Tag Archives: US Food and Drug Administration

US Food and Drug Administration approval for next generation spinal interbody fusion implant

For the first time, the US Food and Drug Administration (FDA) has approved a nanotechnology-enabled interbody spinal fusion implant, according to a Nov. 12, 2014 news item on Azonano,

Titan Spine, a medical device surface technology company focused on developing innovative spinal interbody fusion implants, today announced that it has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) to market its Endoskeleton® line of interbody fusion implants featuring its next-generation nanoLOCKTM surface technology.

This clearance marks Titan’s line of Endoskeleton® spinal implants as the first FDA-approved interbody fusion devices to feature nanotechnology.

A Nov. 22, 2014 news item on Today’s Medical Developments.com provides more detail about the implants,

Titan’s new nanoLOCK surface technology enhances the company’s line of Endoskeleton devices with an increased amount of nano-scaled textures to up-regulate a statistically significant greater amount of the osteogenic and angiogenic growth factors that are critical for bone growth and fusion when compared to PEEK and the company’s current surface.

Barbara Boyan, Ph.D., dean of the School of Engineering at Virginia Commonwealth University, and an investigator in various Titan Spine studies, said, “This new surface technology further enhances Titan’s current surface and is the result of extensive research in how to create a significantly greater amount of nano-scaled textures that we have shown to be important for the osteogenic response necessary for fusion. The nanoLOCK surface topography is far different than what is found on titanium-coated PEEK implants. In addition, the nanoLOCK surface is not created by applying a coating, but rather is formed by a reductive process of the titanium itself. This eliminates the potential for delamination, which is a concern for products with a PEEK-titanium interface. My team is proud to collaborate with Titan Spine to help develop such a differentiated technology that is truly designed to benefit both patients and surgeons.”

Titan’s nanoLOCK surface is a significant advancement of the company’s first-generation surface. The patented nanoLOCK manufacturing process creates additional textures at the critical nano level. However, there are no changes to the device indications for use, design, dimensions, or materials. Additionally, mechanical testing demonstrated that the strength of the company’s line of Endoskeletonimplants are unaffected by the new surface treatment.

Earlier this year Titan Spine announced the first surgery using one of its Endoskeleton implants. From a July 14, 2014 Titan Spine press release,

Titan Spine, a medical device surface technology company focused on developing innovative spinal interbody fusion implants, today announced that it has received clearance from the U.S. Food and Drug Administration (FDA) to commercially release its Endoskeleton® TL system, a spinal fusion system utilizing a lateral approach. The Endoskeleton® TL represents the first lateral fusion device to feature surface technology that is designed to participate in the fusion process by creating an osteogenic response to the implant’s topography.

The Endoskeleton® TL device utilizes Titan’s proprietary roughened titanium surface technology which has been shown to upregulate the production of osteogenic and angiogenic factors that are critical for bone growth and fusion. In addition, the design of the TL device incorporates large windows and large internal volumes to allow for significant bone graft packing, clear CT and MRI imaging, desired bone graft loading, and the ability to pack additional bone graft material within the device following implantation. Members of the TL design team include Kade Huntsman, M.D., Orthopedic Spine Surgeon with the Salt Lake Orthopaedic Clinic in Salt Lake City, Utah; Andy Kranenburg, M.D., Co-Medical Director of the Providence Medford Medical Center Spine Institute in Medford, OR; Axel Reinhardt, M.D., Head of the Department of Spinal Surgery at the Specialized Orthopaedic Hospital in Potsdam, Germany; and Paul Slosar, M.D., Chief Medical Officer for Titan Spine.

Dr. Huntsman performed the first surgeries utilizing the Endoskeleton® TL on July 9th, 2014 at St. Mark’s Hospital in Salt Lake City, Utah. …

“The Endoskeleton® TL device is the first application of surface technology to the lateral approach,” commented Dr. Slosar. “The ability to orchestrate cellular behavior and promote bone growth in response to an interbody device has not been in the lateral surgeon’s armamentarium until now. The TL is the byproduct of a unique collaboration between academic biomaterial scientists, spine surgeons, and industry experts to create a truly differentiated lateral interbody device that is designed to benefit both patients and surgeons. With the addition of the TL device, Titan Spine now offers its surface technology and complete line of titanium devices for virtually all interbody fusion spine surgery procedures in the cervical and lumbar spine.”

