Tag Archives: US

Canada’s National Science and Technology Week (Oct. 17 – 26, 2014) followed by Transatlantic Science Week (Oct. 27 – 29, 2014)

Canada’s National Science and Technology Week (it’s actually 10 days) starts on today, Oct. 17, 2014 this year. You can find a listing of events across the country on the National Science and Technology Week Events List webpage (Note: I have reformatted the information I’ve excerpted from the page but all the details remain the same and links have been removed),


Medicine Hat     Praxis Annual Family Science Olympics     Medicine Hat High School Taylor Science Centre (enter on 5th street)     Saturday, October 18, 2014, 10:00 a.m. – 3:00 p.m.     Praxis will be hosting their annual Family Science Olympics. The day will consist of ten hands on science challenges that each family can participate in. If you complete eight of the ten, you will be entered into the draw for the grand prize of a remote control helicopter with a camera. Each “family” must have at least one person over the age of 18. The event is free and will have something for all ages.

British Columbia

Vancouver     First Responder’s weekend     Science World at TELUS World of Science     Saturday October 18 & Sunday October 19, 10am – 6pm both days     First responders are an important and integral part of every community. Join Vancouver firefighters, BC paramedics, Vancouver police, Ecomm 911 and the Canadian Border Services Agency as they showcase who our first responders are, what they do, the technology they use and the role that science plays in their work. Explore emergency technology inside and emergency response vehicles outside the building.


Dugald     Bees, Please     Springfield Public Library, Dugald, Manitoba     October 17, 22, and 24th for programs. We will have the display set up for the duration, from Oct 17-26th. 10 a.m to 8 p.m.     Preschool programs all week will feature stories and crafts on bees and their importance in the world. Kids in the Kitchen, menu selections will feature the use of honey all week. We will have displays of honey, bees and farming with local Ag. Society assistance.

New Brunswick

Dieppe     Tech Trek 2014     Dieppe Arts and Culture Centre     Saturday, October 25, 2014, 9 AM – 12 PM     Come join us for a morning filled with science and tech activities for children of all ages! Admission to this event is free!


Ottawa     Funfest     Booth Street Complex(Corner of Booth and Carling)     Sunday, October 19, 2014 – 11:00 am to 4:00 pm     Science Funfest is an open house event that takes place at Natural Resources Canada’s Booth Street Complex, at the corner of Carling Avenue and Booth Street in Ottawa. It’s a wonderful opportunity for children and anyone interested in science to engage in presentations and gain hands on science experience by participating in activities that will showcase the importance of science in a fun and interactive way. Last year’s event featured approximately 70 interactive exhibits on subjects ranging from ‘Slime’ to ‘Canada’s Forest Insects’.

Toronto     Science Literacy Week     Gerstein Science Information Centre, University of Toronto     September 22-28, 2014   [emphasis mine]  Science literacy week is a city wide effort to provide access to some of the best science communicators of all time.  Through book displays, links to online content, documentary screenings and lecture series, the aim is to showcase how captivating science really is.    The science literacy week’s goal is to give people the opportunity to marvel at the discoveries and developments of the last few centuries of scientific thought.


Sherbrooke     Conférence “La crystallographie : art, science et chocolat!” Par Alexis Reymbault     Musée de la nature et des sciences de Sherbrooke     October 22, 2014     French only.


Saskatoon     See the Light: Open House at the Canadian Light Source     Canadian Light Source, 44 Innovation Blvd.     Saturday, October 18, 2014, 9-11:30 am and 1-4 pm     Tour the synchrotron and talk with young researchers and see where and how they use the synchrotron to study disease. Advance registration required: http://fluidsurveys.usask.ca/s/CLS/

At this point, there seem to be fewer events than usual but that may be due to a problem the organizer (Canada’s Science and Technology Museums Corporation) has been dealing with since Sept. 11, 2014. That day, they had to close the country’s national Science and Technology Museum due to issues with airbourne mould (Sept. 11, 2014 news item on the Globe and Mail website). As for what Toronto’s Science Literacy Week 2014, which took place during September, is doing on a listing of October events is a mystery to me unless this is an attempt to raise awareness for the 2015 event mentioned on the Science Literacy Week 2014  webpage.

Transatlantic Science Week (Oct. 26 – 29, 2014), which is three days not a week, is being held in Toronto, Ontario and it extends (coincidentally or purposefully) Canada’s National Science and Technology Week (Oct. 17 – 26, 2014). Here’s more about Transatlantic Science Week from a UArctic (University of the Arctic) Sept. 12, 2014 blog posting (Note 1: UArctic announced the dates as Oct. 27 – 29, 2014 as opposed to the dates from the online registration website for the event; Note 2: Despite the error with the dates the information about the week is substantively the same as the info. on the registration webpage)

The Transatlantic Science Week is an annual trilateral science and innovation conference that promotes the collaboration between research, innovation, government, and business in Canada, the United States and Norway.  Held in Toronto, Canada, this year’s theme focuses on “The Arctic: Societies, Sustainability, and Safety”.

The Transatlantic Science Week 2014 will examine challenges and opportunities in the Arctic through three specialized tracks: (1) Arctic climate science, (2) Arctic safety and cross border knowledge, and (3) Arctic research-based industrial development and resource management. Business opportunities in the Arctic is an essential part of the program.

The evernt [sic] provides a unique arena to facilitate critical dialogue and initiate new collaboration between key players with specific Arctic knowledge.

You can find more information about the programme and other meeting details here but you can no longer register online, all new registrations will be done onsite during the meeting.

Replacing copper wire in motors?

Finnish researchers at Lappeenranta University of Technology (LUT) believe it may be possible to replace copper wire used in motors with spun carbon nanotubes. From an Oct. 15, 2014 news item on Azonano,

Lappeenranta University of Technology (LUT) introduces the first electrical motor applying carbon nanotube yarn. The material replaces copper wires in windings. The motor is a step towards lightweight, efficient electric drives. Its output power is 40 W and rotation speed 15000 rpm.

Aiming at upgrading the performance and energy efficiency of electrical machines, higher-conductivity wires are searched for windings. Here, the new technology may revolutionize the industry. The best carbon nanotubes (CNTs) demonstrate conductivities far beyond the best metals; CNT windings may have double the conductivity of copper windings.

”If we keep the design parameters unchanged only replacing copper with carbon nanotube yarns, the Joule losses in windings can be reduced to half of present machine losses. By lighter and more ecological CNT yarn, we can reduce machine dimensions and CO2 emissions in manufacturing and operation. Machines could also be run in higher temperatures,” says Professor Pyrhönen [Juha Pyrhönen], leading the prototype design at LUT.

