Tag Archives: US Department of Energy

When an atom more or less makes a big difference

As scientists continue exploring the nanoscale, it seems that finding the number of atoms in your particle makes a difference is no longer so surprising. From a Jan. 28, 2016 news item on ScienceDaily,

Combining experimental investigations and theoretical simulations, researchers have explained why platinum nanoclusters of a specific size range facilitate the hydrogenation reaction used to produce ethane from ethylene. The research offers new insights into the role of cluster shapes in catalyzing reactions at the nanoscale, and could help materials scientists optimize nanocatalysts for a broad class of other reactions.

A Jan. 28, 2016 Georgia Institute of Technology (Georgia Tech) news release (*also on EurekAlert*), which originated the news item, expands on the theme,

At the macro-scale, the conversion of ethylene has long been considered among the reactions insensitive to the structure of the catalyst used. However, by examining reactions catalyzed by platinum clusters containing between 9 and 15 atoms, researchers in Germany and the United States found that at the nanoscale, that’s no longer true. The shape of nanoscale clusters, they found, can dramatically affect reaction efficiency.

While the study investigated only platinum nanoclusters and the ethylene reaction, the fundamental principles may apply to other catalysts and reactions, demonstrating how materials at the very smallest size scales can provide different properties than the same material in bulk quantities. …

“We have re-examined the validity of a very fundamental concept on a very fundamental reaction,” said Uzi Landman, a Regents’ Professor and F.E. Callaway Chair in the School of Physics at the Georgia Institute of Technology. “We found that in the ultra-small catalyst range, on the order of a nanometer in size, old concepts don’t hold. New types of reactivity can occur because of changes in one or two atoms of a cluster at the nanoscale.”

The widely-used conversion process actually involves two separate reactions: (1) dissociation of H2 molecules into single hydrogen atoms, and (2) their addition to the ethylene, which involves conversion of a double bond into a single bond. In addition to producing ethane, the reaction can also take an alternative route that leads to the production of ethylidyne, which poisons the catalyst and prevents further reaction.

The project began with Professor Ueli Heiz and researchers in his group at the Technical University of Munich experimentally examining reaction rates for clusters containing 9, 10, 11, 12 or 13 platinum atoms that had been placed atop a magnesium oxide substrate. The 9-atom nanoclusters failed to produce a significant reaction, while larger clusters catalyzed the ethylene hydrogenation reaction with increasingly better efficiency. The best reaction occurred with 13-atom clusters.

Bokwon Yoon, a research scientist in Georgia Tech’s Center for Computational Materials Science, and Landman, the center’s director, then used large-scale first-principles quantum mechanical simulations to understand how the size of the clusters – and their shape – affected the reactivity. Using their simulations, they discovered that the 9-atom cluster resembled a symmetrical “hut,” while the larger clusters had bulges that served to concentrate electrical charges from the substrate.

“That one atom changes the whole activity of the catalyst,” Landman said. “We found that the extra atom operates like a lightning rod. The distribution of the excess charge from the substrate helps facilitate the reaction. Platinum 9 has a compact shape that doesn’t facilitate the reaction, but adding just one atom changes everything.”

Here’s an illustration featuring the difference between a 9 atom cluster and a 10 atom cluster,

A single atom makes a difference in the catalytic properties of platinum nanoclusters. Shown are platinum 9 (top) and platinum 10 (bottom). (Credit: Uzi Landman, Georgia Tech)

A single atom makes a difference in the catalytic properties of platinum nanoclusters. Shown are platinum 9 (top) and platinum 10 (bottom). (Credit: Uzi Landman, Georgia Tech)

The news release explains why the larger clusters function as catalysts,

Nanoclusters with 13 atoms provided the maximum reactivity because the additional atoms shift the structure in a phenomena Landman calls “fluxionality.” This structural adjustment has also been noted in earlier work of these two research groups, in studies of clusters of gold [emphasis mine] which are used in other catalytic reactions.

“Dynamic fluxionality is the ability of the cluster to distort its structure to accommodate the reactants to actually enhance reactivity,” he explained. “Only very small aggregates of metal can show such behavior, which mimics a biochemical enzyme.”

The simulations showed that catalyst poisoning also varies with cluster size – and temperature. The 10-atom clusters can be poisoned at room temperature, while the 13-atom clusters are poisoned only at higher temperatures, helping to account for their improved reactivity.

“Small really is different,” said Landman. “Once you get into this size regime, the old rules of structure sensitivity and structure insensitivity must be assessed for their continued validity. It’s not a question anymore of surface-to-volume ratio because everything is on the surface in these very small clusters.”

While the project examined only one reaction and one type of catalyst, the principles governing nanoscale catalysis – and the importance of re-examining traditional expectations – likely apply to a broad range of reactions catalyzed by nanoclusters at the smallest size scale. Such nanocatalysts are becoming more attractive as a means of conserving supplies of costly platinum.

“It’s a much richer world at the nanoscale than at the macroscopic scale,” added Landman. “These are very important messages for materials scientists and chemists who wish to design catalysts for new purposes, because the capabilities can be very different.”

Along with the experimental surface characterization and reactivity measurements, the first-principles theoretical simulations provide a unique practical means for examining these structural and electronic issues because the clusters are too small to be seen with sufficient resolution using most electron microscopy techniques or traditional crystallography.

“We have looked at how the number of atoms dictates the geometrical structure of the cluster catalysts on the surface and how this geometrical structure is associated with electronic properties that bring about chemical bonding characteristics that enhance the reactions,” Landman added.

I highlighted the news release’s reference to gold nanoclusters as I have noted the number issue in two April 14, 2015 postings, neither of which featured Georgia Tech, Gold atoms: sometimes they’re a metal and sometimes they’re a molecule and Nature’s patterns reflected in gold nanoparticles.

Here’s a link to and a citation for the ‘platinum catalyst’ paper,

Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters by Andrew S. Crampton, Marian D. Rötzer, Claron J. Ridge, Florian F. Schweinberger, Ueli Heiz, Bokwon Yoon, & Uzi Landman.  Nature Communications 7, Article number: 10389  doi:10.1038/ncomms10389 Published 28 January 2016

This paper is open access.

*’also on EurekAlert’ added Jan. 29, 2016.

Weaving at the nanoscale

A Jan. 21, 2016 news item on ScienceDaily announces a brand new technique,

For the first time, scientists have been able to weave a material at molecular level. The research is led by University of California Berkeley, in cooperation with Stockholm University. …

A Jan. 21, 2016 Stockholm University press release, which originated the news item, provides more information,

Weaving is a well-known way of making fabric, but has until now never been used at the molecular level. Scientists have now been able to weave organic threads into a three-dimensional material, using copper as a template. The new material is a COF, covalent organic framework, and is named COF-505. The copper ions can be removed and added without changing the underlying structure, and at the same time the elasticity can be reversibly changed.

– It almost looks like a molecular version of the Vikings chain-armour. The material is very flexible, says Peter Oleynikov, researcher at the Department of Materials and Environmental Chemistry at Stockholm University.

COF’s are like MOF’s porous three-dimensional crystals with a very large internal surface that can adsorb and store enormous quantities of molecules. A potential application is capture and storage of carbon dioxide, or using COF’s as a catalyst to make useful molecules from carbon dioxide.

Complex structure determined in Stockholm

The research is led by Professor Omar Yaghi at University of California Berkeley. At Stockholm University Professor Osamu Terasaki, PhD Student Yanhang Ma and Researcher Peter Oleynikov have contributed to determine the structure of COF-505 at atomic level from a nano-crystal, using electron crystallography methods.