The full line of Endoskeleton® devices features Titan Spine’s proprietary implant surface technology, consisting of a unique combination of roughened topographies at the macro, micro, and cellular levels. [emphasis mine] This combination of surface topographies is designed to create an optimal host-bone response and actively participate in the fusion process by promoting new bone growth, encouraging natural production of bone morphogenetic proteins (BMP’s) and creating the potential for a faster and more robust fusion.

It would seem the implant used in the July 2014 surgery is not nanotechnology-enabled, which suggests nanoLOCK is a next-generation implant being marketed only a few months after the first generation was made available. Unfortunately, the Titan Spine website is still partially (‘surface technology’ tab) under construction so I was not able to find more details about the technology. In any event, that’s quite a development pace.

Treatment for patients infected with the ebola virus (a response to crisis in West African countries)

I’ve not actively kept up with the situation in the West African countries suffering an outbreak of the ebola virus other than to note that it is ongoing. My Aug. 15, 2014 post provides a snapshot of the situation and various new treatments, including one based on tobacco, which could be helpful but appeared not to have been tested and/or deployed. There was a lot of secrecy (especially from Medicago, a Canadian company) regarding the whole matter of treatments and vaccines.

There seem to have been some new developments on the treatment side, involving yet another Canadian company, Tekmira, according to a Sept. 23, 2013 news item on Azonano,

Tekmira Pharmaceuticals Corporation, a leading developer of RNA interference (RNAi) therapeutics, today announced that the FDA [US Food and Drug Administration] has authorized Tekmira to provide TKM-Ebola for treatment under expanded access protocols to subjects with confirmed or suspected Ebola virus infections.

A Sept. 22, 2014 Tekmira news release, which originated the news item, expands on the topic of regulatory issues associated with bringing this treatment to the areas suffering the outbreak,

“Tekmira is reporting that an appropriate regulatory and clinical framework is now in place to allow the use of TKM-Ebola in patients. We have worked with the FDA and Health Canada to establish this framework and a treatment protocol allowing us to do what we can to help these patients,” said Dr. Mark J. Murray Tekmira’s President and CEO.

“We have insisted on acting responsibly in the interest of patients and our stakeholders,” added Dr. Murray. “Today we are reporting that, working closely with regulators in the United States and Canada, we have established a framework for TKM-Ebola use in multiple patients. In the US, the FDA has granted expanded access use of TKM-Ebola under our Investigational New Drug application (IND) and Health Canada has established a similar framework, both of which allow the use of our investigational therapeutic in more patients.”

“We have already responded to requests for the use of our investigational agent in several patients under emergency protocols, in an effort to help these patients, a goal we share with the FDA and Health Canada. TKM-Ebola has been administered to a number of patients and the repeat infusions have been well tolerated. However, it must be kept in mind that any uses of the product under expanded access, does not constitute controlled clinical trials. These patients may be infected with a strain of Ebola virus which has emerged subsequent to the strain that our product is directed against, and physicians treating these patients may use more than one therapeutic intervention in an effort to achieve the best outcome,” said Dr. Murray. “Our TKM-Ebola drug supplies are limited, but we will continue to help where we can, as we continue to focus on the other important objectives we have to advance therapies to meet the unmet needs of patients.”

TKM-Ebola is an investigational therapeutic, being developed under an FDA approved IND, which is currently the subject of a partial clinical hold under which the FDA has allowed the potential use of TKM-Ebola in individuals with a confirmed or suspected Ebola virus infection.

About FDA Expanded Access Program

Expanded access is the use of an investigational drug outside of a clinical trial to treat a patient, with a serious or immediately life-threatening disease or condition, who has no comparable or satisfactory alternative treatment options. FDA regulations allow access to investigational drugs for treatment purposes on a case-by-case basis for an individual patient, or for intermediate-size groups of patients with similar treatment needs who otherwise do not qualify to participate in a clinical trial. (Source: www.fda.com)

About TKM-Ebola, an Anti-Ebola Virus RNAi Therapeutic

TKM-Ebola, an anti-Ebola virus RNAi therapeutic, is being developed under a $140 million contract with the U.S. Department of Defense’s Medical Countermeasure Systems BioDefense Therapeutics (MCS-BDTX) Joint Product Management Office. Earlier preclinical studies were published in the medical journal The Lancet and demonstrated that when siRNA targeting the Ebola virus and delivered by Tekmira’s LNP [Lipid Nanoparticle] technology were used to treat previously infected non-human primates, the result was 100 percent protection from an otherwise lethal dose of Zaire Ebola virus (Geisbert et al., The Lancet, Vol. 375, May 29, 2010). In March 2014, Tekmira was granted a Fast Track designation from the U.S. Food and Drug Administration for the development of TKM-Ebola.

