health monitoring.”

Recently, he and Kiourti refined their patented fabrication method to create prototype wearables at a fraction of the cost and in half the time as they could only two years ago. With new patents pending, they published the new results in the journal IEEE Antennas and Wireless Propagation Letters.

In Volakis’ lab, the functional textiles, also called “e-textiles,” are created in part on a typical tabletop sewing machine—the kind that fabric artisans and hobbyists might have at home. Like other modern sewing machines, it embroiders thread into fabric automatically based on a pattern loaded via a computer file. The researchers substitute the thread with fine silver metal wires that, once embroidered, feel the same as traditional thread to the touch.

“We started with a technology that is very well known—machine embroidery—and we asked, how can we functionalize embroidered shapes? How do we make them transmit signals at useful frequencies, like for cell phones or health sensors?” Volakis said. “Now, for the first time, we’ve achieved the accuracy of printed metal circuit boards, so our new goal is to take advantage of the precision to incorporate receivers and other electronic components.”

The shape of the embroidery determines the frequency of operation of the antenna or circuit, explained Kiourti.

The shape of one broadband antenna, for instance, consists of more than half a dozen interlocking geometric shapes, each a little bigger than a fingernail, that form an intricate circle a few inches across. Each piece of the circle transmits energy at a different frequency, so that they cover a broad spectrum of energies when working together—hence the “broadband” capability of the antenna for cell phone and internet access.

“Shape determines function,” she said. “And you never really know what shape you will need from one application to the next. So we wanted to have a technology that could embroider any shape for any application.”

The researchers’ initial goal, Kiourti added, was just to increase the precision of the embroidery as much as possible, which necessitated working with fine silver wire. But that created a problem, in that fine wires couldn’t provide as much surface conductivity as thick wires. So they had to find a way to work the fine thread into embroidery densities and shapes that would boost the surface conductivity and, thus, the antenna/sensor performance.

Previously, the researchers had used silver-coated polymer thread with a 0.5-mm diameter, each thread made up of 600 even finer filaments twisted together. The new threads have a 0.1-mm diameter, made with only seven filaments. Each filament is copper at the center, enameled with pure silver.

They purchase the wire by the spool at a cost of 3 cents per foot; Kiourti estimated that embroidering a single broadband antenna like the one mentioned above consumes about 10 feet of thread, for a material cost of around 30 cents per antenna. That’s 24 times less expensive than when Volakis and Kiourti created similar antennas in 2014.

In part, the cost savings comes from using less thread per embroidery. The researchers previously had to stack the thicker thread in two layers, one on top of the other, to make the antenna carry a strong enough electrical signal. But by refining the technique that she and Volakis developed, Kiourti was able to create the new, high-precision antennas in only one embroidered layer of the finer thread. So now the process takes half the time: only about 15 minutes for the broadband antenna mentioned above.

She’s also incorporated some techniques common to microelectronics manufacturing to add parts to embroidered antennas and circuits.

One prototype antenna looks like a spiral and can be embroidered into clothing to improve cell phone signal reception. Another prototype, a stretchable antenna with an integrated RFID (radio-frequency identification) chip embedded in rubber, takes the applications for the technology beyond clothing. (The latter object was part of a study done for a tire manufacturer.)

Yet another circuit resembles the Ohio State Block “O” logo, with non-conductive scarlet and gray thread embroidered among the silver wires “to demonstrate that e-textiles can be both decorative and functional,” Kiourti said.

They may be decorative, but the embroidered antennas and circuits actually work. Tests showed that an embroidered spiral antenna measuring approximately six inches across transmitted signals at frequencies of 1 to 5 GHz with near-perfect efficiency. The performance suggests that the spiral would be well-suited to broadband internet and cellular communication.

In other words, the shirt on your back could help boost the reception of the smart phone or tablet that you’re holding – or send signals to your devices with health or athletic performance data.

The work fits well with Ohio State’s role as a founding partner of the Advanced Functional Fabrics of America Institute, a national manufacturing resource center for industry and government. The new institute, which joins some 50 universities and industrial partners, was announced earlier this month by U.S. Secretary of Defense Ashton Carter.

Syscom Advanced Materials in Columbus provided the threads used in Volakis and Kiourti’s initial work. The finer threads used in this study were purchased from Swiss manufacturer Elektrisola. The research is funded by the National Science Foundation, and Ohio State will license the technology for further development.

Until then, Volakis is making out a shopping list for the next phase of the project.

“We want a bigger sewing machine,” he said.

Here’s a link to and a citation for the paper,

Fabrication of Textile Antennas and Circuits With 0.1 mm Precision by A. Kiourti, C. Lee, and J. L. Volakis.  IEEE Antennas and Wireless Propagation Letters (Volume:15 ) Page(s): 151 – 153 ISSN : 1536-1225 INSPEC Accession Number: 15785288 DOI: 10.1109/LAWP.2015.2435257 Date of Publication: 20 May 2015 Issue Date: 2016

This paper is behind a paywall.