An Oct. ??, 2014 (?) LUT press release, which originated the news item, further describes the work,

Traditionally, the windings in electrical machines are made of copper, which has the second best conductivity of metals at room temperature. Despite the high conductivity of copper, a large proportion of the electrical machine losses occur in the copper windings. For this reason, the Joule losses are often referred to as copper losses. The carbon nanotube yarn does not have a definite upper limit for conductivity (e.g. values of 100 MS/m have already been measured).

According to Pyrhönen, the electrical machines are so ubiquitous in everyday life that we often forget about their presence. In a single-family house alone there can be tens of electrical machines in various household appliances such as refrigerators, washing machines, hair dryers, and ventilators.

“In the industry, the number of electrical motors is enormous: there can be up to tens of thousands of motors in a single process industry unit. All these use copper in the windings. Consequently, finding a more efficient material to replace the copper conductors would lead to major changes in the industry,” tells Professor Pyrhönen.

There are big plans for this work according to the press release,

The prototype motor uses carbon nanotube yarns spun and converted into an isolated tape by a Japanese-Dutch company Teijin Aramid, which has developed the spinning technology in collaboration with Rice University, the USA. The industrial applications of the new material are still in their infancy; scaling up the production capacity together with improving the yarn performance will facilitate major steps in the future, believes Business Development Manager Dr. Marcin Otto from Teijin Aramid, agreeing with Professor Pyrhönen.

“There is a significant improvement potential in the electrical machines, but we are now facing the limits of material physics set by traditional winding materials. Superconductivity appears not to develop to such a level that it could, in general, be applied to electrical machines. Carbonic materials, however, seem to have a pole position: We expect that in the future, the conductivity of carbon nanotube yarns could be even three times the practical conductivity of copper in electrical machines. In addition, carbon is abundant while copper needs to be mined or recycled by heavy industrial processes.”

The researchers have produced this video about their research,

There’s a reference to some work done at Rice University (Texas, US) with Teijin Armid (Japanese-Dutch company) and Technion Institute (Israel) with spinning carbon nanotubes into threads that look like black cotton (you’ll see the threads in the video). It’s this work that has made the latest research in Finland possible. I have more about the the Rice/Teijin Armid/Technion CNT project in my Jan. 11, 2013 posting, Prima donna of nanomaterials (carbon nanotubes) tamed by scientists at Rice University (Texas, US), Teijin Armid (Dutch/Japanese company), and Technion Institute (based in Israel).

Silver nanoparticles: liquid on the outside, crystal on the inside

Research from the Massachusetts Institute of Technology (MIT) has revealed a new property of metal nanoparticles, in this case, silver. From an Oct. 12, 2014 news item on ScienceDaily,

A surprising phenomenon has been found in metal nanoparticles: They appear, from the outside, to be liquid droplets, wobbling and readily changing shape, while their interiors retain a perfectly stable crystal configuration.

The research team behind the finding, led by MIT professor Ju Li, says the work could have important implications for the design of components in nanotechnology, such as metal contacts for molecular electronic circuits.

The results, published in the journal Nature Materials, come from a combination of laboratory analysis and computer modeling, by an international team that included researchers in China, Japan, and Pittsburgh, as well as at MIT.

An Oct. 12, 2014 MIT news release (also on EurekAlert), which originated the news item, offers both more information about the research and a surprising comparison of nanometers to the width of a human hair,

The experiments were conducted at room temperature, with particles of pure silver less than 10 nanometers across — less than one-thousandth of the width of a human hair. [emphasis mine] But the results should apply to many different metals, says Li, senior author of the paper and the BEA Professor of Nuclear Science and Engineering.

Silver has a relatively high melting point — 962 degrees Celsius, or 1763 degrees Fahrenheit — so observation of any liquidlike behavior in its nanoparticles was “quite unexpected,” Li says. Hints of the new phenomenon had been seen in earlier work with tin, which has a much lower melting point, he says.

The use of nanoparticles in applications ranging from electronics to pharmaceuticals is a lively area of research; generally, Li says, these researchers “want to form shapes, and they want these shapes to be stable, in many cases over a period of years.” So the discovery of these deformations reveals a potentially serious barrier to many such applications: For example, if gold or silver nanoligaments are used in electronic circuits, these deformations could quickly cause electrical connections to fail.

It was a bit surprising to see the reference to 10 nanometers as being less than 1/1,000th (one/one thousandth) of the width of a human hair in a news release from MIT. Generally, a nanometer has been described as being anywhere from less than 1/50,000th to 1/120,000th of the width of a human hair with less than 1/100,000th being one of the most common descriptions. While it’s true that 10 nanometers is less than 1/1,000th of the width of a human hair, it seems a bit misleading when it could be described, in keeping with the more common description, as less than 1/10,000th.

Getting back to the research, the news release offers more details as to how it was conducted,

The researchers’ detailed imaging with a transmission electron microscope and atomistic modeling revealed that while the exterior of the metal nanoparticles appears to move like a liquid, only the outermost layers — one or two atoms thick — actually move at any given time. As these outer layers of atoms move across the surface and redeposit elsewhere, they give the impression of much greater movement — but inside each particle, the atoms stay perfectly lined up, like bricks in a wall.

“The interior is crystalline, so the only mobile atoms are the first one or two monolayers,” Li says. “Everywhere except the first two layers is crystalline.”

By contrast, if the droplets were to melt to a liquid state, the orderliness of the crystal structure would be eliminated entirely — like a wall tumbling into a heap of bricks.

Technically, the particles’ deformation is pseudoelastic, meaning that the material returns to its original shape after the stresses are removed — like a squeezed rubber ball — as opposed to plasticity, as in a deformable lump of clay that retains a new shape.

The phenomenon of plasticity by interfacial diffusion was first proposed by Robert L. Coble, a professor of ceramic engineering at MIT, and is known as “Coble creep.” “What we saw is aptly called Coble pseudoelasticity,” Li says.

Now that the phenomenon has been understood, researchers working on nanocircuits or other nanodevices can quite easily compensate for it, Li says. If the nanoparticles are protected by even a vanishingly thin layer of oxide, the liquidlike behavior is almost completely eliminated, making stable circuits possible.

There are some benefits to this insight (from the news release),

On the other hand, for some applications this phenomenon might be useful: For example, in circuits where electrical contacts need to withstand rotational reconfiguration, particles designed to maximize this effect might prove useful, using noble metals or a reducing atmosphere, where the formation of an oxide layer is destabilized, Li says.

The new finding flies in the face of expectations — in part, because of a well-understood relationship, in most materials, in which mechanical strength increases as size is reduced.

“In general, the smaller the size, the higher the strength,” Li says, but “at very small sizes, a material component can get very much weaker. The transition from ‘smaller is stronger’ to ‘smaller is much weaker’ can be very sharp.”

