Tag Archives: US Dept. of Agriculture

Using a sponge to remove mercury from lake water

I’ve heard of Lake Como in Italy but Como Lake in Minnesota is a new one for me. The Minnesota lake is featured in a March 22, 2017 news item about water and sponges on phys.org,

Mercury is very toxic and can cause long-term health damage, but removing it from water is challenging. To address this growing problem, University of Minnesota College of Food, Agricultural and Natural Sciences (CFANS) Professor Abdennour Abbas and his lab team created a sponge that can absorb mercury from a polluted water source within seconds. Thanks to the application of nanotechnology, the team developed a sponge with outstanding mercury adsorption properties where mercury contaminations can be removed from tap, lake and industrial wastewater to below detectable limits in less than 5 seconds (or around 5 minutes for industrial wastewater). The sponge converts the contamination into a non-toxic complex so it can be disposed of in a landfill after use. The sponge also kills bacterial and fungal microbes.

Think of it this way: If Como Lake in St. Paul was contaminated with mercury at the EPA limit, the sponge needed to remove all of the mercury would be the size of a basketball.

A March 16, 2017 University of Minnesota news release, which originated the news item, explains why this discovery is important for water supplies in the state of Minnesota,

This is an important advancement for the state of Minnesota, as more than two thirds of the waters on Minnesota’s 2004 Impaired Waters List are impaired because of mercury contamination that ranges from 0.27 to 12.43 ng/L (the EPA limit is 2 ng/L). Mercury contamination of lake waters results in mercury accumulation in fish, leading the Minnesota Department of Health to establish fish consumption guidelines. A number of fish species store-bought or caught in Minnesota lakes are not advised for consumption more than once a week or even once a month. In Minnesota’s North Shore, 10 percent of tested newborns had mercury concentrations above the EPA reference dose for methylmercury (the form of mercury found in fish). This means that some pregnant women in the Lake Superior region, and in Minnesota, have mercury exposures that need to be reduced.  In addition, a reduced deposition of mercury is projected to have economic benefits reflected by an annual state willingness-to-pay of $212 million in Minnesota alone.

According to the US-EPA, cutting mercury emissions to the latest established effluent limit standards would result in 130,000 fewer asthma attacks, 4,700 fewer heart attacks, and 11,000 fewer premature deaths each year. That adds up to at least $37 billion to $90 billion in annual monetized benefits annually.

In addition to improving air and water quality, aquatic life and public health, the new technology would have an impact on inspiring new regulations. Technology shapes regulations, which in turn determine the value of the market. The 2015 EPA Mercury and Air Toxics Standards regulation was estimated to cost the industry around of $9.6 billion annually in 2020. The new U of M technology has a potential of bringing this cost down and make it easy for the industry to meet regulatory requirements.

Research by Abbas and his team was funded by the MnDRIVE Global Food Venture, MnDRIVE Environment, and USDA-NIFA. They currently have three patents on this technology. To learn more, visit www.abbaslab.com.

Here’s a link to and a citation for the paper,

A Nanoselenium Sponge for Instantaneous Mercury Removal to Undetectable Levels by Snober Ahmed, John Brockgreitens, Ke Xu, and Abdennour Abbas. Advanced Functional Materials DOI: 10.1002/adfm.201606572 Version of Record online: 6 MAR 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Nanotechnology and water sustainability webinar, Oct. 19, 2016

An upcoming (Oct. 19, 2016) webinar from the US National Nanotechnology Initiative (NNI) is the first of a new series (from an Oct. 7, 2016 news item on Nanowerk),

“Water Sustainability through Nanotechnology: A Federal Perspective” – This webinar is the first in a series exploring the confluence of nanotechnology and water. This event will introduce the Nanotechnology Signature Initiative (NSI): Water Sustainability through Nanotechnology and highlight the activities of several participating Federal agencies. …

The NNI event page for the Water Sustainability through Nanotechnology webinar provides more detail,

Panelists include Nora Savage (National Science Foundation), Daniel Barta (National Aeronautics and Space Adminstration), Paul Shapiro (U.S. Environmental Protection Agency), Jim Dobrowolski (USDA National Institute of Food and Agriculture), and Hongda Chen (USDA National Institute of Food and Agriculture).

Webinar viewers will be able to submit questions for the panelists to answer during the Q&A period. Submitted questions will be considered in the order received and may be posted on the NNI website. A moderator will identify relevant questions and pose them to the speakers. Due to time constraints, not all questions may be addressed during the webinar. The moderator reserves the right to group similar questions and to skip questions, as appropriate.

There will be more in this series according to the webinar event page,

  • Increase water availability.
  • Improve the efficiency of water delivery and use.
  • Enable next-generation water monitoring systems.

You can register here to participate.

The NNI has a webpage dedicated to Water Sustainability through Nanotechnology: Nanoscale solutions for a Global-Scale Challenge, which explains their perspective on the matter,

Water is essential to all life, and its significance bridges many critical areas for society: food, energy, security, and the environment. Projected population growth in the coming decades and associated increases in demands for water exacerbate the mounting pressure to address water sustainability. Yet, only 2.5% of the world’s water is fresh water, and some of the most severe impacts of climate change are on our country’s water resources. For example, in 2012, droughts affected about two-thirds of the continental United States, impacting water supplies, tourism, transportation, energy, and fisheries – costing the agricultural sector alone $30 billion. In addition, the ground water in many of the Nation’s aquifers is being depleted at unsustainable rates, which necessitates drilling ever deeper to tap groundwater resources. Finally, water infrastructure is a critically important but sometimes overlooked aspect of water treatment and distribution. Both technological and sociopolitical solutions are required to address these problems.

