Tag Archives: US Centers for Disease Control

Opioid addiction and nanotechnology in Pennsylvania, US

Combating a drug addiction ‘crisis’ with a nanotechnology-enabled solution is the main topic although the technology is being implemented for another problem first according to this May 4, 2016 article by John Luciew for pennlive.com (Note: Links have been removed),

Treating pain is a constant in medicine. It’s part of the human condition, known as the “fifth vital sign” among physicians. Effectively treating pain will continue to play a central role in medicine, despite the societal shock waves brought on by the rapid rise in opioid addiction across America.

The fallout from our nation’s opioid addiction crisis is roiling the medical and pharmaceutical industries, where regulatory action is rapidly reining in opioid painkiller prescriptions with new guidelines and stricter controls.

By harnessing nanotechnology and small-particles physics, Iroko Pharmaceuticals is developing a new class of low-dose prescription painkillers. Company executives say their line of nonsteroidal anti-inflammatory drugs could be the opioid alternative that the medical community has been looking for amid America’s addiction crisis.

The pharmaceutical company is Pennsylvania-based (US) and it isn’t tackling the ‘opioid addiction crisis’ yet. First, there’s this,

Its new line of prescription painkillers are predicated upon a highly patented process of pulverizing drug molecules so they are up to 100 times smaller, which markedly increases their pain-killing effectiveness at dramatically lower doses.

Right now, Iroko is focusing this nanotechnology on creating a full line of low-dose prescription painkillers based upon the class of drugs known as nonsteroidal anti-inflammatories, or NSAIDs. There are six NSAID molecules, the most common being Ibuprofen. Iroko is planning nanotechnology technology versions for all six NSAID molecules, three of which have already received approval from the Food and Drug Administration.

Luciew has done some homework on the technology,

“We solved a chemistry problem by using physics,” explained Iroko Chairman Osagie Imasogie, who founded the company [Iroko Pharmaceuticals] in 2007.

Yet, the company that actually solved the physics problem was iCeutica, founded in Australia and now based in King of Prussia, Pa.

iCeutica owns the patented SoluMatrix fine particle process that pulverizes drug molecules into nano-sized particles, enabling low doses of a drug to be better absorbed by the body, thus providing faster and far more effective pain relief.

Of course, the practice of crushing and grinding drug powders is as old as the pharmacist’s mortar and pestle. But there’s never been a way of pulverizing a drug molecule into nano particles that was scalable for industrial production — not until iCeutica created its SoluMatrix process, that is.

iCeutica provides a description of the technology on its SoluMatrix webpage,

iCeutica’s proprietary SoluMatrix™ Fine Particle Technology fuels new product development and solves problems of bioavailability, variability, side effects and delivery of marketed or development-stage pharmaceuticals.

The SoluMatrix technology is a scaleable and cost-effective manufacturing process that can produce submicron-sized drug particles that are 10 to 200 times smaller than conventional drug particles. The particles generated using this technology, which both grinds the drug particles into a superfine powder and protects those submicron particles from subsequent agglomeration (or clumping together into big particles), comprise a single unit operation and can be manufactured into tablets, capsules and other dosage forms without further processing.

The SoluMatrix technology improves the performance of pharmaceuticals by dramatically changing how the drug dissolves and is absorbed. By making submicron-sized particles of a drug, it is possible to:

Unfortunately there aren’t more details. I’m somewhat puzzled  by the submicron measurement why not state the size using the term nanometre?

Getting back  to Iroko, Imasogie, impressed with the SoluMatrix technology, has made a major investment in iCeutica and is chair of iCeutica’s board. His homebase company, Iroko holds exclusive global rights to SoluMatrix.

Luciew’s article describes the current situation in the NSAID market,

Iroko officials acknowledge that NSAID painkillers carry their own health risks, including the potential for stomach ulcers, kidney problems and cardio-vascular ailments, up to and including stroke and heart attack. The fears associated with NSAIDs peaked a decade ago with the Vioxx case, a popular prescription NSAID that was eventually taken off the market due to associated cardiac and other risks.

The latest FDA guidelines for NSAID use calls for the lowest effective dose, which precisely describes the nanotechnology-driven low-dose NSAID drugs Iroko is rolling out. What is more, due to the ongoing opioid crisis, both the FDA and the Centers for Disease Control are heavily emphasizing non-opioid alternatives for pain relief, further opening to door for Iroko’s pain products.