About Joint Project Manager Medical Countermeasure Systems (JPM-MCS)

This work is being conducted under contract with the U.S. Department of Defense Joint Project Manager Medical Countermeasure Systems (JPM-MCS). JPM-MCS, a component of the Joint Program Executive Office for Chemical and Biological Defense, aims to provide U.S. military forces and the nation with safe, effective, and innovative medical solutions to counter chemical, biological, radiological, and nuclear threats. JPM-MCS facilitates the advanced development and acquisition of medical countermeasures and systems to enhance biodefense response capability. For more information, visit www.jpeocbd.osd.mil.

About Tekmira

Tekmira Pharmaceuticals Corporation is a biopharmaceutical company focused on advancing novel RNAi therapeutics and providing its leading lipid nanoparticle (LNP) delivery technology to pharmaceutical partners. Tekmira has been working in the field of nucleic acid delivery for over a decade and has broad intellectual property covering LNPs. Further information about Tekmira can be found at www.tekmira.com. Tekmira is based in Vancouver, B.C. Canada.

Forward-Looking Statements and Information

This news release contains “forward-looking statements” or “forward-looking information” within the meaning of applicable securities laws (collectively, “forward-looking statements”). Forward-looking statements in this news release include statements about Tekmira’s strategy, future operations, clinical trials, prospects and the plans of management; an appropriate regulatory and clinical  framework for emergency use of TKM-Ebola in subjects with confirmed or suspected Ebola infections; FDA grant of expanded access use of TKM-Ebola under Tekmira’s IND; Health Canada’s establishment of a similar framework for TKM-Ebola; Tekmira’s response to requests for the use of TKM-Ebola in several patients under emergency protocols and the results thereon; the current supply of TKM-Ebola drug; the partial clinical hold on the TKM-Ebola IND by the FDA (enabling the potential use of TKM-Ebola in individuals with a confirmed or suspected Ebola virus infection); the quantum value of the contract with the JPM-MCS; and Fast Track designation from the FDA for the development of TKM-Ebola.

With respect to the forward-looking statements contained in this news release, Tekmira has made numerous assumptions regarding, among other things, the clinical framework for emergency use of TKM-Ebola. While Tekmira considers these assumptions to be reasonable, these assumptions are inherently subject to significant business, economic, competitive, market and social uncertainties and contingencies.

Additionally, there are known and unknown risk factors which could cause Tekmira’s actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements contained herein. Known risk factors include, among others: TKM-Ebola may not prove to be effective in the treatment of Ebola infection under the emergency use framework, or at all; any uses of TKM-Ebola under emergency INDs are not controlled trails, and TKM-Ebola may be used on Ebola strains that have diverged from the strain to which TKM-Ebola is directed, and physicians treating patients may use more than one therapeutic intervention in addition to TKM-Ebola; the current supply of TKM-Ebola is limited, and Tekmira may not be able to respond to future requests for help in the current Ebola outbreak; the FDA may not remove the partial clinical hold on the TKM-Ebola IND; the FDA may refuse to approve Tekmira’s products, or place restrictions on Tekmira’s ability to commercialize its products; anticipated pre-clinical and clinical trials may be more costly or take longer to complete than anticipated, and may never be initiated or completed, or may not generate results that warrant future development of the tested drug candidate; and Tekmira may not receive the necessary regulatory approvals for the clinical development of Tekmira’s products.

A more complete discussion of the risks and uncertainties facing Tekmira appears in Tekmira’s Annual Report on Form 10-K and Tekmira’s continuous disclosure filings, which are available at www.sedar.com or www.sec.gov. All forward-looking statements herein are qualified in their entirety by this cautionary statement, and Tekmira disclaims any obligation to revise or update any such forward-looking statements or to publicly announce the result of any revisions to any of the forward-looking statements contained herein to reflect future results, events or developments, except as required by law.