That crossover, he says, takes place at about 10 nanometers at room temperature — a size that microchip manufacturers are approaching as circuits shrink. When this threshold is reached, Li says, it causes “a very precipitous drop” in a nanocomponent’s strength.

The findings could also help explain a number of anomalous results seen in other research on small particles, Li says.

For more details about the various attempts to create smaller computer chips, you can read my July 11, 2014 posting about IBM and its proposed 7 nanometer chip where you will also find links to announcements and posts about Intel’s smaller chips and HP Labs’ attempt to recreate computers.

As for the research into liquid-like metallic (silver) nanoparticles, here’s a link to and a citation for the paper,

Liquid-like pseudoelasticity of sub-10-nm crystalline ​silver particle by Jun Sun, Longbing He, Yu-Chieh Lo, Tao Xu, Hengchang Bi, Litao Sun, Ze Zhang, Scott X. Mao, & Ju Li. Nature Materials (2014) doi:10.1038/nmat4105 Published online 12 October 2014

This paper is behind a paywall. There is a free preview via ReadCube Access.

Gold nanorods and mucus

Mucus can kill. Most of us are lucky enough to produce mucus appropriate for our bodies’ needs but people who have cystic fibrosis and other kinds of lung disease suffer greatly from mucus that is too thick to pass easily through the body. An Oct. 9, 2014 Optical Society of America (OSA) news release (also on EurekAlert) ‘shines’ a light on the topic of mucus and viscosity,

Some people might consider mucus an icky bodily secretion best left wrapped in a tissue, but to a group of researchers from the University of North Carolina at Chapel Hill, snot is an endlessly fascinating subject. The team has developed a way to use gold nanoparticles and light to measure the stickiness of the slimy substance that lines our airways.  The new method could help doctors better monitor and treat lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease.

“People who are suffering from certain lung diseases have thickened mucus,” explained Amy Oldenburg, a physicist at the University of North Carolina at Chapel Hill whose research focuses on biomedical imaging systems. “In healthy adults, hair-like cell appendages called cilia line the airways and pull mucus out of the lungs and into the throat. But if the mucus is too viscous it can become trapped in the lungs, making breathing more difficult and also failing to remove pathogens that can cause chronic infections.”

Doctors can prescribe mucus-thinning drugs, but have no good way to monitor how the drugs affect the viscosity of mucus at various spots inside the body. This is where Oldenburg and her colleagues’ work may help.

The researchers placed coated gold nanorods on the surface of mucus samples and then tracked the rods’ diffusion into the mucus by illuminating the samples with laser light and analyzing the way the light bounced off the nanoparticles. The slower the nanorods diffused, the thicker the mucus. The team found this imaging method worked even when the mucus was sliding over a layer of cells—an important finding since mucus inside the human body is usually in motion.

“The ability to monitor how well mucus-thinning treatments are working in real-time may allow us to determine better treatments and tailor them for the individual,” said Oldenburg.

It will likely take five to 10 more years before the team’s mucus measuring method is tested on human patients, Oldenburg said. Gold is non-toxic, but for safety reasons the researchers would want to ensure that the gold nanorods would eventually be cleared from a patient’s system.

“This is a great example of interdisciplinary work in which optical scientists can meet a specific need in the clinic,” said Nozomi Nishimura, of Cornell University … . “As these types of optical technologies continue to make their way into medical practice, it will both expand the market for the technology as well as improve patient care.”

The team is also working on several lines of ongoing study that will some day help bring their monitoring device to the clinic. They are developing delivery methods for the gold nanorods, studying how their imaging system might be adapted to enter a patient’s airways, and further investigating how mucus flow properties differ throughout the body.

This work is being presented at:

The research team will present their work at The Optical Society’s (OSA) 98th Annual Meeting, Frontiers in Optics, being held Oct. 19-23 [2014] in Tucson, Arizona, USA.

Presentation FTu5F.2, “Imaging Gold Nanorod Diffusion in Mucus Using Polarization Sensitive OCT,” takes place Tuesday, Oct. 21 at 4:15 p.m. MST [Mountain Standard Time] in the Tucson Ballroom, Salon A at the JW Marriott Tucson Starr Pass Resort.

People with cystic fibrosis tend to have short lives (from the US National Library of Medicine MedLine Plus webpage on cystic fibrosis),

Most children with cystic fibrosis stay in good health until they reach adulthood. They are able to take part in most activities and attend school. Many young adults with cystic fibrosis finish college or find jobs.

Lung disease eventually worsens to the point where the person is disabled. Today, the average life span for people with CF who live to adulthood is about 37 years.

Death is most often caused by lung complications.

I hope this work proves helpful.

Nanoparticle-based radiogenetics to control brain cells

While the title for this post sounds like an opening for a zombie-themed story, this Oct. 8, 2014 news item on Nanowerk actually concerns brain research at Rockefeller University (US), Note: A link has been removed,

A proposal to develop a new way to remotely control brain cells from Sarah Stanley, a Research Associate in Rockefeller University’s Laboratory of Molecular Genetics, headed by Jeffrey M. Friedman, is among the first to receive funding from the BRAIN initiative. The project will make use of a technique called radiogenetics that combines the use of radio waves or magnetic fields with nanoparticles to turn neurons on or off.

An Oct. 7, 2014 Rockefeller University news release, which originated the news item, further describes the BRAIN initiative and the research (Note: Links have been removed),

The NIH [National Institutes of Health]  is one of four federal agencies involved in the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative. Following in the ambitious footsteps of the Human Genome Project, the BRAIN initiative seeks to create a dynamic map of the brain in action, a goal that requires the development of new technologies. The BRAIN initiative working group, which outlined the broad scope of the ambitious project, was co-chaired by Rockefeller’s Cori Bargmann, head of the Laboratory of Neural Circuits and Behavior.

Stanley’s grant, for $1.26 million over three years, is one of 58 projects to get BRAIN grants, the NIH announced. The NIH’s plan for its part of this national project, which has been pitched as “America’s next moonshot,” calls for $4.5 billion in federal funds over 12 years.

The technology Stanley is developing would enable researchers to manipulate the activity of neurons, as well as other cell types, in freely moving animals in order to better understand what these cells do. Other techniques for controlling selected groups of neurons exist, but her new nanoparticle-based technique has a unique combination of features that may enable new types of experimentation. For instance, it would allow researchers to rapidly activate or silence neurons within a small area of the brain or dispersed across a larger region, including those in difficult-to-access locations. Stanley also plans to explore the potential this method has for use treating patients.