That said about the issues with NSAIDs, Luciew outlines Iroko’s current offerings and explains what makes this technology so attractive,

According to Imasogie, Iroko’s line of low-dose, nanotechnology NSAIDs fits both sets of regulatory safety criteria. The new drugs are the lowest effective dose for NSAIDs, and are a viable pain-killing alternative to opioids, especially when it comes to treating osteoarthritis and other moderate pain.

“No one is going to give an NSAID if you have cancer,” Imasogie says. “But for chronic low back pain, yes.”

Three of Iroko’s six low-dose NSAID offerings have already received FDA approval and are on the market:

  • Zorvolex (diclofenac), approved in October 2013 for the management of mild to moderate acute pain in adults and in August 2014 for the management of osteoarthritis pain.
  • Tivorbex, approved in February 2014 for treatment of mild to moderate acute pain in adults.
  • Vivlodex, approved in October 2015 as another option for treatment of osteoarthritis pain. Three more of Iroko’s low-dose NSAIDs are awaiting approval.

These nano drugs are effective at doses of 35 to 40 milligrams to as low as 10 milligrams, the company says. That’s compared to other NSAID doses that start at 200 milligrams. As a result, Iroko’s low-dose NSAID drugs are being marketed as providing a prescription alternative to opioids at the precise moment everyone from the White House to the white-coat-clad family physician is searching for one.

If you the have time and interest, I encourage you to read Luciew’s article in its entirety. He covers more market issues and includes an enbedded video in his piece.

One last note about Iroko Pharmaceuticals, the company is named after a tree found on the African continent and executives of the company have hinted they are experimenting with SoluMatrix to make low-dose opioids available in the future.

While I have my doubts about the opioid addiction ‘crisis’, I do believe that lower, more effective doses of painkillers, regardless of their drug class, can only benefit patients.

Sciences Goes to the Movies closes out season one with zombies and opens season two with nanotechnolgy

Thanks to David Bruggeman’s March 9, 2016 posting on his Pasco Phronesis blog for the latest about ‘Science Goes to the Movies’,

The 13th episode of Science Goes to the Movies is now available online, and showing some restraint, the show waited until the end of its first season to deal with zombies.

In other show news, the second season will premiere on CUNY [City University of New York] TV March 18th [2016].  It will focus on nanotechnology.

You can find the 13th episode (running time is almost 30 mins.) embedded in David’s post or you can go to the Science Goes to the Movies webpage on the City University of New York (CUNY) website for the latest video and more information about the episode,

In episode #113 of Science Goes to the Movies, series co-hosts Dr. Heather Berlin and Faith Salie talk with Mark Siddall – a curator at the American Museum of Natural History and President of the American Society of Parasitologists – about zombies!

… Siddall describes different types of parasites that manipulate behavior in a host in order to complete a life cycle or other essential task – including a type of “Dementor” wasp, named after the monster in Harry Potter books, that changes behavior in a cockroach by stinging it. Whether or not zombifying parasites have a taste for brains is also considered, with reference to a species that takes over the bodies of ants, replaces their brains, and uses the ant to complete its life cycle, and The Guinea Worm, a parasite that targets humans for their own reproduction. Siddall then distinguishes between parasites and viruses and explains their similarities.

The Haitian voodoo practice of ingesting neurotoxins to create the effect of “waking from the dead” provides the basis for the next part of the discussion. Dr. Berlin defines neurotoxins and how they work in the brain to block neurons from firing. Tetrodotoxin, in particular, is explained as having a zombifying effect on humans in that its overall paralysis doesn’t affect the brain or the heart, leaving a person fully conscious throughout.

The Wade Davis [emphasis mine] book, The Serpent and The Rainbow, is brought into the discussion, as well as a story about a man kept in a zombie state for two years by ingesting a combination of neurotoxins and hallucinogens. Dr. Berlin breaks down the plausibility of the story and introduces the idea of the “philosopher zombie,” whose zombie status is more conceptual in nature.

28 Days Later and World War Z are discussed as examples of zombie movies in which the cause of the apocalypse is a zombie infection, and Siddall shares news about a cancer with contagious qualities. A recent Centers for Disease Control ad campaign, warning people to prepare for the zombie apocalypse, is mentioned and the real-life potential for human zombies, given the creativity of evolution, makes for the final topic of the show. Before finishing, though, Dr. Berlin and Siddall each share an idea for an original zombie movie.

Written and Produced by Lisa Beth Kovetz.

Wade Davis is a Canadian anthropologist who now teaches at the University of British Columbia.

Should you care to search, you will find a number of posts concerning zombies on this blog.