The text also goes on to describe how nanotechnology could  assist with this challenge.

$5.2M in nanotechnology grants from the US Department of Agriculture (USDA)

A March 30, 2016 news item on Nanowerk announces the 2016 nanotechnology grants from the US Dept. of Agriculture (USDA),

Agriculture Secretary Tom Vilsack today [March 30, 2016] announced an investment of more than $5.2 million to support nanotechnology research at 11 universities. The universities will research ways nanotechnology can be used to improve food safety, enhance renewable fuels, increase crop yields, manage agricultural pests, and more. The awards were made through the Agriculture and Food Research Initiative (AFRI), the nation’s premier competitive, peer-reviewed grants program for fundamental and applied agricultural sciences.

A March 30, 2016 USDA news release provides more detail,

“In the seven years since the Agriculture and Food Research Initiative was established, the program has led to true innovations and ground-breaking discoveries in agriculture to combat childhood obesity, improve and sustain rural economic growth, address water availability issues, increase food production, find new sources of energy, mitigate the impacts of climate variability and enhance resiliency of our food systems, and ensure food safety. Nanoscale science, engineering, and technology are key pieces of our investment in innovation to ensure an adequate and safe food supply for a growing global population,” said Vilsack. “The President’s 2017 Budget calls for full funding of the Agriculture and Food Research Initiative so that USDA can continue to support important projects like these.”

Universities receiving funding include Auburn University in Auburn, Ala.; Connecticut Agricultural Experiment Station in New Haven, Conn.; University of Central Florida in Orlando, Fla; University of Georgia in Athens, Ga.; Iowa State University in Ames, Iowa; University of Massachusetts in Amherst, Mass.; Mississippi State University in Starkville, Miss.; Lincoln University in Jefferson City, Mo.; Clemson University in Clemson, S.C.; Virginia Polytechnic Institute and State University in Blacksburg, Va.; and University of Wisconsin in Madison, Wis.

With this funding, Auburn University proposes to improve pathogen monitoring throughout the food supply chain by creating a user-friendly system that can detect multiple foodborne pathogens simultaneously, accurately, cost effectively, and rapidly. Mississippi State University will research ways nanochitosan can be used as a combined fire-retardant and antifungal wood treatment that is also environmentally safe. Experts in nanotechnology, molecular biology, vaccines and poultry diseases at the University of Wisconsin will work to develop nanoparticle-based poultry vaccines to prevent emerging poultry infections. USDA has a full list of projects and longer descriptions available online.

Past projects include a University of Georgia project developing a bio-nanocomposites-based, disease-specific, electrochemical sensors for detecting fungal pathogen induced volatiles in selected crops; and a University of Massachusetts project creating a platform for pathogen detection in foods that is superior to the current detection method in terms of analytical time, sensitivity, and accuracy using a novel, label-free, surface-enhanced Raman scattering (SERS) mapping technique.

The purpose of AFRI is to support research, education, and extension work by awarding grants that address key problems of national, regional, and multi-state importance in sustaining all components of food and agriculture. AFRI is the flagship competitive grant program administered by USDA’s National Institute of Food and Agriculture [NIFA]. Established under the 2008 Farm Bill, AFRI supports work in six priority areas: plant health and production and plant products; animal health and production and animal products; food safety, nutrition and health; bioenergy, natural resources and environment; agriculture systems and technology; and agriculture economics and rural communities. Since AFRI’s creation, NIFA has awarded more than $89 million to solve challenges related to plant health and production; $22 million of this has been dedicated to nanotechnology research. The President’s 2017 budget request proposes to fully fund AFRI for $700 million; this amount is the full funding level authorized by Congress when it established AFRI in the 2008 Farm Bill.

Each day, the work of USDA scientists and researchers touches the lives of all Americans: from the farm field to the kitchen table and from the air we breathe to the energy that powers our country. USDA science is on the cutting edge, helping to protect, secure, and improve our food, agricultural and natural resources systems. USDA research develops and transfers solutions to agricultural problems, supporting America’s farmers and ranchers in their work to produce a safe and abundant food supply for more than 100 years. This work has helped feed the nation and sustain an agricultural trade surplus since the 1960s. Since 2009, USDA has invested $4.32 billion in research and development grants. Studies have shown that every dollar invested in agricultural research now returns over $20 to our economy.

Since 2009, NIFA has invested in and advanced innovative and transformative initiatives to solve societal challenges and ensure the long-term viability of agriculture. NIFA’s integrated research, education, and extension programs, supporting the best and brightest scientists and extension personnel, have resulted in user-inspired, groundbreaking discoveries that are combating childhood obesity, improving and sustaining rural economic growth, addressing water availability issues, increasing food production, finding new sources of energy, mitigating climate variability, and ensuring food safety.

US Dept. of Agriculture awards $3.8M for nanotechnology research grants

I wonder just how much funding the US Dept. of Agriculture (USDA) is devoting to nanotechnology this year (2015). I first came across an announcement of $23M in the body of a news item about Zinkicide (my April 7, 2015 posting),

Found in Florida orchards in 2005, a citrus canker, citrus greening, poses a serious threat to the US state’s fruit industry. An April 2, 2105 news item on phys.org describes a possible solution to the problem,

Since it was discovered in South Florida in 2005, the plague of citrus greening has spread to nearly every grove in the state, stoking fears among growers that the $10.7 billion-a-year industry may someday disappear.

Now the U.S. Department of Agriculture has awarded the University of Florida a $4.6 million grant aimed at testing a potential new weapon in the fight against citrus greening: Zinkicide, a bactericide invented by a nanoparticle researcher at the University of Central Florida.