“Francis Collins, director of the NIH, has discussed the need for studying the circuitry of the brain, which is formed by interconnected neurons. Our remote-control technology may provide a tool with which researchers can ask new questions about the roles of complex circuits in regulating behavior,” Stanley says.

Here’s an image that Rockefeller University has used to illustrate the concept of radio-controlled brain cells,


BRAIN control: The new technology uses radio waves to activate or silence cells remotely. The bright spots above represent cells with increased calcium after treatment with radio waves, a change that would allow neurons to fire. [downloaded from: http://newswire.rockefeller.edu/2014/10/07/rockefeller-neurobiology-lab-is-awarded-first-round-brain-initiative-grant/]

BRAIN control: The new technology uses radio waves to activate or silence cells remotely. The bright spots above represent cells with increased calcium after treatment with radio waves, a change that would allow neurons to fire. [downloaded from: http://newswire.rockefeller.edu/2014/10/07/rockefeller-neurobiology-lab-is-awarded-first-round-brain-initiative-grant/]

You can find out more about the US BRAIN initiative here.

Nanotechnology for better treatment of eye conditions and a perspective on superhuman sight

There are three ‘eye’-related items in this piece, two of them concerning animal eyes and one concerning a camera-eye or the possibility of superhuman sight.

Earlier this week researchers at the University of Reading (UK) announced they have achieved a better understanding of how nanoparticles might be able to bypass some of the eye’s natural barriers in the hopes of making eye drops more effective in an Oct. 7, 2014 news item on Nanowerk,

Sufferers of eye disorders have new hope after researchers at the University of Reading discovered a potential way of making eye drops more effective.

Typically less than 5% of the medicine dose applied as drops actually penetrates the eye – the majority of the dose will be washed off the cornea by tear fluid and lost.

The team, led by Professor Vitaliy Khutoryanskiy, has developed novel nanoparticles that could attach to the cornea and resist the wash out effect for an extended period of time. If these nanoparticles are loaded with a drug, their longer attachment to the cornea will ensure more medicine penetrates the eye and improves drop treatment.

An Oct. 6, 2014 University of Reading press release, which originated the news item, provides more information about the hoped for impact of this work while providing few details about the research (Note: A link has been removed),

The research could also pave the way for new treatments of currently incurable eye-disorders such as Age-related Macular Degeneration (AMD) – the leading cause of visual impairment with around 500,000 sufferers in the UK.

There is currently no cure for this condition but experts believe the progression of AMD could be slowed considerably using injections of medicines into the eye. However, eye-drops with drug-loaded nanoparticles could be a potentially more effective and desirable course of treatment.

Professor Vitaliy Khutoryanskiy, from the University of Reading’s School of Pharmacy, said: “Treating eye disorders is a challenging task. Our corneas allow us to see and serve as a barrier that protects our eyes from microbial and chemical intervention. Unfortunately this barrier hinders the effectiveness of eye drops. Many medicines administered to the eye are inefficient as they often cannot penetrate the cornea barrier. Only the very small molecules in eye drops can penetrate healthy cornea.

“Many recent breakthroughs to treat eye conditions involve the use of drugs incorporated into nano-containers; their role being to promote drug penetration into the eye.  However the factors affecting this penetration remain poorly understood. Our research also showed that penetration of small drug molecules could be improved by adding enhancers such as cyclodextrins. This means eye drops have the potential to be a more effective, and a more comfortable, future treatment for disorders such as AMD.”

The finding is one of a number of important discoveries highlighted in a paper published today in the journal Molecular Pharmaceutics. The researchers revealed fascinating insights into how the structure of the cornea prevents various small and large molecules, as well as nanoparticles, from entering into the eye. They also examined the effects any damage to the eye would have in allowing these materials to enter the body.

Professor Khutoryanskiy continued: “There is increasing concern about the safety of environmental contaminants, pollutants and nanoparticles and their potential impacts on human health. We tested nanoparticles whose sizes ranged between 21 – 69 nm, similar to the size of viruses such as polio, or similar to airborn particles originating from building industry and found that they could not penetrate healthy and intact cornea irrespective of their chemical nature.

“However if the top layer of the cornea is damaged, either after surgical operation or accidentally, then the eye’s natural defence may be compromised and it becomes susceptible to viral attack which could result in eye infections.

“The results show that our eyes are well-equipped to defend us against potential airborne threats that exist in a fast-developing industrialised world. However we need to be aware of the potential complications that may arise if the cornea is damaged, and not treated quickly and effectively.”

Here’s a link to and a citation for the paper,

On the Barrier Properties of the Cornea: A Microscopy Study of the Penetration of Fluorescently Labeled Nanoparticles, Polymers, and Sodium Fluorescein by Ellina A. Mun, Peter W. J. Morrison, Adrian C. Williams, and Vitaliy V. Khutoryanskiy. Mol. Pharmaceutics, 2014, 11 (10), pp 3556–3564 DOI: 10.1021/mp500332m Publication Date (Web): August 28, 2014

Copyright © 2014 American Chemical Society

There’s a little more information to be had in the paper’s abstract, which is, as these things go, is relatively accessible,

[downloaded from http://pubs.acs.org/doi/abs/10.1021/mp500332m]

[downloaded from http://pubs.acs.org/doi/abs/10.1021/mp500332m]

Overcoming the natural defensive barrier functions of the eye remains one of the greatest challenges of ocular drug delivery. Cornea is a chemical and mechanical barrier preventing the passage of any foreign bodies including drugs into the eye, but the factors limiting penetration of permeants and nanoparticulate drug delivery systems through the cornea are still not fully understood. In this study, we investigate these barrier properties of the cornea using thiolated and PEGylated (750 and 5000 Da) nanoparticles, sodium fluorescein, and two linear polymers (dextran and polyethylene glycol). Experiments used intact bovine cornea in addition to bovine cornea de-epithelialized or tissues pretreated with cyclodextrin. It was shown that corneal epithelium is the major barrier for permeation; pretreatment of the cornea with β-cyclodextrin provides higher permeation of low molecular weight compounds, such as sodium fluorescein, but does not enhance penetration of nanoparticles and larger molecules. Studying penetration of thiolated and PEGylated (750 and 5000 Da) nanoparticles into the de-epithelialized ocular tissue revealed that interactions between corneal surface and thiol groups of nanoparticles were more significant determinants of penetration than particle size (for the sizes used here). PEGylation with polyethylene glycol of a higher molecular weight (5000 Da) allows penetration of nanoparticles into the stroma, which proceeds gradually, after an initial 1 h lag phase.

The paper is behind a paywall. No mention is made in the abstract or in the press release as to how the bovine (ox, cow, or buffalo) eyes were obtained but I gather these body parts are often harvested from animals that have been previously slaughtered for food.