Disinfectants without chemicals for the food industry

Michael Berger in his March 16, 2015 Nanowerk Spotlight article profiles some very interesting research into replacing chemicals with water nanostructures,

The burden of foodborne diseases worldwide is huge, with serious economic and public health consequences. The CDC [US Centers for Disease Control] estimates that each year in the USA approximately 48 million people get sick, 128,000 get hospitalized and 3,000 die from the consumption of food contaminated with pathogenic microorganisms. The food industry is in search of effective intervention methods that can be applied from ‘farm to fork’ to ensure the safety of the food chain and be consumer and environment friendly at the same time.

In the food industry, chemicals are routinely used to clean and disinfect product contact surfaces as well as the outer surface of the food itself. These chemicals provide a necessary and required step to ensure that the foods produced and consumed are as free as possible from microorganisms that can cause foodborne illness.

Food activists are concerned that some of the chemicals used by the food industry for disinfection can cause health issues for consumers. A prime example is the current discussion in Europe about ‘American chlorine chicken’. …

Berger goes on to highlight the research being conducted at the Harvard T. Chan School of Public Health (Harvard University). The team announced a new technique called Engineered Water Nanostructures (EWNS), which is generated by electrospraying water. The team published this paper in 2014,

A chemical free, nanotechnology-based method for airborne bacterial inactivation using engineered water nanostructures by Georgios Pyrgiotakis, James McDevitt, Andre Bordini, Edgar Diaz, Ramon Molina, Christa Watson, Glen Deloid, Steve Lenard, Natalie Fix, Yosuke Mizuyama, Toshiyuki Yamauchi, Joseph Brain and Philip Demokritou. Environ. Sci.: Nano, 2014,1, 15-26 DOI: 10.1039/C3EN00007A

First published online 28 Nov 2013

This paper is open access.

More recently, the team has proved the efficacy of this technique on stainless steel surfaces and tomatoes. A Feb. 25, 2015 Harvard T. Chan School of Public Health news release provides information about the costs of foodborne diseases and goes on to describe the technique and the latest experiments,

The burden of foodborne diseases worldwide is huge, with serious economic and public health consequences. The U.S. Department of Agriculture’s (USDA’s) Economic Research Service reported in 2014 that foodborne illnesses are costing the economy more than $15.6 billion and about 53,245 Americans visit the hospital annually due to foodborne illnesses. The food industry is in search of effective intervention methods that can be applied form “farm to fork” to ensure the safety of the food chain and be consumer and environment friendly at the same time.

Researchers at the Center for Nanotechnology and Nanotoxicology of the Harvard T. Chan School of Public Health are currently exploring the effectiveness of a nanotechnology based, chemical free, intervention method for the inactivation of foodborne and spoilage microorganisms on fresh produce and on food production surfaces. This method utilizes Engineered Water Nanostructures (EWNS) generated by electrospraying of water. EWNS possess unique properties; they are 25 nm in diameter, remain airborne in indoor conditions for hours, contain Reactive Oxygen Species (ROS), have very strong surface charge (on average 10e/structure) and have the ability to interact and inactivate pathogens by destroying their membrane.

In a study funded by the USDA and just published this week in the premier Environmental Science and Technology journal, the efficacy of these tiny water nanodroplets, in inactivating representative foodborne pathogens such as Escherichia coli, Salmonella enterica and Listeria innocua, on stainless steel surfaces and on tomatoes, was assessed showing significant log reductions in inactivation of select food pathogens. These promising results could open up the gateway for further exploration into the dynamics of this method in the battle against foodborne disease. More importantly this novel, chemical-free, cost effective and environmentally friendly intervention method holds great potential for development and application in the food industry, as a ‘green’ alternative to existing inactivation methods.

Here’s a link to and a citation for the latest paper,

Inactivation of Foodborne Microorganisms Using Engineered Water Nanostructures (EWNS) by Georgios Pyrgiotakis, Archana Vasanthakumar, Ya Gao, Mary Eleftheriadou, Eduardo Toledo, Alice DeAraujo, James McDevitt, Taewon Han, Gediminas Mainelis, Ralph Mitchell, and Philip Demokritou. Environ. Sci. Technol., Article ASAP DOI: 10.1021/es505868a Publication Date (Web): February 19, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall. The researchers have made this image illustrating a ‘water shell’s’ effect on a bacterium located on a tomato,

Courtesy: Researchers and the American Chemical Society

Courtesy: Researchers and the American Chemical Society

I’m not sure how chemical companies are going to feel but this is very exciting news. Still, one has to wonder just how much water this technique would require for full scale adoption and would it be reusable?