– It is a difficult, complicated structure and it was very demanding to resolve. We’ve spent lot of time and efforts on the structure solution. Now we know exactly where the copper is and we can also replace the metal. This opens up many possibilities to make other materials, says Yanhang Ma, PhD Student at the Department of Materials and Environmental Chemistry at Stockholm University.

Another of the collaborating institutions, US Department of Energy Lawrence Berkeley National Laboratory issued a Jan. 21, 2016 news release on EurekAlert, providing a different perspective and some additional details,

There are many different ways to make nanomaterials but weaving, the oldest and most enduring method of making fabrics, has not been one of them – until now. An international collaboration led by scientists at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley, has woven the first three-dimensional covalent organic frameworks (COFs) from helical organic threads. The woven COFs display significant advantages in structural flexibility, resiliency and reversibility over previous COFs – materials that are highly prized for their potential to capture and store carbon dioxide then convert it into valuable chemical products.

“Weaving in chemistry has been long sought after and is unknown in biology,” Yaghi says [Omar Yaghi, chemist who holds joint appointments with Berkeley Lab’s Materials Sciences Division and UC Berkeley’s Chemistry Department and is the co-director of the Kavli Energy NanoScience Institute {Kavli-ENSI}]. “However, we have found a way of weaving organic threads that enables us to design and make complex two- and three-dimensional organic extended structures.”

COFs and their cousin materials, metal organic frameworks (MOFs), are porous three-dimensional crystals with extraordinarily large internal surface areas that can absorb and store enormous quantities of targeted molecules. Invented by Yaghi, COFs and MOFs consist of molecules (organics for COFs and metal-organics for MOFs) that are stitched into large and extended netlike frameworks whose structures are held together by strong chemical bonds. Such frameworks show great promise for, among other applications, carbon sequestration.

Through another technique developed by Yaghi, called “reticular chemistry,” these frameworks can also be embedded with catalysts to carry out desired functions: for example, reducing carbon dioxide into carbon monoxide, which serves as a primary building block for a wide range of chemical products including fuels, pharmaceuticals and plastics.

In this latest study, Yaghi and his collaborators used a copper(I) complex as a template for bringing threads of the organic compound “phenanthroline” into a woven pattern to produce an immine-based framework they dubbed COF-505. Through X-ray and electron diffraction characterizations, the researchers discovered that the copper(I) ions can be reversibly removed or restored to COF-505 without changing its woven structure. Demetalation of the COF resulted in a tenfold increase in its elasticity and remetalation restored the COF to its original stiffness.

“That our system can switch between two states of elasticity reversibly by a simple operation, the first such demonstration in an extended chemical structure, means that cycling between these states can be done repeatedly without degrading or altering the structure,” Yaghi says. “Based on these results, it is easy to imagine the creation of molecular cloths that combine unusual resiliency, strength, flexibility and chemical variability in one material.”

Yaghi says that MOFs can also be woven as can all structures based on netlike frameworks. In addition, these woven structures can also be made as nanoparticles or polymers, which means they can be fabricated into thin films and electronic devices.

“Our weaving technique allows long threads of covalently linked molecules to cross at regular intervals,” Yaghi says. “These crossings serve as points of registry, so that the threads have many degrees of freedom to move away from and back to such points without collapsing the overall structure, a boon to making materials with exceptional mechanical properties and dynamics.”

###

This research was primarily supported by BASF (Germany) and King Abdulaziz City for Science and Technology (KACST).

It’s unusual that neither Stockholm University not the Lawrence Berkeley National Laboratory list all of the institutions involved. To get a sense of this international collaboration’s size, I’m going to list them,

  • 1Department of Chemistry, University of California, Berkeley, Materials Sciences Division, Lawrence Berkeley National Laboratory, and Kavli Energy NanoSciences Institute, Berkeley, CA 94720, USA.
  • 2Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.
  • 3Department of New Architectures in Materials Chemistry, Materials Science Institute of Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain.
  • 4Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan.
  • 5NSF Nanoscale Science and Engineering Center (NSEC), University of California at Berkeley, 3112 Etcheverry Hall, Berkeley, CA 94720, USA.
  • 6Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
  • 7King Abdulaziz City of Science and Technology, Post Office Box 6086, Riyadh 11442, Saudi Arabia.
  • 8Material Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
  • 9School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.

Given that some of the money came from a German company, I’m surprised not one German institution was involved.

Here’s a link to and citation for the paper,

Weaving of organic threads into a crystalline covalent organic framework by Yuzhong Liu, Yanhang Ma, Yingbo Zhao, Xixi Sun, Felipe Gándara, Hiroyasu Furukawa, Zheng Liu, Hanyu Zhu, Chenhui Zhu, Kazutomo Suenaga, Peter Oleynikov, Ahmad S. Alshammari, Xiang Zhang, Osamu Terasaki, Omar M. Yaghi. Science  22 Jan 2016: Vol. 351, Issue 6271, pp. 365-369 DOI: 10.1126/science.aad4011

This paper is behind a paywall.

A bioinspired approach to self-healing materials

Scientists have been working to develop self-healing materials for a while now and a Jan. 8, 2016 news item on Nanowerk chronicles a relatively recent attempt,

Inspired by healing wounds in skin, a new approach protects and heals surfaces using a fluid secretion process. In response to damage, dispersed liquid-storage droplets are controllably secreted. The stored liquid replenishes the surface and completes the repair of the polymer in seconds to hours …

The fluid secretion approach to repair the material has also been demonstrated in fibers and microbeads. This bioinspired approach could be extended to create highly desired adaptive, resilient materials with possible uses in heat transfer, humidity control, slippery surfaces, and fluid delivery.

A December ??, 2015 US Department of Energy (DOE) news release, which originated the news item, expands on the theme,

A polymer that secretes stored liquid in response to damage has been designed and created to function as a self-healing material. While human-made material systems can trigger the release of stored contents, the ability to continuously self-adjust and monitor liquid supply in these compartments is a challenge. In contrast, biological systems manage complex protection and healing functions by having individual components work in concert to initiate and self-regulate a coordinated response. Inspired by biological wound-healing, this new process, developed by researchers at Harvard University, involves trapping and dispersing liquid-storage droplets within a reversibly crosslinked polymer gel network topped with a thin liquid overlayer. This novel approach allows storage of the liquid, yet is reconfigurable to induce finely controlled secretion in response to polymer damage. When the gel was damaged by slicing, the ruptured droplets in the immediate vicinity of the damage released oil and the gel network was squeezed. This squeezing allowed oil to be pushed out from neighboring droplets and the polymer network linkages to unzip and rezip rapidly, allowing just enough oil to flow to the damaged region. Healing occurred at ambient temperature within seconds to hours as fluid was secreted into the crack, severed polymer ends diffused across the gap, and new network linkages were created. Droplet-embedded polymers repaired faster or at lower temperatures than polymers without oil droplets. Also, the repaired droplet-embedded materials were much stronger than the repaired networks that did not contain the droplets. This dynamic liquid exchange to repair the material has also been demonstrated in other forms, showing the potential to extend this bioinspired approach for fabricating highly desired adaptive, resilient materials to a wide range of polymeric structures.

Here’s a link to and a citation for the paper,

Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing by Jiaxi Cui, Daniel Daniel, Alison Grinthal, Kaixiang Lin, & Joanna Aizenberg. Nature Materials 14,  790–795 (2015) doi:10.1038/nmat4325 Published online 22 June 2015

I’m not sure what occasioned a late push to promote this particular piece of research but if you are interested, the paper is behind a paywall.