An April 29, 2015 article by Diego Flammini for Farm.com describes the latest USDA nanotechnology funding announcement,

In an effort to increase America’s food security, nutrition, food safety and environmental protection, the United States Department of Agriculture’s (USDA) National Institute of Food and Agriculture (NIFA) announced $3.8 million in nanotechnology research grants.

Flammini lists three of the eight recipients,

University of Georgia
With $496,192, the research team will develop different sensors that are able to detect fungal pathogens in crops. The project will also develop a smartphone app for farmers to have so they can access their information whenever necessary.

Rutgers University
The school will use its $450,000 to conduct a nationwide survey about nanotechnology and gauge consumer beliefs about it and its relationship to health. Among the specifics it will touch on is the use of visuals to communicate nanotechnology.

University of Massachusetts
The researchers will concentrate their $444,200 on developing a platform to detect pathogens in food that is better than the current methods.

A full list of the recipients can be found in the April 27, 2015 USDA news release featuring the $3.8M in awards,

  • The University of Georgia, Athens, Ga., $496,192
  • University of Iowa, Iowa City, Iowa., $496,180
  • University of Kentucky Research Foundation, Lexington, Ky., $450,000
  • University of Massachusetts, Amherst, Mass., $444,200
  • North Dakota State University, Fargo, N.D., $149,714
  • Rutgers University, New Brunswick. N.J., $450,000
  • Pennsylvania State University, University Park, University Park, Pa., $447,788
  • West Virginia University, Morgantown, W. Va., $496,168
  • University of Wisconsin-Madison, Madison, Wis., $450,100

You can find more details about the awards in this leaflet featuring the USDA project descriptions for the eight recipients.

Citrus canker, Florida, and Zinkicide

Found in Florida orchards in 2005, a citrus canker, citrus greening, poses a serious threat to the US state’s fruit industry. An April 2, 2105 news item on phys.org describes a possible solution to the problem,

Since it was discovered in South Florida in 2005, the plague of citrus greening has spread to nearly every grove in the state, stoking fears among growers that the $10.7 billion-a-year industry may someday disappear.

Now the U.S. Department of Agriculture has awarded the University of Florida a $4.6 million grant aimed at testing a potential new weapon in the fight against citrus greening: Zinkicide, a bactericide invented by a nanoparticle researcher at the University of Central Florida.

An April 2, 2015 University of Central Florida news release by Mark Schlueb (also on EurekAlert), which originated the news item, describes the problem and the solution (Zinkicide),

Citrus greening – also known by its Chinese name, Huanglongbing, or HLB – causes orange, grapefruit and other citrus trees to produce small, bitter fruit that drop prematurely and is unsuitable for sale or juice. Eventually, infected trees die. Florida has lost tens of thousands of acres to the disease.

“It’s a hundred-year-old disease, but to date there is no cure. It’s a killer, a true killer for the citrus industry,” said Swadeshmukul Santra, associate professor in the NanoScience Technology Center at UCF.

The bacteria that causes HLB is carried by the Asian citrus psyllid, a tiny insect that  feeds on leaves and stems of infected citrus trees, then carries the bacteria to healthy trees.

Zinkicide, developed by Santra, is designed to kill the bacteria.

The $4.6 million grant is the largest of five totaling $23 million that were recently announced by the USDA’s National Institute of Food and Agriculture.

The evaluation of Zinkicide is a multi-institute project involving 13 investigators from six institutions. Evan Johnson of UF’s [University of Florida] Citrus Research and Education Center at Lake Alfred is the project director, and there are a dozen co-principal investigators from UF, UCF, Oak Ridge National Laboratory (ORNL), Auburn University, New Mexico State University and The Ohio State University.

”Managing systemic diseases like HLB is a difficult challenge that has faced plant pathologists for many years,” said Johnson “It is a privilege to work with an excellent team of researchers from many different disciplines with the goal of developing new tools that are both effective and safe.”

A portion of the grant money, $1.4 million, flows to UCF, where Santra leads a team that also includes Andre Gesquiere, Laurene Tetard and the Oak Ridge National Laboratory collaborator, Loukas Petridis.

HLB control is difficult because current bactericidal sprays, such as copper, simply leave a protective film on the outside of a plant. The insect-transmitted bacteria bypasses that barrier and lives inside a tree’s fruit, stems and roots, in the vascular tissue known as the phloem. There, it deprives the tree of carbohydrate and nutrients, causing root loss and ultimately death. For a bactericide to be effective against HLB, it must be able to move within the plant, too.

Zinkicide is a nanoparticle smaller than a single microscopic cell, and researchers are cautiously optimistic it will be able to move systemically from cell to cell to kill the bacteria that cause HLB.

“The bacteria hide inside the plant in the phloem region,” Santra said. “If you spray and your compound doesn’t travel to the phloem region, then you cannot treat HLB.”

Zinkicide is derived from ingredients which are found in plants, and is designed to break down and be metabolized after its job is done. [emphasis mine]

It’s the first step in a years-long process to bring a treatment to market. UF will lead five years of greenhouse and field trials on grapefruit and sweet orange to determine the effectiveness of Zinkicide and the best method and timing of application.

The project also includes research to study where the nanoparticles travel within the plant, understand how they interact with plant tissue and how long they remain before breaking down. [emphasis mine]

If effective, the bactericide could have a substantial role in combatting HLB in Florida, and in other citrus-producing states and countries. It would also likely be useful for control of other bacterial pathogens infecting other crops.

The Zinkicide project builds as a spinoff from previous collaborations between Santra and UF’s Jim Graham, at the Citrus Research and Education Center to develop alternatives to copper for citrus canker control.