This next item also concerns research about eye drops but this time the work comes from the University of Waterloo (Ontario, Canada). From an Oct. 8, 2014 news item on Azonano,

For the millions of sufferers of dry eye syndrome, their only recourse to easing the painful condition is to use drug-laced eye drops three times a day. Now, researchers from the University of Waterloo have developed a topical solution containing nanoparticles that will combat dry eye syndrome with only one application a week.

An Oct. 8, 2014 University of Waterloo news release (also on EurekAlert), which originated the news item, describes the results of the work without providing much detail about the nanoparticles used to deliver the treatment via eye drops,

The eye drops progressively deliver the right amount of drug-infused nanoparticles to the surface of the eyeball over a period of five days before the body absorbs them.  One weekly dose replaces 15 or more to treat the pain and irritation of dry eyes.

The nanoparticles, about 1/1000th the width of a human hair, stick harmlessly to the eye’s surface and use only five per cent of the drug normally required.

“You can’t tell the difference between these nanoparticle eye drops and water,” said Shengyan (Sandy) Liu, a PhD candidate at Waterloo’s Faculty of Engineering, who led the team of researchers from the Department of Chemical Engineering and the Centre for Contact Lens Research. “There’s no irritation to the eye.”

Dry eye syndrome is a more common ailment for people over the age of 50 and may eventually lead to eye damage. More than six per cent of people in the U.S. have it. Currently, patients must frequently apply the medicine three times a day because of the eye’s ability to self-cleanse—a process that washes away 95 per cent of the drug.

“I knew that if we focused on infusing biocompatible nanoparticles with Cyclosporine A, the drug in the eye drops, and make them stick to the eyeball without irritation for longer periods of time, it would also save patients time and reduce the possibility of toxic exposure due to excessive use of eye drops,” said Liu.

The research team is now focusing on preparing the nanoparticle eye drops for clinical trials with the hope that this nanoparticle therapy could reach the shelves of drugstores within five years.

Here’s a link to and a citation for the paper,

Phenylboronic acid modified mucoadhesive nanoparticle drug carriers facilitate weekly treatment of experimentallyinduced dry eye syndrome by Shengyan Liu, Chu Ning Chang, Mohit S. Verma, Denise Hileeto, Alex Muntz, Ulrike Stahl, Jill Woods, Lyndon W. Jones, and Frank X. Gu. Nano Research (October 2014) DOI: 10.1007/s12274-014-0547-3

This paper is behind a paywall. There is a partial preview available for free. As per the paper’s abstract, research was performed on healthy rabbit eyes.

The last ‘sight’ item I’m featuring here comes from the Massachusetts Institute of Technology (MIT) and does not appear to have been occasioned by the publication of a research paper or some other event. From an Oct. 7, 2014 news item on Azonano,

All through his childhood, Ramesh Raskar wished fervently for eyes in the back of his head. “I had the notion that the world did not exist if I wasn’t looking at it, so I would constantly turn around to see if it was there behind me.” Although this head-spinning habit faded during his teen years, Raskar never lost the desire to possess the widest possible field of vision.

Today, as director of the Camera Culture research group and associate professor of Media Arts and Sciences at the MIT Media Lab, Raskar is realizing his childhood fantasy, and then some. His inventions include a nanocamera that operates at the speed of light and do-it-yourself tools for medical imaging. His scientific mission? “I want to create not just a new kind of vision, but superhuman vision,” Raskar says.

An Oct. 6, 2014 MIT news release, which originated the news item, provides more information about Raskar and his research,

He avoids research projects launched with a goal in mind, “because then you only come up with the same solutions as everyone else.” Discoveries tend to cascade from one area into another. For instance, Raskar’s novel computational methods for reducing motion blur in photography suggested new techniques for analyzing how light propagates. “We do matchmaking; what we do here can be used over there,” says Raskar.

Inspired by the famous microflash photograph of a bullet piercing an apple, created in 1964 by MIT professor and inventor Harold “Doc” Edgerton, Raskar realized, “I can do Edgerton millions of times faster.” This led to one of the Camera Culture group’s breakthrough inventions, femtophotography, a process for recording light in flight.

Manipulating photons into a packet resembling Edgerton’s bullet, Raskar and his team were able to “shoot” ultrashort laser pulses through a Coke bottle. Using a special camera to capture the action of these pulses at half a trillion frames per second with two-trillionths of a second exposure times, they captured moving images of light, complete with wave-like shadows lapping at the exterior of the bottle.

Femtophotography opened up additional avenues of inquiry, as Raskar pondered what other features of the world superfast imaging processes might reveal. He was particularly intrigued by scattered light, the kind in evidence when fog creates the visual equivalent of “noise.”

In one experiment, Raskar’s team concealed an object behind a wall, out of camera view. By firing super-short laser bursts onto a surface nearby, and taking millions of exposures of light bouncing like a pinball around the scene, the group rendered a picture of the hidden object. They had effectively created a camera that peers around corners, an invention that might someday help emergency responders safely investigate a dangerous environment.

Raskar’s objective of “making the invisible visible” extends as well to the human body. The Camera Culture group has developed a technique for taking pictures of the eye using cellphone attachments, spawning inexpensive, patient-managed vision and disease diagnostics. Conventional photography has evolved from time-consuming film development to instantaneous digital snaps, and Raskar believes “the same thing will happen to medical imaging.” His research group intends “to break all the rules and be at the forefront. I think we’ll get there in the next few years,” he says.

Ultimately, Raskar predicts, imaging will serve as a catalyst of transformation in all dimensions of human life — change that can’t come soon enough for him. “I hate ordinary cameras,” he says. “They record only what I see. I want a camera that gives me a superhuman perspective.”

Following the link to the MIT news release will lead you to more information about Raskar and his work. You can also see and hear Raskar talk about his femtophotography in a 2012 TEDGlobal talk here.

Nanoscopy and a 2014 Nobel Prize for Chemistry

An Oct. 8, 2014 news item on Nanowerk features the 2014 Nobel Prize in Chemistry honourees,

 For a long time optical microscopy was held back by a presumed limitation: that it would never obtain a better resolution than half the wavelength of light. Helped by fluorescent molecules the Nobel Laureates in Chemistry 2014 ingeniously circumvented this limitation.

Their ground-breaking work has brought optical microscopy into the nanodimension.
In what has become known as nanoscopy, scientists visualize the pathways of individual molecules inside living cells. They can see how molecules create synapses between nerve cells in the brain; they can track proteins involved in Parkinson’s, Alzheimer’s and Huntington’s diseases as they aggregate; they follow individual proteins in fertilized eggs as these divide into embryos.