Canada has a nanotechnology industry? and an overview of the US situation

It’s always interesting to get some insight into how someone else sees the nanotechnology effort in Canada.

First, there have been two basic approaches internationally. Some countries have chosen to fund nanotechnology/nanoscience research through a national initiative/project/council/etc. Notably the US, the UK, China, and Russia, amongst others, have followed this model. For example, the US National Nanotechnology Initiative (NNI)  (a type of hub for research, communication, and commercialization efforts) has been awarded a portion of the US budget every year since 2000. The money is then disbursed through the National Science Foundation.

Canada and its nanotechnology industry efforts

By contrast, Canada has no such line item in its national budget. There is a National Institute of Nanotechnology (NINT) but it is one of many institutes that help make up Canada’s National Research Council. I’m not sure if this is still true but when it was first founded, NINT was funded in part by the federal government and in part by the province of Alberta where it is located (specifically, in Edmonton at the University of Alberta). They claim the organization has grown since its early days although it looks like it’s been shrinking. Perhaps some organizational shuffles? In any event, support for the Canadian nanotechnology efforts are more provincial than federal. Alberta (NINT and other agencies) and Québec (NanoQuébec, a provincially funded nano effort) are the standouts, with Ontario (nano Ontario, a self-organized not-for-profit group) following closely. The scene in Canada has always seemed fragmented in comparison to the countries that have nanotechnology ‘hubs’.

Patrick Johnson in a Dec. 22, 2015 article for Geopolitical Monitor offers a view which provides an overview of nanotechnology in the US and Canada,  adds to the perspective offered here, and, at times, challenges it (Note: A link has been added),

The term ‘nanotechnology’ entered into the public vernacular quite suddenly around the turn of the century, right around the same time that, when announcing the US National Nanotechnology Initiative (NNI) in 2001 [2000; see the American Association for the Advancement of Science webpage on Historical Trends in Federal R&D, scroll down to the National Nanotechnology Initiative and click on the Jpg or Excel links], President Bill Clinton declared that it would one day build materials stronger than steel, detect cancer at its inception, and store the vast records of the Library of Congress in a device the size of a sugar cube. The world of science fiction took matters even further. In his 2002 book Prey, Michael Creighton [Michael Crichton; see Wikipedia entry] wrote of a cloud of self-replicating nanorobots [also known as, nanobots or self-assemblers] that terrorize the good people of Nevada when a science experiment goes terribly wrong.

Back then the hype was palpable. Federal money was funneled to promising nanotech projects as not to fall behind in the race to master this new frontier of science. And industry analysts began to shoot for the moon in their projections. The National Science Foundation famously predicted that the nanotechnology industry would be worth $1 trillion by the year 2015.

Well here we are in 2015 and the nanotechnology market was worth around $26 billion in [sic] last year, and there hasn’t even been one case of a murderous swarm of nanomachines terrorizing the American heartland. [emphasis mine]

Is this a failure of vision? No. If anything it’s only a failure of timing.

The nanotechnology industry is still well on its way to accomplishing the goals set out at the founding of the NNI, goals which at the time sounded utterly quixotic, and this fact is increasingly being reflected in year-on-year growth numbers. In other words, nanotechnology is still a game-changer in global innovation, it’s just taking a little longer than first expected.

The Canadian Connection

Although the Canadian government is not among the world’s top spenders on nanotechnology research, the industry still represents a bright spot in the future of the Canadian economy. The public-private engine [emphasis mine] at the center of Canada’s nanotech industry, the National Institute for Nanotechnology (NINT), was founded in 2001 with the stated goal of “increasing the competitiveness of Canadian companies; creating technology solutions to meet the needs of society; expanding training programs for researchers and entrepreneurs; and enhancing Canada’s stature in the world of nanotechnology.” This ambitious mandate that NINT set out for itself was to be accomplished over the course of two broad stages: first a ‘seeding’ phase of attracting promising personnel and coordinating basic research, and the then a ‘harvesting’ phase of putting the resulting nanotechnologies to the service of Canadian industry.

Recent developments in Canadian nanotechnology [emphasis mine] show that we have already entered that second stage where the concept of nanotechnology transitions from hopeful hypothetical to real-world economic driver

I’d dearly like to know which recent developments indicate Canada’s industry has entered a serious commercialization phase. (It’s one of the shortcomings of our effort that communication is not well supported.) As well, I’d like to know more about the  “… public-private engine at the center of Canada’s nanotech industry …” as Johnson seems to be referring to the NINT, which is jointly funded (I believe) by the federal government and the province of Alberta. There is no mention of private funding on their National Research Council webpage but it does include the University of Alberta as a major supporter.

I am intrigued and I hope there is more information to come.

US and its nanotechnology industry efforts

Dr. Ambika Bumb has written a Dec. 23, 2015 article for Tech Crunch which reflects on her experience as a researcher and entrepreneur in the context of the US NNI effort and includes a plea for future NNI funding [Note: One link added and one link removed],

Indeed, I am fortunate to be the CEO of a nanomedicine technology developer that extends the hands of doctors and scientists to the cellular and molecular level.

The first seeds of interest in bringing effective nano-tools into the hands of doctors and patients were planted in my mind when I did undergrad research at Georgia Tech.  That initial interest led to me pursuing a PhD at Oxford University to develop a tri-modal nanoparticle for imaging a variety of diseases ranging from cancers to autoimmune disorders.

My graduate research only served to increase my curiosity so I then did a pair of post-doctoral fellowships at the National Cancer Institute and the National Heart Lung and Blood Institute.  When it seemed that I was a shoe-in for a life-long academic career, our technology garnered much attention and I found myself in the Bay Area founding the now award-winning Bikanta [bikanta.com].

Through the National Nanotechnology Initiative (NNI) and Nanotechnology Research and Development Act of 2003, our federal government has invested $20 billion in nanoresearch in the past 13 years.  The return on that investment has resulted in 628 agency‐to‐agency collaborations, hundreds of thousands of publications, and more than $1 trillion in revenue generated from nano‐enabled products. [emphasis mine]

Given that medical innovations take a minimum of 10 years before they translate into a clinical product, already realizing a 50X return is an astounding achievement.  Slowing down would be counter-intuitive from an academic and business perspective.

Yet, that is what is happening.  Federal funding peaked half a decade ago in 2010.  [emphasis mine] NNI investments went from $1.58B in 2010 to $1.170B in 2015 (in constant dollars), a 26% drop.  The number of nano-related papers published in the US were roughly 25 thousand in 2013, while the EU and China produced 33 and 35 thousand, respectively.

History has shown repeatedly how the United States has lost an early competitive advantage in developing high‐value technologies to international competition when commercialization infrastructure was not adequately supported.

Examples include semiconductors, advanced batteries for vehicles, and cement‐based construction materials, all of which were originally developed in the United States, but are now manufactured elsewhere.

It is now time for a second era – NNI 2.0.  A return to higher and sustained investment, the purpose of NNI 2.0 should be not just foundational research but also necessary support for rapid commercialization of nanotechnology. The translation of bench science into commercial reality requires the partnership of academic, industrial, federal, and philanthropic players.

I’m not sure why there’s a difference between Johnson’s ” … worth around $26 billion in [sic] last year …] and Bumb’s “… return on that investment has resulted … more than $1 trillion in revenue generated from nano‐enabled products.” I do know there is some controversy as to what should or should not be included when estimating the value of the ‘nanotechnology enterprise’, for example, products that are only possible due to nanotechnology as opposed to products that already existed, such as golf clubs, but are enhanced by nanotechnology.