The previous Citrus Research and Education Foundation (CRDF)-funded Zinkicide project has issued three reports, for June 30, 2014, Sept. 30, 2014, and Dec. 31, 2014. This project’s completion date is May 2015. The reports which are remarkably succinct, consisting of two paragraphs, can be found here.

Oddly, the UCF news release doesn’t mention that Zinkicide (although it can be inferred) is a zinc particulate (I’m guessing they mean zinc nanoparticle) as noted on the CRDF project webpage. Happily, they are researching what happens after the bactericide has done its work on the infection. It’s good to see a life cycle approach to this research.

Commercializing cellulosic nanomaterials—a report from the US Dept. of Agriculture

Earlier this year in an April 10, 2014 post, I announced a then upcoming ‘nano commercialization’ workshop focused on cellulose nanomaterials in particular. While the report from the workshop, held in May, seems to have been published in August, news of its existence seems to have surfaced only now. From a Nov. 24, 2014 news item on Nanowerk (Note: A link has been removed),

The U.S. Forest Service has released a report that details the pathway to commercializing affordable, renewable, and biodegradable cellulose nanomaterials from trees. Cellulosic nanomaterials are tiny, naturally occurring structural building blocks and hold great promise for many new and improved commercial products. Commercializing these materials also has the potential to create hundreds of thousands of American jobs while helping to restore our nation’s forests.

“This report is yet another important step toward commercializing a material that can aid in restoring our nations’ forests, provide jobs, and improve products that make the lives of Americans better every day,” said U.S. Forest Service Chief Tom Tidwell. “The Forest Service plans to generate greater public and market awareness of the benefits and uses for these naturally-occurring nanomaterials.”

The report, titled “Cellulose Nanomaterials – A Path towards Commercialization” (pdf), is a result of a workshop held earlier this year that brought together a wide range of experts from industry, academia, and government to ensure that commercialization efforts are driven by market and user materials needs.

A Nov. 24, 2014 US Dept. of Agriculture news release (Note: The US Forest Service is a division of the US Dept. of Agriculture), which originated the news item, provides more detail about the reasons for holding the workshop (Note: A link has been removed),

Cellulose nanomaterials have the potential to add value to an array of new and improved products across a range of industries, including electronics, construction, food, energy, health care, automotive, aerospace, and defense, according to Ted Wegner, assistant director at the U.S. Forest Service Forest Products Laboratory in Madison, Wis.

“These environmentally friendly materials are extremely attractive because they have a unique combination of high strength, high stiffness, and light weight at what looks to be affordable prices,” Wegner explained. “Creating market pull for cellulose nanomaterials is critical to its commercialization.

The success of this commercialization effort is important to the U.S. Forest Service for another key reason: creating forests that are more resilient to disturbances through restorative actions. Removing excess biomass from overgrown forests and making it into higher value products like nanocellulose, is a win for the environment and for the economy.

“Finding high-value, high-volume uses for low-value materials is the key to successful forest restoration,” said Michael T. Rains, Director of the Northern Research Station and Forest Products Laboratory. “With about 400 million acres of America’s forests in need of some type of restorative action, finding markets for wood-based nanocellulose could have a huge impact on the economic viability of that work.”

The U.S. Forest Service, in collaboration with the U.S. National Nanotechnology Initiative, organized the workshop. Participants included over 130 stakeholders from large volume industrial users, specialty users, Federal Government agencies, academia, non-government organizations, cellulose nanomaterials manufactures and industry consultants. The workshop generated market-driven input in three areas: Opportunities for Commercialization, Barriers to Commercialization, and Research and Development Roles and Priorities. Issues identified by participants included the need for more data on materials properties, performance, and environmental, health, and safety implications and the need for a more aggressive U.S. response to opportunities for advancing and developing cellulose nanomaterial.

“The workshop was a great opportunity to get research ideas directly from the people who want to use the material,” says World Nieh, the U.S. Forest Service’s national program lead for forest products. “Getting the market perspective and finding out what barriers they have encountered is invaluable guidance for moving research in a direction that will bring cellulose nanomaterials into the marketplace for commercial use.”

The mission of the U.S. Forest Service, part U.S. Department of Agriculture, is to sustain the health, diversity and productivity of the nation’s forests and grasslands to meet the needs of present and future generations. The agency manages 193 million acres of public land, provides assistance to state and private landowners, and maintains the largest forestry research organization in the world. Public lands the Forest Service manages contribute more than $13 billion to the economy each year through visitor spending alone. Those same lands provide 20 percent of the nation’s clean water supply, a value estimated at $7.2 billion per year. The agency has either a direct or indirect role in stewardship of about 80 percent of the 850 million forested acres within the U.S., of which 100 million acres are urban forests where most Americans live.

The report titled, “Cellulose Nanomaterials – A Path towards Commercialization,” notes the situation from the US perspective (from p. 5 of the PDF report),

Despite great market potential, commercialization of cellulose nanomaterials in the United States is moving slowly. In contrast, foreign research, development, and deployment (RD&D) of cellulose nanomaterials has received significant governmental support through investments and coordination. [emphasis mine] U.S. RD&D activities have received much less government support and instead have relied on public-private partnerships and private sector investment. Without additional action to increase government investments and coordination, the United States could miss the window of opportunity for global leadership and end up being an “also ran” that has to import cellulose nanomaterials and products made by incorporating cellulose nanomaterials. If this happens, significant economic and social benefits would be lost. Accelerated commercialization for both the production and application of cellulose nanomaterials in a wide array of products is a critical national challenge.