An Oct, 8, 2014 Royal Swedish Academy of Science press release, which originated the news item, expands on the ‘groundbreaking’ theme,

It was all but obvious that scientists should ever be able to study living cells in the tiniest molecular detail. In 1873, the microscopist Ernst Abbe stipulated a physical limit for the maximum resolution of traditional optical microscopy: it could never become better than 0.2 micrometres. Eric Betzig, Stefan W. Hell and William E. Moerner are awarded the Nobel Prize in Chemistry 2014 for having bypassed this limit. Due to their achievements the optical microscope can now peer into the nanoworld.

Two separate principles are rewarded. One enables the method stimulated emission depletion (STED) microscopy, developed by Stefan Hell in 2000. Two laser beams are utilized; one stimulates fluorescent molecules to glow, another cancels out all fluorescence except for that in a nanometre-sized volume. Scanning over the sample, nanometre for nanometre, yields an image with a resolution better than Abbe’s stipulated limit.

Eric Betzig and William Moerner, working separately, laid the foundation for the second method, single-molecule microscopy. The method relies upon the possibility to turn the fluorescence of individual molecules on and off. Scientists image the same area multiple times, letting just a few interspersed molecules glow each time. Superimposing these images yields a dense super-image resolved at the nanolevel. In 2006 Eric Betzig utilized this method for the first time.

Today, nanoscopy is used world-wide and new knowledge of greatest benefit to mankind is produced on a daily basis.

Here’s an image illustrating different microscopy resolutions including one featuring single-molecule microscopy,

The centre image shows lysosome membranes and is one of the first ones taken by Betzig using single-molecule microscopy. To the left, the same image taken using conventional microscopy. To the right, the image of the membranes has been enlarged. Note the scale division of 0.2 micrometres, equivalent to Abbe’s diffraction limit. Image: Science 313:1642–1645. [downloaded from http://www.kva.se/en/pressroom/Press-releases-2014/nobelpriset-i-kemi-2014/]

The centre image shows lysosome membranes and is one of the first ones taken by Betzig using single-molecule microscopy. To the left, the same image taken using conventional microscopy. To the right, the image of the membranes has been enlarged. Note the scale division of 0.2 micrometres, equivalent to Abbe’s diffraction limit. Image: Science 313:1642–1645. [downloaded from http://www.kva.se/en/pressroom/Press-releases-2014/nobelpriset-i-kemi-2014/]

The press release goes on to provide some biographical details about the three honourees and information about the financial size of the award,

Eric Betzig, U.S. citizen. Born 1960 in Ann Arbor, MI, USA. Ph.D. 1988 from Cornell University, Ithaca, NY, USA. Group Leader at Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.

Stefan W. Hell, German citizen. Born 1962 in Arad, Romania. Ph.D. 1990 from the University of Heidelberg, Germany. Director at the Max Planck Institute for Biophysical Chemistry, Göttingen, and Division head at the German Cancer Research Center, Heidelberg, Germany.

William E. Moerner, U.S. citizen. Born 1953 in Pleasanton, CA, USA. Ph.D. 1982 from Cornell University, Ithaca, NY, USA. Harry S. Mosher Professor in Chemistry and Professor, by courtesy, of Applied Physics at Stanford University, Stanford, CA, USA.

Prize amount: SEK 8 million, to be shared equally between the Laureates.

The amount is in Swedish Krona. In USD, it is approximately $1.1M; in CAD, it is approximately $1.2M; and, in pounds sterling (British pounds), it is approximately £689,780.

Congratulations to all three gentlemen!

ETA Oct. 14, 2014: Azonano features an Oct. 14, 2014 news item from the UK’s National Physical Laboratory (NPL)  congratulating the three recipients of the 2014 Nobel Prize for Chemistry. The item also features a description of the recipients’ groundbreaking work along with an update on how this pioneering work has influenced and inspired further research in the field of nanoscopy at the NPL.

Carbon nanotube accumulation in Duke University’s (US) mesocosm

This Oct. 1, 2014 news item on ScienceDaily about carbon nanotubes accumulating in the wetlands is carefully worded,

A Duke University team has found that nanoparticles called single-walled carbon nanotubes accumulate quickly in the bottom sediments of an experimental wetland setting, an action they say could indirectly damage the aquatic food chain. [emphasis mine]

The results indicate little risk to humans ingesting the particles through drinking water, say scientists at Duke’s Center for the Environmental Implications of Nanotechnology (CEINT). But the researchers warn that, based on their previous research, the tendency for the nanotubes to accumulate in sediment could indirectly damage the aquatic food chain in the long term if the nanoparticles provide “Trojan horse” piggyback rides to other harmful molecules. [emphases mine]

There’s a lot of hedging (could, if) in the way this research is being described. I imagine the researchers are indicating they have concerns but have no wish to stimulate panic and worry.

An Oct. 1, 2014 Duke University news release (also on EurekAlert), which originated the news item, goes on to explain the interest in carbon nanotubes specifically,

Carbon nanotubes are rapidly becoming more common because of their usefulness in nanoelectric devices, composite materials and biomedicine.

The Duke study was done using small-scale replications of a wetland environment, called “mesocosms,” that include soil, sediments, microbes, insects, plants and fish. These ecosystems-in-a-box are “semi-closed,” meaning they get fresh air and rainwater but don’t drain to their surroundings. While not perfect representations of a natural environment, mesocosms provide a reasonable compromise between the laboratory and the real world.

“The wetland mesocosms we used are a much closer approximation of the natural processes constantly churning in the environment,” said Lee Ferguson, associate professor of civil and environmental engineering at Duke. “Although it’s impossible to know if our results are fully accurate to natural ecosystems, it is clear that the processes we’ve seen should be considered by regulators and manufacturers.”

Ferguson and his colleagues dosed the mesocosms with single-walled carbon nanotubes and measured their concentrations in the water, soil and living organisms during the course of a year. They found that the vast majority of the nanoparticles quickly accumulated in the sediment on the “pond” floor. However, they found no sign of nanoparticle buildup in any plants, insects or fish living in the mesocosms.

That sounds marvelous and then the researchers provide a few facts about carbon nanotubes,

While this is good news for humans or other animals drinking water after a potential spill or other contamination event, the accumulation in sediment does pose concerns for both sediment-dwelling organisms and the animals that eat them. Previous research has shown that carbon nanotubes take a long time to degrade through natural processes — if they do at all — and any chemical that binds to them cannot easily be degraded either.

“These nanoparticles are really good at latching onto other molecules, including many known organic contaminants,” said Ferguson. “Coupled with their quick accumulation in sediment, this may allow problematic chemicals to linger instead of degrading. The nanoparticle-pollutant package could then be eaten by sediment-dwelling organisms in a sort of ‘Trojan horse’ effect, allowing the adsorbed contaminants to accumulate up the food chain.