Bumb goes on to provide a specific example from her own experience to support the plea,

When I moved from the renowned NIH [US National Institutes of Health] on the east coast to the west coast to start Bikanta, one of the highest priority concerns was how we were going to develop nanodiamond technology without access to high-end characterization instrumentation to analyze the quality of our material.  Purchasing all that equipment was not financially viable or even wise for a startup.

We were extremely lucky because our proposal was accepted by the Molecular Foundry, one of five DOE [US Department of Energy]-funded nanoscience user facilities.  While the Foundry primarily facilitates basic nanoscience projects from academic and national laboratory users, Fortune 500 companies and startups like ours also take advantage of its capabilities to answer fundamental questions and conduct proof of concept studies (~10%).

Disregarding the dynamic intellectual community for a minute, there is probably more than $150M worth of instrumentation at the Foundry.  An early startup would never be able to dream of raising a first round that large.

One of the factors of Bikanta’s success is that the Molecular Foundry enabled us to make tremendous strides in R&D in just months instead of years.  More user facilities, incubator centers, and funding for commercializing nanotech are greatly needed.

Final comments

I have to thank Dr. Bumb for pointing out that 2010 was the peak for NNI funding (see the American Association for the Advancement of Science webpage on Historical Trends in Federal R&D, scroll down to the National Nanotechnology Initiative and click on the Jpg or Excel links). I erroneously believed (although I don’t appear to have written up my belief; if you find any such statement, please let me know so I can correct it) that the 2015 US budget was the first time the NNI experienced a drop in funding.

While I found Johnson’s article interesting I wasn’t able to determine the source for his numbers and some of his material had errors that can be identified immediately, e.g., Michael Creighton instead of Michael Crichton.

US Los Alamos National Laboratory catches the D-Wave (buys a 1000+ Qubit quantum computer from D-Wave)

It can be euphoric experience making a major technical breakthrough (June 2015), selling to a new large customer (Nov. 2015) and impressing your important customers so they upgrade to the new system (Oct. 2015) within a few short months.* D-Wave Systems (a Vancouver-based quantum computer company) certainly has cause to experience it given the events of the last six weeks or so. Yesterday, in a Nov. 11, 2015, D-Wave news release, the company trumpeted its sale of a 1000+ Qubit system (Note: Links have been removed),

D-Wave Systems Inc., the world’s first quantum computing company, announced that Los Alamos National Laboratory will acquire and install the latest D-Wave quantum computer, the 1000+ qubit D-Wave 2X™ system. Los Alamos, a multidisciplinary research institution engaged in strategic science on behalf of national security, will lead a collaboration within the Department of Energy and with select university partners to explore the capabilities and applications of quantum annealing technology, consistent with the goals of the government-wide National Strategic Computing Initiative. The National Strategic Computing Initiative, created by executive order of President Obama in late July [2015], is intended “to maximize [the] benefits of high-performance computing (HPC) research, development, and deployment.”

“Los Alamos is a global leader in high performance computing and a pioneer in the application of new architectures to solve critical problems related to national security, energy, the environment, materials, health and earth science,” said Robert “Bo” Ewald, president of D-Wave U.S. “As we work jointly with scientists and engineers at Los Alamos we expect to be able to accelerate the pace of quantum software development to advance the state of algorithms, applications and software tools for quantum computing.”

A Nov. 11, 2015 news item on Nanotechnology Now is written from the company’s venture capitalist’s perspective,

Harris & Harris Group, Inc. (NASDAQ:TINY), an investor in transformative companies enabled by disruptive science, notes that its portfolio company, D-Wave Systems, Inc., announced that Los Alamos National Laboratory will acquire and install the latest D-Wave quantum computer, the 1000+ qubit D-Wave 2X™ system.

The news about the Los Alamos sale comes only weeks after D-Wave announced renewed agreements with Google, NASA (US National Aeronautics and Space Administration), and the Universities Space Research Association (USRA) in the aftermath of a technical breakthrough. See my Oct. 5, 2015 posting for more details about the agreements, the type of quantum computer D-Wave sells, and news of interesting and related research in Australia. Cracking the 512 qubit barrier also occasioned a posting here (June 26, 2015) where I described the breakthrough, the company, and included excerpts from an Economist article which mentioned D-Wave in its review of research in the field of quantum computing.

Congratulations to D-Wave!

*’It can be euphoric selling to your first large and/or important customers and D-Wave Systems (a Vancouver-based quantum computer company) certainly has cause to experience it. ‘ changed to more accurately express my thoughts to ‘It can be euphoric experience making a major technical breakthrough (June 2015), selling to a new large customer (Nov. 2015) and impressing your important customers so they upgrade to the new system (Oct. 2015) within a few short months.’ on Nov. 12, 2015 at 1025 hours PST.

Nature-inspired but not really, a new design rule for nanostructures

It’s fascinating to observe the news release writer’s attempt to package this research as biomimetic when the new design rule is not found in nature. An Oct. 7, 2015 news item on ScienceDaily provides an introduction to the work from the Lawrence Berkeley National Laboratory,

Scientists aspire to build nanostructures that mimic the complexity and function of nature’s proteins. These microscopic widgets could be customized into incredibly sensitive chemical detectors or long-lasting catalysts. But as with any craft that requires extreme precision, researchers must first learn how to finesse the materials they’ll use to build these structures. A new discovery is a big step in this direction. The scientists discovered a design rule that enables a recently created material to exist.

An Oct. 7, 2015 Lawrence Berekeley National Laboratory (Berkeley Lab) news release (also on EurekAlert), which originated the news item, features more detail about the research and the writer’s gyrations,

The scientists discovered a design rule that enables a recently created material to exist. The material is a peptoid nanosheet. It’s a flat structure only two molecules thick, and it’s composed of peptoids, which are synthetic polymers closely related to protein-forming peptides.

The design rule controls the way in which polymers adjoin to form the backbones that run the length of nanosheets. Surprisingly, these molecules link together in a counter-rotating pattern not seen in nature. [emphasis mine] This pattern allows the backbones to remain linear and untwisted, a trait that makes peptoid nanosheets larger and flatter than any biological structure.

The Berkeley Lab scientists say this never-before-seen design rule could be used to piece together complex nanosheet structures and other peptoid assemblies such as nanotubes and crystalline solids.

What’s more, they discovered it by combining computer simulations with x-ray scattering and imaging methods to determine, for the first time, the atomic-resolution structure of peptoid nanosheets.

“This research suggests new ways to design biomimetic structures, [emphasis mine]” says Steve Whitelam, a co-corresponding author of the Nature paper. “We can begin thinking about using design principles other than those nature offers.”

The news release goes on to note the previous work which this newest research builds on and provides yet more detail about the latest and greatest,

Peptoid nanosheets were discovered by Zuckermann’s group five years ago. They found that under the right conditions, peptoids self assemble into two-dimensional assemblies that can grow hundreds of microns across. This “molecular paper” has become a hot prospect as a protein-mimicking platform for molecular design.

To learn more about this potential building material, the scientists set out to learn its atom-resolution structure. This involved feedback between experiment and theory. Microscopy and scattering data gathered at the Molecular Foundry and the Advanced Light Source, also a DOE Office of Science user facility located at Berkeley Lab, were compared with molecular dynamics simulations conducted at NERSC.

The research revealed several new things about peptoid nanosheets. Their molecular makeup varies throughout their structure, they can be formed only from peptoids of a certain minimum length, they contain water pockets, and they are potentially porous when it comes to water and ions.