I know the Canadian government has invested heavily in cellulose nanomaterials particularly in Québec (CelluForce, a DomTar and FPInnovations production facility for CNC [cellulose nanocrystals] also known as NCC [nanocrystalline cellulose]). There’s also some investment in Alberta (an unnamed CNC production facility) and Saskatchewan (Blue Goose Biorefineries). As for other countries and constituencies which come to mind and have reported on cellulose nanomaterial research, there’s Brazil, the European Union, Sweden, Finland, and Israel. I do not have details about government investments in those constituencies. I believe the report’s source supporting this contention is in Appendix E,  (from p. 41 of the PDF report),

Moon, Robert, and Colleen Walker. 2012. “Research into Cellulose
Nanomaterials Spans the Globe.” Paper360 7(3): 32–34. EBSCOhost. Accessed June 17, 2014 [behind a paywall]

Here’s a description of the barriers to commercialization (from p. 6 of the PDF report),

Clarifying the problems to be solved is a precursor to identifying solutions. The workshop identified critical barriers that are slowing commercialization. These barriers included lack of collaboration among potential producers and users; coordination of efforts among government, industry, and academia; lack of characterization and standards for cellulose nanomaterials; the need for greater market pull; and the need to overcome processing technical challenges related to cellulose nanomaterials dewatering and dispersion. While significant, these barriers are not insurmountable as long as the underlying technical challenges are properly addressed. With the right focus and sufficient resources, R&D should be able to overcome these key identified barriers.

There’s a list of potential applications (p. 7 of the PDF report).

Cellulose nanomaterials have demonstrated potential applications in a wide array of industrial sectors, including electronics, construction, packaging, food, energy, health care, automotive, and defense. Cellulose nanomaterials are projected to be less expensive than many other nanomaterials and, among other characteristics, tout an impressive strength-to-weight ratio (Erickson 2012, 26). The theoretical strength-to-weight performance offered by cellulose nanomaterials are unmatched by current technology (NIST 2008,
17). Furthermore, cellulose nanomaterials have proven to have major environmental benefits because they are recyclable, biodegradable, and produced from renewable resources.

I wonder if that strength-to-weight ratio comment is an indirect reference to carbon nanotubes which are usually the ‘strength darlings’ of the nanotech community.

More detail about potential applications is given on p. 9 of the PDF report,

All forms of cellulose nanomaterials are lightweight, strong, and stiff. CNCs possess photonic and piezoelectric properties, while CNFs can provide very stable hydrogels and aerogels. In addition, cellulose nanomaterials have low materials cost potential compared to other competing materials and, in their unmodified state, have so far shown few environmental, health, and safety (EHS) concerns (Ireland, Jones, Moon, Wegner, and Nieh 2014, 6). Currently, cellulose nanomaterials have demonstrated great potential for use in many areas, including aerogels, oil drilling additives, paints, coatings, adhesives, cement, food additives, lightweight packaging materials, paper, health care products, tissue scaffolding, lightweight vehicle armor, space technology, and automotive parts. Hence, cellulose nanomaterials have the potential to positively impact numerous industries. An important attribute of cellulose nanomaterials is that they are derived from renewable and broadly available resources (i.e., plant, animal, bacterial, and algal biomass). They are biodegradable and bring recyclability to products that contain them.

This particular passage should sound a familiar note for Canadians, from p. 11 of the PDF report,

However, commercialization of cellulose nanomaterials in the United States has been moving slowly. Since 2009, the USDA Forest Service has invested around $20 million in cellulose nanomaterials R&D, a small fraction of the $680 million spent on cellulose nanomaterials R&D by governments worldwide (Erickson 2014, 26). In order to remain globally competitive, accelerated research, development, and commercialization
of cellulose nanomaterials in the United States is imperative. Otherwise, the manufacturing of cellulose nanomaterials and cellulose nanomaterial-enabled products will be established by foreign producers, and the United States will be purchasing these materials from other countries. [emphasis mine] Establishing a large-scale production of cellulose nanomaterials in the United States is critical for creating new uses from wood—which is, in turn, vital to the future of forest management and the livelihood of landowners.

Here are some of the challenges and barriers identified in the workshop (pp. 19 – 21 of the PDF report),

Need for Characterization and Standards:
In order for a new material to be adopted for use, it must be well understood and end users must have confidence that the material is the same from one batch to the next. There is a need to better characterize cellulose nanomaterials with respect to their structure, surface properties, and performance. …

Production and Processing Methods:
Commercialization is inhibited by the lack of processing and production methods and know-how for ensuring uniform, reliable, and cost-effective production of cellulose nanomaterials, especially at large volumes. This is both a scale-up and a process control issue. …

Need for More Complete EHS Information:
Limited EHS information creates a significant barrier to commercialization because any uncertainty regarding material safety and the pending regulatory environment presents risk for early movers across all industries. …

Need for Market Pull and Cost/Benefit Performance:
As noted earlier, cellulose nanomaterials have potential applications in a wide range of areas, but there is no single need that is driving their commercial development. Stakeholders suggested several reasons, including lack of awareness of the material and its properties and a need for better market understanding. Commercialization will require market pull in order to incentivize manufacturers, yet there is no perceptible demand for cellulose nanomaterials at the moment. …

Challenge of Dewatering/Drying:
One of the most significant technical challenges identified is the dewatering of cellulose nanomaterials into a dry and usable form for incorporation into other materials. The lack of an energy-efficient, cost-effective drying process inhibits commercialization of cellulose nanomaterials, particularly for non-aqueous applications. Cellulose nanomaterials in low-concentration aqueous suspensions raise resource and transportation costs, which make them less viable commercially.