“The big question is whether or not these pollutants can be stripped away from the carbon nanotubes by these animals’ digestive systems after being ingested,” continued Ferguson. “That’s a question we’re working to answer now.”

It’s good to see this research is being followed up so quickly. I will keep an eye out for it and, in the meantime, wonder how the followup research will be conducted and what animals will be used for the tests.

Here’s a link to and a citation for the researchers’ most recent paper on possible ‘Trojan’ carbon nanotubes,

Fate of single walled carbon nanotubes in wetland ecosystems by Ariette Schierz, Benjamin Espinasse, Mark R. Wiesner, Joseph H. Bisesi, Tara Sabo-Attwood, and P. Lee Ferguson. Environ. Sci.: Nano, 2014, Advance Article DOI: 10.1039/C4EN00063C First published online 03 Sep 2014

This is an open access paper.

I have written about Duke University and its nanoparticle research in mesocosms before. Most recently, there was a Feb. 28, 2013 posting about work on silver nanoparticles which mentions research in the ‘mesocosm’ (scroll down about 50% of the way). There’s also an Aug. 15, 2011 posting which describes the ‘mesocosm’ project at some length.

For anyone unfamiliar with the Trojan horse story (from its Wikipedia entry; Note: Links have been removed),

The Trojan Horse is a tale from the Trojan War about the subterfuge that the Greeks used to enter the city of Troy and win the war. In the canonical version, after a fruitless 10-year siege, the Greeks constructed a huge wooden horse, and hid a select force of men inside. The Greeks pretended to sail away, and the Trojans pulled the horse into their city as a victory trophy. That night the Greek force crept out of the horse and opened the gates for the rest of the Greek army, which had sailed back under cover of night. The Greeks entered and destroyed the city of Troy, decisively ending the war.

Wonders of curcumin: wound healing; wonders of aromatic-turmerone: stem cells

Both curcumin and turmerone are constituents of turmeric which has been long lauded for its healing properties. Michael Berger has written a Nanowerk Spotlight article featuring curcumin and some recent work on burn wound healing. Meanwhile, a ScienceDaily news item details information about a team of researchers focused on tumerone as a means for regenerating brain stem cells.

Curcumin and burn wounds

In a Sept. 22, 2014 Nanowerk Spotlight article Michael Berger sums up the curcumin research effort (referencing some of this previous articles on the topic) in light of a new research paper about burn wound healing (Note: Links have been removed),

Despite significant progress in medical treatments of severe burn wounds, infection and subsequent sepsis persist as frequent causes of morbidity and mortality for burn victims. This is due not only to the extensive compromise of the protective barrier against microbial invasion, but also as a result of growing pathogen resistance to therapeutic options.

… Dr Adam Friedman, Assistant Professor of Dermatology and Director of Dermatologic research at the Montefiore-Albert Einstein College of Medicine, tells Nanowerk. “For me, this gap fuels innovation, serving as the inspiration for my research with broad-spectrum, multi-mechanistic antimicrobial nanomaterials.”

In new work, Friedman and a team of researchers from Albert Einstein College of Medicine and Oregon State University have explored the use of curcumin nanoparticles for the treatment of infected burn wounds, an application that resulted in reduced bacterial load and enhancing wound healing.

It certainly seems promising as per the article abstract,

Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent by Aimee E. Krausz, Brandon L. Adler, Vitor Cabral, Mahantesh Navati, Jessica Doerner, Rabab Charafeddine, Dinesh Chandra, Hongying Liang, Leslie Gunther, Alicea Clendaniel, Stacey Harper, Joel M. Friedman, Joshua D. Nosanchuk, & Adam J. Friedman. Nanomedicine: Nanotechnology, Biology and Medicine (article in press) published online 19 September 2014.http://www.nanomedjournal.com/article/S1549-9634%2814%2900527-9/abstract Uncorrected Proof

Burn wounds are often complicated by bacterial infection, contributing to morbidity and mortality. Agents commonly used to treat burn wound infection are limited by toxicity, incomplete microbial coverage, inadequate penetration, and rising resistance. Curcumin is a naturally derived substance with innate antimicrobial and wound healing properties. Acting by multiple mechanisms, curcumin is less likely than current antibiotics to select for resistant bacteria.

Curcumin’s poor aqueous solubility and rapid degradation profile hinder usage; nanoparticle encapsulation overcomes this pitfall and enables extended topical delivery of curcumin.

In this study, we synthesized and characterized curcumin nanoparticles (curc-np), which inhibited in vitro growth of methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa in dose-dependent fashion, and inhibited MRSA growth and enhanced wound healing in an in vivo murine wound model. Curc-np may represent a novel topical antimicrobial and wound healing adjuvant for infected burn wounds and other cutaneous injuries.

Two things: This paper is behind a paywall and note the use of the term ‘in vivo’ which means they have tested on animals such as rats and mice for example, but not humans. Nonetheless, it seems a promising avenue for further exploration.

Interestingly, there was an attempt in 1995 to patent turmeric for use in wound healing as per my Dec. 26, 2011 posting which featured then current research on turmeric,

There has already been one court case regarding a curcumin patent,

Recently, turmeric came into the global limelight when the controversial patent “Use of Turmeric in Wound Healing” was awarded, in 1995, to the University of Mississippi Medical Center, USA. Indian Council of Scientific and Industrial Research (CSIR) aggressively contested this award of the patent. It was argued by them that turmeric has been an integral part of the traditional Indian medicinal system over several centuries, and therefore, is deemed to be ‘prior art’, hence is in the public domain. Subsequently, after protracted technical/legal battle USPTO decreed that turmeric is an Indian discovery and revoked the patent.

One last bit about curcumin, my April 22, 2014 posting featured work in Iran using curcumin for cancer-healing.


This excerpt from a Sept. 25, 2014, news item in ScienceDaily represents the first time that tumerone has been mentioned here,

A bioactive compound found in turmeric promotes stem cell proliferation and differentiation in the brain, reveals new research published today in the open access journal Stem Cell Research & Therapy. The findings suggest aromatic turmerone could be a future drug candidate for treating neurological disorders, such as stroke and Alzheimer’s disease.

A Sept. 25, 2014 news release on EurekAlert provides more information,

The study looked at the effects of aromatic (ar-) turmerone on endogenous neutral stem cells (NSC), which are stem cells found within adult brains. NSC differentiate into neurons, and play an important role in self-repair and recovery of brain function in neurodegenerative diseases. Previous studies of ar-turmerone have shown that the compound can block activation of microglia cells. When activated, these cells cause neuroinflammation, which is associated with different neurological disorders. However, ar-turmerone’s impact on the brain’s capacity to self-repair was unknown.