These insights are intriguing on their own, but when the scientists examined the structure of the nanosheets’ backbone, they were surprised to see a design rule not found in the field of protein structural biology.

Here’s the difference: In nature, proteins are composed of beta sheets and alpha helices. These fundamental building blocks are themselves composed of backbones, and the polymers that make up these backbones are all joined together using the same rule. Each adjacent polymer rotates incrementally in the same direction, so that a twist runs along the backbone.

This rule doesn’t apply to peptoid nanosheets. Along their backbones, adjacent monomer units rotate in opposite directions. These counter-rotations cancel each other out, resulting in a linear and untwisted backbone. This enables backbones to be tiled in two dimensions and extended into large sheets that are flatter than anything nature can produce.

“It was a big surprise to find the design rule that makes peptoid nanosheets possible has eluded the field of biology until now,” says Mannige [Ranjan Mannige, a postdoctoral researcher at the Molecular Foundry]. “This rule could perhaps be used to build many more unrealized structures.”

Adds Zuckermann [Peptoid nanosheets were discovered by Zuckermann’s group five years ago. They found that under the right conditions, peptoids self assemble into two-dimensional assemblies that can grow hundreds of microns across. This “molecular paper” has become a hot prospect as a protein-mimicking platform for molecular design.

To learn more about this potential building material, the scientists set out to learn its atom-resolution structure. This involved feedback between experiment and theory. Microscopy and scattering data gathered at the Molecular Foundry and the Advanced Light Source, also a DOE Office of Science user facility located at Berkeley Lab, were compared with molecular dynamics simulations conducted at NERSC.

The research revealed several new things about peptoid nanosheets. Their molecular makeup varies throughout their structure, they can be formed only from peptoids of a certain minimum length, they contain water pockets, and they are potentially porous when it comes to water and ions.

These insights are intriguing on their own, but when the scientists examined the structure of the nanosheets’ backbone, they were surprised to see a design rule not found in the field of protein structural biology.

Here’s the difference: In nature, proteins are composed of beta sheets and alpha helices. These fundamental building blocks are themselves composed of backbones, and the polymers that make up these backbones are all joined together using the same rule. Each adjacent polymer rotates incrementally in the same direction, so that a twist runs along the backbone.

This rule doesn’t apply to peptoid nanosheets. Along their backbones, adjacent monomer units rotate in opposite directions. These counter-rotations cancel each other out, resulting in a linear and untwisted backbone. This enables backbones to be tiled in two dimensions and extended into large sheets that are flatter than anything nature can produce.

“It was a big surprise to find the design rule that makes peptoid nanosheets possible has eluded the field of biology until now,” says Mannige. “This rule could perhaps be used to build many more unrealized structures.”

Adds Zuckermann, [Ron Zuckermann directs the Molecular Foundry’s Biological Nanostructures Facility.] “We also expect there are other design principles waiting to be discovered, which could lead to even more biomimetic nanostructures.”

They might have been better off describing the work as “bioinspired” but it is a tricky thing to describe and there doesn’t seem to be an easy way out of describing this discovery which is based on observations from nature but follows no rule found in nature.

Here’s a link to and a citation for the paper,

Peptoid nanosheets exhibit a new secondary-structure motif by Ranjan V. Mannige, Thomas K. Haxton, Caroline Proulx, Ellen J. Robertson, Alessia Battigelli, Glenn L. Butterfoss, Ronald N. Zuckermann, & Stephen Whitelam. Nature (2015) doi:10.1038/nature15363 Published online 07 October 2015

This paper is behind a paywall.

Commercializing nanotechnology: Peter Thiel’s Breakout Labs and Argonne National Laboratories

Breakout Labs

I last wrote about entrepreneur Peter Thiel’s Breakout Labs project in an Oct. 26, 2011 posting announcing its inception. An Oct. 6, 2015 Breakout Labs news release (received in my email) highlights a funding announcement for four startups of which at least three are nanotechnology-enabled,

Breakout Labs, a program of Peter Thiel’s philanthropic organization, the Thiel Foundation, announced today that four new companies advancing scientific discoveries in biomedical, chemical engineering, and nanotechnology have been selected for funding.

“We’re always hearing about bold new scientific research that promises to transform the world, but far too often the latest discoveries are left withering in a lab,” said Lindy Fishburne, Executive Director of Breakout Labs. “Our mission is to help a new type of scientist-entrepreneur navigate the startup ecosystem and build lasting companies that can make audacious scientific discoveries meaningful to everyday life. The four new companies joining the Breakout Labs portfolio – nanoGriptech, Maxterial, C2Sense, and CyteGen – embody that spirit and we’re excited to be working with them to help make their vision a reality.”

The future of adhesives: inspired by geckos

Inspired by the gecko’s ability to scuttle up walls and across ceilings due to their millions of micro/nano foot-hairs,nanoGriptech (http://nanogriptech.com/), based in Pittsburgh, Pa., is developing a new kind of microfiber adhesive material that is strong, lightweight, and reusable without requiring glues or producing harmful residues. Currently being tested by the U.S. military, NASA, and top global brands, nanoGriptech’s flagship product Setex™ is the first adhesive product of its kind that is not only strong and durable, but can also be manufactured at low cost, and at scale.

“We envision a future filled with no-leak biohazard enclosures, ergonomic and inexpensive car seats, extremely durable aerospace adhesives, comfortable prosthetic liners, high performance athletic wear, and widely available nanotechnology-enabled products manufactured less expensively — all thanks to the grippy little gecko,” said Roi Ben-Itzhak, CFO and VP of Business Development for nanoGriptech.

A sense of smell for the digital world

Despite the U.S. Department of Agriculture’s recent goals to drastically reduce food waste, most consumers don’t realize the global problem created by 1.3 billion metric tons of food wasted each year — clogging landfills and releasing unsustainable levels of methane gas into the atmosphere. Using technology developed at MIT’s Swager lab, Cambridge, Ma.-based C2Sense(http://www.c2sense.com/) is developing inexpensive, lightweight hand-held sensors based on carbon nanotubes which can detect fruit ripeness and meat, fish and poultry freshness. Smaller than a half of a business card, these sensors can be developed at very low cost, require very little power to operate, and can be easily integrated into most agricultural supply chains, including food storage packaging, to ensure that food is picked, stored, shipped, and sold at optimal freshness.

“Our mission is to bring a sense of smell to the digital world. With our technology, that package of steaks in your refrigerator will tell you when it’s about to go bad, recommend some recipe options and help build out your shopping list,” said Jan Schnorr, Chief Technology Officer of C2Sense.

Amazing metals that completely repel water

MaxterialTM, Inc. develops amazing materials that resist a variety of detrimental environmental effects through technology that emulates similar strategies found in nature, such as the self-cleaning lotus leaf and antifouling properties of crabs. By modifying the surface shape or texture of a metal, through a method that is very affordable and easy to introduce into the existing manufacturing process, Maxterial introduces a microlayer of air pockets that reduce contact surface area. The underlying material can be chemically the same as ever, retaining inherent properties like thermal and electrical conductivity. But through Maxterial’s technology, the metallic surface also becomes inherently water repellant. This property introduces the superhydrophobic maxterial as a potential solution to a myriad of problems, such as corrosion, biofouling, and ice formation. Maxterial is currently focused on developing durable hygienic and eco-friendly anti-corrosion coatings for metallic surfaces.

“Our process has the potential to create metallic objects that retain their amazing properties for the lifetime of the object – this isn’t an aftermarket coating that can wear or chip off,” said Mehdi Kargar, Co-founder and CEO of Maxterial, Inc. “We are working towards a day when shipping equipment can withstand harsh arctic environments, offshore structures can resist corrosion, and electronics can be fully submersible and continue working as good as new.”