Technology Readiness:
Technology readiness is a major challenge in the adoption of cellulose nanomaterials. One obstacle in developing a market for cellulose nanomaterials is the lack of information on the basic properties of different types of cellulose nanomaterials, as noted in the characterization and standards discussion. …

The rest of the report concerns Research & Development (R&D) Roles and Priorities and the Path Forward. In total, this document is 44 pp. long and includes a number of appendices. Here’s where you can read “Cellulose Nanomaterials – A Path towards Commercialization.”

US Dept. of Agriculture wants to commercialize cellulose nanomaterials

Lynn Bergeson in an April 7, 2014 posting on the Nanotechnology Now website announced an upcoming ‘nano commercialization’ workshop (Note: A link has been removed),

The U.S. Department of Agriculture (USDA) and National Nanotechnology Initiative (NNI) will hold a May 20-21, 2014, workshop entitled “Cellulose Nanomaterial — A Path Towards Commercialization.” See http://www.nano.gov/ncworkshop The workshop is intended to bring together high level executives from government and multiple industrial sectors to identify pathways for the commercialization of cellulose nanomaterials and facilitate communication across industry sectors to determine common challenges.

You can find out more about the Cellulose Nanomaterial — A Path Towards Commercialization workshop here where you can also register and find an agenda, (Note: Links have been removed),

The primary goal of the workshop is to identify the critical information gaps and technical barriers in the commercialization of cellulose nanomaterials with expert input from user communities. The workshop also supports the announcement last December by USDA Secretary Thomas Vilsack regarding the formation of a public-private partnership between the USDA Forest Service and the U.S. Endowment for Forestry and Communities to rapidly advance the commercialization of cellulose nanomaterials. In addition, the workshop supports the goals of the NNI Sustainable Nanomanufacturing Signature Initiative/

The workshop is open to the public, after registration, on a first-come, first-served basis.

There is an invitation letter dated Feb. 7, 2014, which provides some additional detail,

The primary goals of the workshop are to identify critical information gaps and technical barriers in the commercialization of cellulose nanomaterials with expert input from user communities. We plan to use the outcome of the workshop to guide research planning in P3Nano and in the Federal Government.

The Cellulose Nanomaterial — A Path Towards Commercialization workshop agenda lists some interesting names. The names I’ve chosen from the list are the speakers from the corporate sectors, all eight of them with two being tentatively scheduled; there are 22 speakers listed in total at this time,

Tom Connelly – DuPont (Tentative)
Travis Earles, Technology Manager, Lockheed Martin
Beth Cormier, Vice President for R&D and Technology, SAPPI Paper
Ed Socci, Director of Beverage Packaging, PepsiCo Advanced Research
Mark Harmon, DuPont (tentative)
Kim Nelson, Vice President for Government Affairs, API
Jean Moreau, CEO, CelluForce
Yoram Shkedi, Melodea

For the most part the speakers will be academics or government bureaucrats and while the title is ‘cellulose nanomaterials’ the speaker list suggests the topic will be heavily weighted to CNC/NCC (cellulose nanocrystals, aka, nanocrystalline cellulose). Of course, I recognize the Canadian, Jean Moreau of CelluForce, a Canadian CNC production facility. I wonder if he will be discussing the stockpile, which was first mentioned here in my Oct. 3, 2013 posting,

I stumbled across an interesting little article on the Celluforce website about the current state of NCC (nanocrystalline cellulose aka CNC [cellulose nanocrystals]) production, Canada’s claim to fame in the nanocellulose world. From an August 2013 Natural Resources Canada, Canadian Forest Service, Spotlight series article,

The pilot plant, located at the Domtar pulp and paper mill in Windsor, Quebec, is a joint venture between Domtar and FPInnnovations called CelluForce. The plant, which began operations in January 2012, has since successfully demonstrated its capacity to produce NCC on a continuous basis, thus enabling a sufficient inventory of NCC to be collected for product development and testing. Operations at the pilot plant are temporarily on hold while CelluForce evaluates the potential markets for various NCC applications with its stockpiled material. [emphasis mine]

I also recognized Melodea which I mentioned here in an Oct. 31, 2013 posting titled: Israeli start-up Melodea and its nanocrystalline cellulose (NCC) projects.

A couple of final notes here, NCC (nanocrystalline cellulose) is also known as cellulose nanocrystals (CNC) and I believe the second term is becoming the more popular one to use. As for the final of these two notes, I had an illuminating conversation earlier this year (2014) about CNC and its accessibility. According to my source, there’s been a decision that only large industry players will get access to CNC for commercialization purposes. I can’t verify the veracity of the statement but over the last few years I’ve had a few individual entrepreneurs contact me with hopes that i could help them access the materials. All of them of them had tried the sources I was to suggest and not one had been successful. As well, I note the speaker list includes someone from PepsiCo, someone from Dupont, and someone from Lockheed Martin, all of which could be described as large industry players. (I’m not familiar with either API or SAPPI Paper so cannot offer any opinions as to their size or importance.) Melodea’s access is government-mandated due to research grants from the European Union’s Seventh Framework Program (FP7).

I’m not sure one can encourage innovation by restricting access to raw materials to large industry players or government-funded projects as one might be suspected from my back channel experience, the conversation as reported to me, and the speaker list for this workshop.

Biochemical fate of nanoemulsion-based food delivery systems in the gastrointestinal tract

This is a story about nutraceuticals or, more specifically, about nanotechnology and food according to a Jan. 20, 2014 news item on Azonano,

Food scientist Hang Xiao of the University of Massachusetts Amherst recently received a four-year, $491,220 grant to study the biochemical fate of nanoemulsion-based food delivery systems in the gastrointestinal (GI) tract, hoping to re-shape them and enhance the absorption of beneficial food components encapsulated in delivery systems.