In the midst of all those ‘cover your rear end’ statements to investors, it’s easy to miss the fact that people are actually being treated and the results are promising, if not guaranteed,

Tekmira has distributed a Sept. 23, 2014 news release touting its membership in a new consortium, which suggests that in parallel with offering treatment, human clinical trials will  also be conducted,

Tekmira Pharmaceuticals Corporation (Nasdaq:TKMR) (TSX:TKM), a leading developer of RNA interference (RNAi) therapeutics, today reported that it is collaborating with an international consortium to provide an RNAi based investigational therapeutic for expedited clinical studies in West Africa.

Led by Dr. Peter Horby of the Centre for Tropical Medicine and Global Health at the University of Oxford and the International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC), the consortium includes representatives from the World Health Organization (WHO), US Centers for Disease Control, Médecins Sans Frontières – Doctors without Borders (MSF), ISARIC, and Fondation Mérieux, among others.

The Wellcome Trust has announced it has awarded £3.2 million to the consortium to fund this initiative. The award will include funds for the manufacture of investigational therapeutics as well as the establishment of an operational clinical trials platform in two or more Ebola Virus Disease (EVD) treatment centers in West Africa. RNAi has been prioritized as an investigational therapeutic and may be selected for clinical trials at these centers.

The objective of the clinical trials is to assess the efficacy and safety of promising therapeutics and vaccines, reliably and safely, in patients with EVD by adopting strict protocols that comply with international standards.  It is hoped this initiative will permit the adoption of safe and effective interventions rapidly.

The genetic sequence of the Ebola virus variant responsible for the ongoing outbreak in West Africa is now available. Under this program, Tekmira will produce an RNAi based product specifically targeting the viral variant responsible for this outbreak.  The ability to rapidly and accurately match the evolving genetic sequences of emerging infectious agents is one of the powerful features of RNAi therapeutics.

“We commend the Wellcome Trust for their leadership in providing the necessary funds to launch and expedite this ground breaking initiative. We are gratified that RNAi has been prioritized as a potential investigational therapeutic to assist in the ongoing public health and humanitarian crisis in Africa,” said Dr. Murray, Tekmira’s President and CEO.

“We are an active collaborator in this consortium and through our ongoing dialogue with the WHO, NGOs and governments in various countries; we have been discussing the creation of appropriate clinical and regulatory frameworks for the potential use of investigational therapeutics in Africa. This initiative goes a long way towards achieving this aim.  Many complex decisions remain to fully implement this unique clinical trial platform.  At this time, there can be no assurances that our product will be selected by the consortium for clinical trials in Africa,” said Dr. Murray.

About Wellcome Trust

The Wellcome Trust is the largest charity in the UK. It funds innovative biomedical research, in the UK and internationally, spending over £600 million each year to support the brightest scientists with the best ideas. The Wellcome Trust supports public debate about biomedical research and its impact on health and wellbeing. For more information, visit www.wellcome.ac.uk

I’m glad they’re being careful while giving people treatment, i. e., trying to do something rather than waiting to conduct human clinical trials as has sometimes been the case in the past. This business of running the trials almost parallel to offering treatment suggests an agility not often associated with the international health care community.

ETA Sept. 23 2014 1200 hours PDT: For more information about the status of the Ebola outbreak read Tara Smith’s Sept. 22, 2014 article Slate titled, Here’s Where We Stand With Ebola; Even experienced international disaster responders are shocked at how bad it’s gotten (Note: Links have been removed).

Now, terms like “exponential spread” are being thrown around as the epidemic continues to expand more and more rapidly. Just last week, an increase of 700 new cases was reported, and the case count is now doubling in size approximately every three weeks.

A Doctors Without Borders worker in Monrovia, Liberia, named Jackson Naimah describes the situation in his home country, noting that patients are literally dying at the front door of his treatment center because it lacks patient beds and assistance; the sufferers are left to die a “horrible, undignified death” and potentially infect others as they do so: …

… Health care workers who are treating the sick are dying because they also lack basic protective equipment, or because they have been so overwhelmed by taking care of the ill and dying that they begin to make potentially fatal errors. They have gone on strike in Liberia because they are not being adequately protected or even paid for their risky service.

Fear and misinformation are as deadly as the virus itself. Eight Ebola workers were recently murdered in Guinea, in the area where the virus first came to the world’s attention in March. Liberia’s largest newspaper featured a story describing Ebola as a man-made virus being purposely unleashed upon Africans by Western pharmaceutical companies. Reports abound of doctors and other workers being chased away, sometimes violently, by fearful families. …

It’s not a pleasant read but, I think, a necessary one. For anyone who may think the panic and fear are unique to this situation, I once worked with a nurse who described being lifted by her neck after someone came through the door of a clinic demanding a vaccine and had been refused. He was in such a panic and so fearful he wasn’t going to take a ‘no’. The incident took place in Vancouver (Canada) in a ‘nice’ part of town.