New approaches to combat aging

CyteGen (http://cytegen.com/) wants to dramatically increase the human healthspan, tackle neurodegenerative diseases, and reverse age-related decline. What makes this possible now is new discovery tools backed by the dream team of interdisciplinary experts the company has assembled. CyteGen’s approach is unusually collaborative, tapping into the resources and expertise of world-renowned researchers across eight major universities to focus different strengths and perspectives to achieve the company’s goals. By approaching aging from a holistic, systematic point of view, rather than focusing solely on discrete definitions of disease, they have developed a new way to think about aging, and to develop treatments that can help people live longer, healthier lives.

“There is an assumption that aging necessarily brings the kind of physical and mental decline that results in Parkinson’s, Alzheimer’s, and other diseases. Evidence indicates otherwise, which is what spurred us to launch CyteGen,” said George Ugras, Co-Founder and President of CyteGen.

To date, Breakout Labs has invested in more than two dozen companies at the forefront of science, helping radical technologies get beyond common hurdles faced by early stage companies, and advance research and development to market much more quickly. Portfolio companies have raised more than six times the amount of capital invested in the program by the Thiel Foundation, and represent six Series A valuations ranging from $10 million to $60 million as well as one acquisition.

You can see the original Oct. 6, 2015 Breakout Labs news release here or in this Oct. 7, 2015 news item on Azonano.

Argonne National Labs and Nano Design Works (NDW) and the Argonne Collaborative Center for Energy Storage Science (ACCESS)

The US Department of Energy’s Argonne National Laboratory’s Oct. 6, 2015 press release by Greg Cunningham announced two initiatives meant to speed commercialization of nanotechnology-enabled products for the energy storage and other sectors,

Few technologies hold more potential to positively transform our society than energy storage and nanotechnology. Advances in energy storage research will revolutionize the way the world generates and stores energy, democratizing the delivery of electricity. Grid-level storage can help reduce carbon emissions through the increased adoption of renewable energy and use of electric vehicles while helping bring electricity to developing parts of the world. Nanotechnology has already transformed the electronics industry and is bringing a new set of powerful tools and materials to developers who are changing everything from the way energy is generated, stored and transported to how medicines are delivered and the way chemicals are produced through novel catalytic nanomaterials.

Recognizing the power of these technologies and seeking to accelerate their impact, the U.S. Department of Energy’s Argonne National Laboratory has created two new collaborative centers that provide an innovative pathway for business and industry to access Argonne’s unparalleled scientific resources to address the nation’s energy and national security needs. These centers will help speed discoveries to market to ensure U.S. industry maintains a lead in this global technology race.

“This is an exciting time for us, because we believe this new approach to interacting with business can be a real game changer in two areas of research that are of great importance to Argonne and the world,” said Argonne Director Peter B. Littlewood. “We recognize that delivering to market our breakthrough science in energy storage and nanotechnology can help ensure our work brings the maximum benefit to society.”

Nano Design Works (NDW) and the Argonne Collaborative Center for Energy Storage Science (ACCESS) will provide central points of contact for companies — ranging from large industrial entities to smaller businesses and startups, as well as government agencies — to benefit from Argonne’s world-class expertise, scientific tools and facilities.

NDW and ACCESS represent a new way to collaborate at Argonne, providing a single point of contact for businesses to assemble tailored interdisciplinary teams to address their most challenging R&D questions. The centers will also provide a pathway to Argonne’s fundamental research that is poised for development into practical products. The chance to build on existing scientific discovery is a unique opportunity for businesses in the nano and energy storage fields.

The center directors, Andreas Roelofs of NDW and Jeff Chamberlain of ACCESS, have both created startups in their careers and understand the value that collaboration with a national laboratory can bring to a company trying to innovate in technologically challenging fields of science. While the new centers will work with all sizes of companies, a strong emphasis will be placed on helping small businesses and startups, which are drivers of job creation and receive a large portion of the risk capital in this country.

“For a startup like mine to have the ability to tap the resources of a place like Argonne would have been immensely helpful,” said Roelofs. “We”ve seen the power of that sort of access, and we want to make it available to the companies that need it to drive truly transformative technologies to market.”

Chamberlain said his experience as an energy storage researcher and entrepreneur led him to look for innovative approaches to leveraging the best aspects of private industry and public science. The national laboratory system has a long history of breakthrough science that has worked its way to market, but shortening that journey from basic research to product has become a growing point of emphasis for the national laboratories over the past couple of decades. The idea behind ACCESS and NDW is to make that collaboration even easier and more powerful.

“Where ACCESS and NDW will differ from the conventional approach is through creating an efficient way for a business to build a customized, multi-disciplinary team that can address anything from small technical questions to broad challenges that require massive resources,” Chamberlain said. “That might mean assembling a team with chemists, physicists, computer scientists, materials engineers, imaging experts, or mechanical and electrical engineers; the list goes on and on. It’s that ability to tap the full spectrum of cross-cutting expertise at Argonne that will really make the difference.”

Chamberlain is deeply familiar with the potential of energy storage as a transformational technology, having led the formation of Argonne’s Joint Center for Energy Storage Research (JCESR). The center’s years-long quest to discover technologies beyond lithium-ion batteries has solidified the laboratory’s reputation as one of the key global players in battery research. ACCESS will tap Argonne’s full battery expertise, which extends well beyond JCESR and is dedicated to fulfilling the promise of energy storage.

Energy storage research has profound implications for energy security and national security. Chamberlain points out that approximately 1.3 billion people across the globe do not have access to electricity, with another billion having only sporadic access. Energy storage, coupled with renewable generation like solar, could solve that problem and eliminate the need to build out massive power grids. Batteries also have the potential to create a more secure, stable grid for countries with existing power systems and help fight global climate disruption through adoption of renewable energy and electric vehicles.

Argonne researchers are pursuing hundreds of projects in nanoscience, but some of the more notable include research into targeted drugs that affect only cancerous cells; magnetic nanofibers that can be used to create more powerful and efficient electric motors and generators; and highly efficient water filtration systems that can dramatically reduce the energy requirements for desalination or cleanup of oil spills. Other researchers are working with nanoparticles that create a super-lubricated state and other very-low friction coatings.

“When you think that 30 percent of a car engine’s power is sacrificed to frictional loss, you start to get an idea of the potential of these technologies,” Roelofs said. “But it’s not just about the ideas already at Argonne that can be brought to market, it’s also about the challenges for businesses that need Argonne-level resources. I”m convinced there are many startups out there working on transformational ideas that can greatly benefit from the help of a place Argonne to bring those ideas to fruition. That is what has me excited about ACCESS and NDW.”

For more information on ACCESS, see: access.anl.gov

For more information on NDW, see: nanoworks.anl.gov

You can read more about the announcement in an Oct. 6, 2015 article by Greg Watry for R&D magazine featuring an interview with Andreas Roelofs.

Enzymatic fuel cells with ultrasmall gold nanocluster

Scientists at the US Department of Energy’s Los Alamos National Laboratory have developed a DNA-templated gold nanocluster (AuNC) for more efficient biofuel cell design (Note: A link has been removed). From a Sept. 24, 2015 news item on ScienceDaily,

With fossil-fuel sources dwindling, better biofuel cell design is a strong candidate in the energy field. In research published in the Journal of the American Chemical Society (“A Hybrid DNA-Templated Gold Nanocluster For Enhanced Enzymatic Reduction of Oxygen”), Los Alamos researchers and external collaborators synthesized and characterized a new DNA-templated gold nanocluster (AuNC) that could resolve a critical methodological barrier for efficient biofuel cell design.