Food biochemists like Xiao believe that if taken up in appropriate amounts and forms, certain food components known as nutraceuticals might benefit human health by providing anti-inflammatory or anti-cancer effects. Nutraceuticals include flavonoids and carotenoids in fruits and vegetables, for example.

This project, supported by the U.S. Department of Agriculture’s National Institute of Food and Agriculture, will focus on manipulating the structure and composition of nano-emulsion delivery systems to modify the fate of encapsulated nutraceuticals in the GI tract to enhance their bioavailability.

A Jan. 17, 2014 news release on EurekAlert, which originated the news item, explains further,

“In the last decade, knowledge has been advancing about how to effectively deliver beneficial components in food. This research will allow us to direct the assembly of nano-emulsion droplets to create characteristics that will dictate how they are digested and absorbed,” Xiao explains. “This would be a model for nutraceutical delivery in a wide range of food products. Someday prepared foods may help lower our risk of cancer, for example.”

Specifically, using both cell culture and animal models, Xiao and colleagues will design lipid nanoparticles at three stages: From nano-emulsion droplets containing nutraceuticals, to mixed micelles and finally to chylomicrons. To start this process, digestion physiochemically disassembles nano-emulsion droplets. The resulting chemical components are then assembled into mixed micelles in the small intestine, where epithelial cells called enterocytes take them up. There they are reassembled into chylomicrons and absorbed into blood circulation through the lymph system.

The scientists want to influence the size and composition of chylomicrons, because these characteristics dictate the fate of nutraceuticals encapsulated in the chylomicrons. Certain sizes and compositions are better able to deliver nutraceuticals to the lymph system, which protects nutraceuticals from being cleared by the liver. This will enhance bioavailability of flavonoids and other beneficial compounds to the body, potentially offering health benefits.

“We’re basically utilizing what already happens in our bodies all the time, but introducing food-grade nano-emulsion systems that can influence the nature of mixed micelles as well as chylomicrons,” says Xiao. “It’s safe, it’s all digested and simply delivers beneficial food components to a greater extent than if the system was left alone.”

Given that this falls under my nanotechnology and food classification, I was reminded of a recent panel discussion on the topic held by the UK’s Guardian newspaper, from my Oct. 29, 2013 posting,

There’s no indication as to what the 25 audience members thought about the session although Hilary Sutcliffe of Matter was quoted,

Audience member Hilary Sutcliffe, director of the Matter think tank on responsible innovation, was keen to emphasise the limits of nanotechnology in food. “If we’re really lucky, we might get nanosalt and a couple of nano-encapsulated vitamins that go in products,” she told the panel, describing her disappointment in the progress of nanotechnology in food to date.

Sutcliffe explained that these limited applications are expensive and not that useful: manufacturers would rather just reduce salt content than pay for nanosalt, and vitamins and flavourings do not need to be nano-encapsulated because they can be added to foods at the microscale, rather than at the nano-level, which is one thousand times smaller.

She also suggested that, so far, the possible uses of nanotechnology have only been in Western diets and that people should be realistic about its use for tackling the impending global food crisis. “Nothing about nanotechnology is in relation to anything except Western, expensive foods that are slightly gratuitous and not particularly necessary,” she said, before adding that it is not currently helping to feed the world. “If you are going to talk about feeding the world, be brave, take on GM, let’s have that discussion.”

I was not able to find notice of any US public engagement sessions on the topic of ‘nano and food’. If you know of any such sessions, please do share in the comments section.

Industrial Biotechnology highlights nanotechnology applied to food and agriculture in the US

The Dec. 2012 issue of Industrial Biotechnology featured a special research section highlighting innovative uses of nanotechnology in agriculture and food in the US. The Jan. 28, 2013 news release on EurekAlert provides more detail,

The U.S. Department of Agriculture (USDA) invests nearly $10 million a year to support about 250 nanoscale science and engineering projects that could lead to revolutionary advances in agriculture and food systems. …

In their introductory article, “Overview: Nanoscale Science and Engineering for Agriculture and Food Systems,” Co-Guest Editors Norman Scott, PhD, Professor, Cornell University (Ithaca, NY) and Hongda Chen, PhD, National Program Leader, National Institute of Food and Agriculture, USDA (Washington, DC), describe the promising early advances nanotechnology is enabling all along the food supply chain, from production through consumption, and especially in the area of food safety.

This special issue of IB [Industrial Biotechnology] includes the review article “Bioactivity and Biomodification of Ag, ZnO, and CuO Nanoparticles with Relevance to Plant Performance in Agriculture” by Anne Anderson and coauthors, Utah State University, Logan, in which they discuss the environmental factors that affect the biological activity and potential agricultural utility of nanoparticle. In the original research article “Effect of Silver Nanoparticles on Soil Denitrification Kinetics” Allison Rick VandeVoort and Yuji Arai, Clemson University (South Carolina), describe the effects of three different silver nanoparticles on native bacteria-mediated soil denitrification.

The short communication “Soft Lithography-Based Fabrication of Biopolymer Microparticles for Nutrient Microencapsulation” by Natalia Higuita-Castro, et al., The Ohio State University and Abbott Nutrition Products Division, Columbus, OH, describes a high-throughput microfabrication method to encapsulate nutrients that can enhance food nutritional value and appearance. Dan Luo and colleagues, Cornell University, Ithaca, NY, present a promising microfluidic-based scale-up method for cell-free protein production in the methods article “Cell-Free Protein Expression from DNA-Based Hydrogel (P-Gel) Droplets for Scale-Up Production.”