Researchers from the Institute of Neuroscience and Medicine in Jülich, Germany, studied the effects of ar-turmerone on NSC proliferation and differentiation both in vitro and in vivo. Rat fetal NSC were cultured and grown in six different concentrations of ar-turmerone over a 72 hour period. At certain concentrations, ar-turmerone was shown to increase NSC proliferation by up to 80%, without having any impact on cell death. The cell differentiation process also accelerated in ar-turmerone-treated cells compared to untreated control cells.

To test the effects of ar-turmerone on NSC in vivo, the researchers injected adult rats with ar-turmerone. Using PET imaging and a tracer to detect proliferating cells, they found that the subventricular zone (SVZ) was wider, and the hippocampus expanded, in the brains of rats injected with ar-turmerone than in control animals. The SVZ and hippocampus are the two sites in adult mammalian brains where neurogenesis, the growth of neurons, is known to occur.

Lead author of the study, Adele Rueger, said: “While several substances have been described to promote stem cell proliferation in the brain, fewer drugs additionally promote the differentiation of stem cells into neurons, which constitutes a major goal in regenerative medicine. Our findings on aromatic turmerone take us one step closer to achieving this goal.”

Ar-turmerone is the lesser-studied of two major bioactive compounds found in turmeric. The other compound is curcumin, which is well known for its anti-inflammatory and neuroprotective properties

Here’s a link to and a citation for the paper,

Aromatic-turmerone induces neural stem cell proliferation in vitro and in vivo by Joerg Hucklenbroich, Rebecca Klein, Bernd Neumaier, Rudolf Graf, Gereon Rudolf Fink, Michael Schroeter, and Maria Adele Rueger. Stem Cell Research & Therapy 2014, 5:100  doi:10.1186/scrt500

This is an open access paper.

Keeping your chef’s jackets clean and a prize for Teijin Aramid/Rice University

Australian start-up company, Fabricor Workwear launched a Kickstarter campaign on Sept. 18, 2014 to raise funds for a stain-proof and water-repellent chef’s jacket according to a Sept. 25, 2014 news item on Azonano,

An Australian startup is using a patented nanotechnology to create ‘hydrophobic’ chef jackets and aprons. Fabricor says this means uniforms that stay clean for longer, and saving time and money.

The company was started because cofounder and MasterChef mentor Adrian Li, was frustrated with keeping his chef jackets and aprons clean.

“As a chef I find it really difficult to keep my chef jacket white, and we like our jackets white,” Li said. …

The nanotechnology application works by modifying the fabric at a molecular level by permanently attaching hydrophobic ‘whiskers’ to individual fibres which elevate liquids, causing them to bead up and roll off.

The Fabricor: Stain-proof workwear for the hospitality industry Kickstarter campaign has this to say on its homepage (Note: Links have been removed),

Hi Kickstarters,

Thanks for taking the time check out our campaign.

Traditional chef jackets date back to the mid 19th century and since then haven’t changed much.

We’re tired of poor quality hospitality workwear that doesn’t last and hate spending our spare time and money washing or replacing our uniforms.

So we designed a range of stain-resistant Chef Jackets and Aprons using the world’s leading patented hydrophobic nanotechnology that repels water, dirt and oil.

Most stains either run off by themselves or can easily be rinsed off with a little water. This means they don’t need to be washed as often saving you time and money.

We’re really proud of what we’ve created and we hope you you’ll support us.

Adrian Li

Head Chef at Saigon Sally
Mentor on MasterChef Australia – Asian Street Food Challenge
Cofounder at Fabricor Workwear

At this point (Sept. 24, 2014), the campaign has raised approximately $2700US towards a $5000US goal and there are 22 days left to the campaign.

I did find more information at the Fabricor Workwear website in this Sept. 13, 2014 press release,

The fabric’s patented technology can extend the life of the apparel is because the apparel doesn’t have to be washed as often and can be washed in cooler temperatures, the company stated.

Fabricor’s products are not made with spray-application like many on the market which can destroy fabrics and contain carcinogenic chemical. Its hydrophobic properties are embedded into the weave during the production of the fabric.

Li said chefs spend too much money on chef jackets that are poorly designed and don’t last. The long-lasting fabric in Fabricor’s chef’s apparel retains its natural softness and breathability.

It seems to me that the claim about fewer washes can be made for all superhydrophobic textiles. As for carcinogenic chemicals in other superhydrophobic textiles, it’s the first I’ve heard of it, which may or may not be significant. I.e., I look at a lot of material but don’t focus on superhydrophobic textiles here and do not seek out research on risks specific to these textiles.

Teijin Aramid/Rice University

Still talking about textile fibres but on a completely different track, I received a news release this morning (Sept. 25, 2014) from Teijin Aramid about carbon nanotubes and fibres,

Researchers of Teijin Aramid, based in the Netherlands, and Rice University in the USA are awarded with the honorary ‘Paul Schlack Man-Made Fibers Prize’ for corporate-academic partnerships in fiber research. Their new super fibers are now driving innovation in aerospace, healthcare, automotive, and (smart) clothing.

The honorary Paul Schlack prize was granted by the European Man-made Fibers Association to Dr. Marcin Otto, Business Development Manager at Teijin Aramid and Prof. Dr. Matteo Pasquali from Rice University Texas, for the development of a new generation super fibers using carbon nanotubes (CNT). The new super fibers combine high thermal and electrical conductivity, as seen in metals, with the flexibility, robust handling and strength of textile fibers.

“The introduction of carbon nanotube fibers marked the beginning of a series of innovations in various industries”, says Marcin Otto, Business Development Manager at Teijin Aramid. “For example, CNT fibers can be lifesaving for heart patients: one string of CNT fiber in the cardiac muscle suffices to transmit vital electrical pulses to the heart. Or by replacing copper in data cables and light power cables by CNT fibers it’s possible to make satellites, aircraft and high end cars lighter and more robust at the same time.”

Since 1971, the Paul Schlack foundation annually grants one monetary prize to an individual young researcher for outstanding research in the field of fiber research, and an honorary prize to the leader(s) of excellent academic and corporate research partnerships to promote research at universities and research institutes.

For several years, leading researchers at Rice University and Teijin Aramid worked together on the development of CNT production. Teijin Aramid and Rice University published their research findings on carbon nanotubes fibers in the leading scientific journal, Science, beginning of 2013.

Teijin Aramid and some of its carbon nanotube projects have been mentioned here before, notably, in a Jan. 11, 2013 posting and in a Feb. 17, 2014.

Good luck on the Kickstarter campaign and congratulations on the award!