Here’s an image illustrating the DNA-templated gold nanoclusters,

Caption: Gold nanoclusters (~1 nm) are efficient mediators of electron transfer between co-self-assembled enzymes and carbon nanotubes in an enzyme fuel cell. The efficient electron transfer from this quantized nano material minimizes the energy waste and improves the kinetics of the oxygen reduction reaction, toward a more efficient fuel cell cycle. Credit: Los Alamos National Laboratory

Caption: Gold nanoclusters (~1 nm) are efficient mediators of electron transfer between co-self-assembled enzymes and carbon nanotubes in an enzyme fuel cell. The efficient electron transfer from this quantized nano material minimizes the energy waste and improves the kinetics of the oxygen reduction reaction, toward a more efficient fuel cell cycle.
Credit: Los Alamos National Laboratory

A Sept. 24, 2015 Los Alamos National Laboratory news release, which originated the news item, provides more details,

“Enzymatic fuel cells and nanomaterials show great promise and as they can operate under environmentally benign neutral pH conditions, they are a greener alternative to existing alkaline or acidic fuel cells, making them the subject of worldwide research endeavors,” said Saumen Chakraborty, a scientist on the project. “Our work seeks to boost electron transfer efficiency, creating a potential candidate for the development of cathodes in enzymatic fuel cells.”

Ligands, molecules that bind to a central metal atom, are necessary to form stable nanoclusters. For this study, the researchers chose single-stranded DNA as the ligand, as DNA is a natural nanoscale material having high affinity for metal cations and can be used to assembly the cluster to other nanoscale material such as carbon nanotubes.

In enzymatic fuel cells, fuel is oxidized on the anode, while oxygen reduction reactions take place on the cathode, often using multi copper oxidases. Enzymatic fuel cell performance depends critically on how effectively the enzyme active sites can accept and donate electrons from the electrode by direct electron transfer (ET). However, the lack of effective ET between the enzyme active sites, which are usually buried ~10Å from their surface, and the electrode is a major barrier to their development. Therefore, effective mediators of this electron transfer are needed.

The team developed a new DNA-templated gold nanocluster (AuNC) that enhanced electron transfer. This novel role of the AuNC as enhancer of electron transfer at the enzyme-electrode interface could be effective for cathodes in enzymatic fuel cells, thus removing a critical methodological barrier for efficient biofuel cell design.

Possessing many unique properties due to their discrete electron state distributions, metal nanoclusters (<1.5 nm diameter; ~2-144 atoms of gold, silver, platinum, or copper) show application in many fields.

Hypothesizing that due to the ultra-small size (the clusters are ~7 atoms, ~0.9 nm in diameter), and unique electrochemical properties, the AuNC can facilitate electron transfer to an oxygen-reduction reaction enzyme-active site and therefore, lower the overpotential of the oxygen reaction. Overpotential is the extra amount of energy required to drive an electrochemical reaction.

Ideally, it is desirable that all electrochemical reactions have minimal to no overpotential, but in reality they all have some. Therefore, to design an efficient electrocatalyst (for reduction or oxidation) we want to design it so that the reaction can proceed with a minimal amount of extra, applied energy.

When self assembled with bilirubin oxidase and carbon nanotubes, the AuNC acts to enhance the electron transfer, and it lowers the overpotential of oxygen reduction by a significant ~15 mV (as opposed to ~1-2 mV observed using other types of mediators) compared to the enzyme alone. The AuNC also causes significant enhancement of electrocatalytic current densities. Proteins are electronically insulating (they are complex, greasy and large), so the use of carbon nanotubes helps the enzyme stick to the electrode as well as to facilitate electron transfer.

Although gold nanoclusters have been used in chemical catalysis, this is the first time that we demonstrate they can also act as electron relaying agents to enzymatic oxygen reduction reaction monitored by electrochemistry.

Finally, the presence of AuNC does not perturb the mechanism of enzymatic O2 reduction. Such unique application of AuNC as facilitator of ET by improving thermodynamics and kinetics of O2 reduction is unprecedented.

Here’s a link to and a citation for the paper,

A Hybrid DNA-Templated Gold Nanocluster For Enhanced Enzymatic Reduction of Oxygen by Saumen Chakraborty, Sofia Babanova, Reginaldo C. Rocha, Anil Desireddy, Kateryna Artyushkova, Amy E. Boncella, Plamen Atanassov, and Jennifer S. Martinez. J. Am. Chem. Soc., 2015, 137 (36), pp 11678–11687 DOI: 10.1021/jacs.5b05338 Publication Date (Web): August 19, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

Carbyne: 40x stiffer than diamond

A material that’s tougher than diamond is the object of interest for researchers at the US Department of Energy’s Lawrence Livermore National Laboratory (LLNL) according to a Sept. 18, 2015 news item by Beth Ellison on Azonano (Note: A link has been removed),

Researchers at Lawrence Livermore National Laboratory (LLNL) have explored a method that uses laser-melted graphite to develop linear chains of carbon atoms.

This material, referred to as carbyne, could possess numerous unique properties, such as modification of the quantity of electrical current passing through a circuit according to the needs of a user. This research could probably lead to the creation of tiny electronics capable of turning on and off at an atomic scale.

A Sept. 17, 2015 LLNL news release (also on EurekAlert) details the research (Note: A link has been removed),

Carbyne is the subject of intense research because of its presence in astrophysical bodies, as well as its potential use in nanoelectronic devices and superhard materials. Its linear shape gives it unique electrical properties that are sensitive to stretching and bending, and it is 40 times stiffer than diamond. It also was found in the Murchison and Allende meteorites and could be an ingredient of interstellar dust.

Using computer simulations, LLNL scientist Nir Goldman and colleague Christopher Cannella, an undergraduate summer researcher from Caltech, initially intended to study the properties of liquid carbon as it evaporates, after being formed by shining a laser beam on the surface of graphite. The laser can heat the graphite surface to a few thousands of degrees, which then forms a fairly volatile droplet. To their surprise, as the liquid droplet evaporated and cooled in their simulations, it formed bundles of linear chains of carbon atoms.

“There’s been a lot of speculation about how to make carbyne and how stable it is,” Goldman said. “We showed that laser melting of graphite is one viable avenue for its synthesis. If you regulate carbyne synthesis in a controlled way, it could have applications as a new material for a number of different research areas, including as a tunable semiconductor or even for hydrogen storage.

“Our method shows that carbyne can be formed easily in the laboratory or otherwise. The process also could occur in astrophysical bodies or in the interstellar medium, where carbon-containing material can be exposed to relatively high temperatures and carbon can liquefy.”

Goldman’s study and computational models allow for direct comparison with experiments and can help determine parameters for synthesis of carbon-based materials with potentially exotic properties.

“Our simulations indicate a possible mechanism for carbyne fiber synthesis that confirms previous experimental observation of its formation,” Goldman said. “These results help determine one set of thermodynamic conditions for its synthesis and could account for its detection in meteorites resulting from high-pressure conditions due to impact.”