“The rapid expansion in nanoscale science and technology in our community with new insights and methods in biomolecular and cellular processing will spur industrial biotechnology innovation in a number of important sectors,” says Larry Walker, PhD, Co-Editor-in-Chief and Professor, Biological & Environmental Engineering, Cornell University, Ithaca, NY.

These articles are open access although I don’t believe that the journal is necessarily open access. Before I explain that further, here’s a bit more about the editors and the publisher,

About the Journal

Industrial Biotechnology, led by Co-Editors-in-Chief Larry Walker, PhD, and Glenn Nedwin, PhD, MBA, is an authoritative journal focused on biobased industrial and environmental products and processes, published bimonthly in print and online. The Journal reports on the science, business, and policy developments of the emerging global bioeconomy, including biobased production of energy and fuels, chemicals, materials, and consumer goods. The articles published include critically reviewed original research in all related sciences (biology, biochemistry, chemical and process engineering, agriculture), in addition to expert commentary on current policy, funding, markets, business, legal issues, and science trends. Industrial Biotechnology offers the premier forum bridging basic research and R&D with later-stage commercialization for sustainable biobased industrial and environmental applications.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative medical and biomedical peer-reviewed journals, including Metabolic Syndrome and Related Disorders, Population Health Management, Diabetes Technology & Therapeutics, and Journal of Women’s Health. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry’s most widely read publication worldwide. A complete list of the firm’s 70 journals, newsmagazines, and books is available on the Mary Ann Liebert, Inc., publishers website at http://www.liebertpub.com.

The publisher, Mary Ann Liebert, offers an open access option to authors and research funders, which means that for a fee, an article will be freely available online but (I strongly suspect) not all the articles in a journal issue are necessarily published under an open access agreement. In contrast, if it’s an article in a Wiley or Elsevier journal, you can be pretty much guaranteed that the online article is behind a paywall.

Meat fresh off the printer

Modern Meadow Inc. promises to print meat on a 3-D printer at some time in the future but first expects to be printing leather (calfskin) by the end of this year (2012). Anna Kamenetz  in her Aug. 15, 2012 (?) article for Fast Company’s Co.Exist website notes,

… Modern Meadow [MM] co-founder and CEO Andras Forgacs, explains, this new venture is, ahem, a natural outgrowth of that one [a company called Organovo, a startup specializing in 3-D printed, bioengineered organs founded by Andras’ father, Gabor Forgacs who’s co-founded MM with Andras]. “The idea struck us that if we can make medical-grade tissues that are good enough for drug companies, good enough for patients, then certainly we can find other applications for tissue engineering.” Forgacs does seem to understand how terrifying that sounds, which is why his startup has been relatively press-shy until the announcement this morning, and also why they’re starting with wearable, not edible, products. Still, he argues that cell culturing for food is as old as, well, culture itself:

“Whether you’re brewing beer or making yogurt, you’re really doing cell culture,” he [Andras Forgacs] says. In this case, though, the process involves biopsying a living animal (a relatively harmless procedure), isolating the desired cells, growing large numbers of them, and preparing them into cell aggregates–spheres of tens of thousands of cells. These aggregates can then become the raw material for more industrial processes. In the case of complete organs, that process is something like 3-D printing. For calfskin–the product that Modern Meadow intends to turn out by the end of the year–it would resemble something more like regular printing or weaving. The end result will be a hairless, pre-tanned, soft, smooth, chemical- and waste-free material in any color or pattern imaginable …

It’s not easy to find information about this company (they don’t seem to have a website) and, I gather from elsewhere in Kamenetz’s article, they’ve been media shy until now.

The US Dept. of Agriculture (USDA)  provides some information about a small business grant they gave to Modern Meadow for the 2012 fiscal year. From the Modern Meadow page on the USDA Research, Education & Economics Information System website, here are the project goals,

The objective of this proposal is to construct muscle tissues by a novel and versatile tissue engineering technology and to assess their texture and composition for use as minced meat. The patented “print-based” technology has several distinguishing features. It is scaffold-free – it does not rely on any artificial material to form the desired structure. The process to build a tissue construct utilizes the automated deposition of convenient multicellular units, suitable for rapid prototyping and high-throughput production. The method has solid scientific underpinning based on tissue self-assembly processes akin to those evident in early morphogenesis (i.e. tissue fusion, engulfment and cell sorting). The ultimate product that will be developed based on the proposed studies is an animal muscle strip that can be used as minced meat for the preparation of sausages, patties and nuggets. The two aims that will be pursued in this Phase I application are 1) to fabricate 3D cellular sheets composed of porcine cells and 2) to mature the cellular sheets into muscle tissue and measure its meat characteristics. The related technical objectives are 1) to determine the optimal cellular composition (type and ratio of muscle cells, fibroblasts and adipocytes) to produce “easy-to-handle” cellular sheets and 2) to find the most efficient stimulation method (mechanical, electrical or a combination of both) to achieve muscle formation with similar mechanical and biochemical properties to meat. The successful completion of the proposed project will provide the optimal parameters and conditions for engineering strips of mammalian muscle tissue ((2 x 1 x 0.5) cm3) with appropriate mechanical and biochemical properties to be used as minced lean meat. The building of larger pieces, that may need to be perfused and engineered around bio-printed blood vessels, would be carried out in Phase II.

If you’d told me about ‘vat’ or ‘printed’ meat five years ago I would have been horrified and suspicious. I’m somewhat less horrified today but still suspicious or perhaps I should call it, cautious.