Here’s a link to and a citation for the paper,

Carbyne Fiber Synthesis within Evaporating Metallic Liquid Carbon by Christopher B. Cannella and Nir Goldman. J. Phys. Chem. C, 2015, 119 (37), pp 21605–21611 DOI: 10.1021/acs.jpcc.5b03781 Publication Date (Web): July 9, 2015 (print): Sept. 17, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

Dexter Johnson in a Sept. 18, 2015 posting about the latest carbyne developments on his Nanoclast blog (on the IEEE [Institute for Electrical and Electronics Engineers] website) provides a little history (Note: Links have been removed),

A couple of years ago, a material dubbed carbyne—which is a chain of carbon atoms held together by either double or alternating single and triple atomic bonds—was awarded the title of the world’s strongest material. Later, scientists also demonstrated that it has the unusual property of being able to change from being a conductor to an insulator when it’s stretched by as little as 3 percent.

Here’s an image illustrating the process,

A carbyne strand forms in laser-melted graphite. Carbyne is found in astrophysical bodies and has the potential to be used in nanoelectronic devices and superhard materials. Image by Liam Krauss/LLNL

A carbyne strand forms in laser-melted graphite. Carbyne is found in astrophysical bodies and has the potential to be used in nanoelectronic devices and superhard materials. Image by Liam Krauss/LLNL

Windows as solar panels

Thanks to Dexter Johnson’s Aug. 27, 2015 posting, I’ve found another type of ‘smart’ window (I have written many postings about nanotechnology-enabled windows, especially self-cleaning ones); this window is a solar panel (Note: Links have been removed),

In joint research between the Department of Energy’s Los Alamos National Laboratory (LANL) and the University of Milan-Bicocca (UNIMIB) in Italy, researchers have spent the last 16 months perfecting a technique that makes it possible to embed quantum dots into windows so that the window itself becomes a solar panel.

Of course, this is not the first time someone thought that it would be a good idea to make windows into solar collectors. But this latest iteration marks a significant development in the evolution of the technology. Previous technologies used organic emitters that limited the size of the concentrators to just a few centimeters.

The energy conversion efficiency the researchers were able to acheive with the solar windows was around 3.2 percent, which stands up pretty well when compared with state-of-the-art quantum dot-based solar cells that have reached 9 percent conversion efficiency.

An August 24, 2015 US Los Alamos National Laboratory news release, which inspired Dexter’s posting, describes the research and the US-Italian collaboration in more detail,

A luminescent solar concentrator [LSC] is an emerging sunlight harvesting technology that has the potential to disrupt the way we think about energy; It could turn any window into a daytime power source.

“In these devices, a fraction of light transmitted through the window is absorbed by nanosized particles (semiconductor quantum dots) dispersed in a glass window, re-emitted at the infrared wavelength invisible to the human eye, and wave-guided to a solar cell at the edge of the window,” said Victor Klimov, lead researcher on the project at the Department of Energy’s Los Alamos National Laboratory. “Using this design, a nearly transparent window becomes an electrical generator, one that can power your room’s air conditioner on a hot day or a heater on a cold one.”

… The work was performed by researchers at the Center for Advanced Solar Photophysics (CASP) of Los Alamos, led by Klimov and the research team coordinated by Sergio Brovelli and Francesco Meinardi of the Department of Materials Science of the University of Milan-Bicocca (UNIMIB) in Italy.

The news release goes on to describe the precursor work which made this latest step forward possible,

In April 2014, using special composite quantum dots, the American-Italian collaboration demonstrated the first example of large-area luminescent solar concentrators free from reabsorption losses of the guided light by the nanoparticles. This represented a fundamental advancement with respect to the earlier technology, which was based on organic emitters that allowed for the realization of concentrators of only a few centimeters in size.

However, the quantum dots used in previous proof-of-principle devices were still unsuitable for real-world applications, as they were based on the toxic heavy metal cadmium and were capable of absorbing only a small portion of the solar light. This resulted in limited light-harvesting efficiency and strong yellow/red coloring of the concentrators, which complicated their application in residential environments.

Here’s how they solved the problem (from the news release),

Klimov, CASP’s director, explained how the updated approach solves the coloring problem: “Our new devices use quantum dots of a complex composition which includes copper (Cu), indium (In), selenium (Se) and sulfur (S). This composition is often abbreviated as CISeS. Importantly, these particles do not contain any toxic metals that are typically present in previously demonstrated LSCs.”

“Furthermore,” Klimov noted, “the CISeS quantum dots provide a uniform coverage of the solar spectrum, thus adding only a neutral tint to a window without introducing any distortion to perceived colors. In addition, their near-infrared emission is invisible to a human eye, but at the same time is ideally suited for most common solar cells based on silicon.”

Francesco Meinardi, professor of Physics at UNIMIB, described the emerging work, noting, “In order for this technology to leave the research laboratories and reach its full potential in sustainable architecture, it is necessary to realize non-toxic concentrators capable of harvesting the whole solar spectrum.”

“We must still preserve the key ability to transmit the guided luminescence without reabsorption losses, though, so as to complement high photovoltaic efficiency with dimensions compatible with real windows. The aesthetic factor is also of critical importance for the desirability of an emerging technology,” Meinardi said. [emphasis mine]

I couldn’t agree more with Professor Meinardi. You’re much more likely to adopt something that’s good for you and the planet if you like the look. Following on that thought, you’re much more likely to adopt solar panel windows if they’re aesthetically pleasing.

However, there is still a problem to be solved,

Hunter McDaniel, formerly a Los Alamos CASP postdoctoral fellow and presently a quantum dot entrepreneur (UbiQD founder and president), added, “with a new class of low-cost, low-hazard quantum dots composed of CISeS, we have overcome some of the biggest roadblocks to commercial deployment of this technology.”

“One of the remaining problems to tackle is reducing cost, but already this material is significantly less expensive to manufacture than alternative quantum dots used in previous LSC demonstrations,” McDaniel said.

Nonetheless, they have high hopes the technology can be commercialized (although as Dexter notes, it’s probably not going to be in the near future), from the news release,

A key element of this work is a procedure comparable to the cell casting industrial method used for fabricating high optical quality polymer windows. It involves a new UNIMIB protocol for encapsulating quantum dots into a high-optical quality transparent polymer matrix. The polymer used in this study is a cross-linked polylaurylmethacrylate, which belongs to the family of acrylate polymers. Its long side-chains prevent agglomeration of the quantum dots and provide them with the “friendly” local environment, which is similar to that of the original colloidal suspension. This allows one to preserve light emission properties of the quantum dots upon encapsulation into the polymer.

Sergio Brovelli, the lead researcher on the Italian team, concluded: “Quantum dot solar window technology, of which we had demonstrated the feasibility just one year ago, now becomes a reality that can be transferred to the industry in the short to medium term, allowing us to convert not only rooftops, as we do now, but the whole body of urban buildings, including windows, into solar energy generators.”

“This is especially important in densely populated urban area where the rooftop surfaces are too small for collecting all the energy required for the building operations,” he said. He proposes that the team’s estimations indicate that by replacing the passive glazing of a skyscraper such as the One World Trade Center in NYC (72,000 square meters divided into 12,000 windows) with our technology, it would be possible to generate the equivalent of the energy need of over 350 apartments.

“Add to these remarkable figures, the energy that would be saved by the reduced need for air conditioning thanks to the filtering effect by the LSC, which lowers the heating of indoor spaces by sunlight, and you have a potentially game-changing technology towards “net-zero” energy cities,” Brovelli said.

For anyone interested in this latest work on energy harvesting and windows, here’s a link to and a citation for the paper,

Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots by Francesco Meinardi, Hunter McDaniel, Francesco Carulli, Annalisa Colombo, Kirill A. Velizhanin, Nikolay S. Makarov, Roberto Simonutti, Victor I. Klimov, & Sergio Brovelli. Nature Nanotechnology (2015) doi:10.1038/nnano.2015.178 Published online 24 August 2015

This paper is behind a paywall.