ETA Sept. 24, 2014: Kelly Grant has written a Sept. 22, 2014 article for the Globe and Mail which provides more information about Tekmira, some of which contradicts the details I have here about TKM-Ebola and clinical trials in Africa although the key points remain the same. She also provides more information about the ZMapp therapy (mentioned in my Aug. 15, 2014 post) noting yet a third Canadian connection.* Canada’s National Microbiology Laboratory was somehow involved in developing ZMApp, unfortunately, Grant does not or is not able to provide more details about that involvement.

ETA Oct. 16, 2014: David Bruggeman recommends a digital journalism site Ebola Deeply for some in depth reporting in his Oct. 16, 2014 posting.

* This sentence “She also provides more information about the ZMapp therapy mentioned in my Aug. 15, 2014 post mentioning yet a third Canadian connection.” was altered for grammatical purposes on Dec. 4, 2014.

FOE, nano, and food: part three of three (final guidance)

The first part of this food and nano ‘debate’ started off with the May 22, 2014 news item on Nanowerk announcing the Friends of the Earth (FOE) report ‘Way too little: Our Government’s failure to regulate nanomaterials in food and agriculture‘. Adding energy to FOE’s volley was a Mother Jones article written by Tom Philpott which had Dr. Andrew Maynard (Director of the University of Michigan’s Risk Science Center) replying decisively in an article published both on Nanowerk and on the Conversation.

The second part of this series focused largely on a couple of  research efforts (a June 11, 2014 news item on Nanowerk highlights a Franco-German research project, SolNanoTox) and in the US (a  June 19, 2014 news item on Azonano about research from the University of Arizona focusing on nanoscale additives for dietary supplement drinks) and noted another activist group’s (As You Sow) initiative with Dunkin’ Donuts (a July 11, 2014 article by Sarah Shemkus in a sponsored section in the UK’s Guardian newspaper0).

This final part in the series highlights the US Food and Drug Administration’s (FDA) final guidance document on nanomaterials and food issued some five weeks after the FOE’s report and an essay by a Canadian academic on the topic of nano and food.

A July 9, 2014 news item on Bloomberg BNA sums up the FDA situation,

The Food and Drug Administration June 24 [2014] announced new guidance to provide greater regulatory clarity for industry on the use of nanotechnology in FDA-regulated products, including drugs, devices, cosmetics and food.

In this final guidance, the agency said that nanotechnology “can be used in a broad array of FDA-regulated products, including medical products (e.g., to increase bioavailability of a drug), foods (e.g., to improve food packaging) and cosmetics (e.g., to affect the look and feel of cosmetics).”

Also on the agency website, the FDA said it “does not make a categorical judgment that nanotechnology is inherently safe or harmful. We intend our regulatory approach to be adaptive and flexible and to take into consideration the specific characteristics and the effects of nanomaterials in the particular biological context of each product and its intended use.”

This July 18, 2014 posting by Jeannie Perron, Miriam Guggenheimm and Allan J. Topol of Covington & Burling LLP on the National Law Review blog provides a better summary and additional insight,

On June 24, 2014, the Food and Drug Administration (FDA) released three final guidance documents addressing the agency’s general approach to nanotechnology and its use by the food and cosmetics industries, as well as a draft guidance on the use of nanomaterials in food for animals.

These guidance documents reflect FDA’s understanding of nanomaterials as an emerging technology of major importance with the potential to be used in novel ways across the entire spectrum of FDA- regulated products.

The documents suggest that FDA plans to approach nanotechnology-related issues cautiously, through an evolving regulatory structure that adapts to manufacturers’ changing uses of this technology. FDA has not established regulatory definitions of “nanotechnology,” “nanomaterial,” “nanoscale,” or other related terms. …

The notion of an “evolving regulatory structure” is very appealing in situations with emerging technologies with high levels of uncertainty. It’s surprising that more of the activist groups don’t see an opportunity with this approach. An organization that hasn’t devised a rigid regulatory structure has no investment in defending it. Activist groups can make the same arguments, albeit from a different perspective, about an emerging technology as the companies do and, theoretically, the FDA has become a neutral party with the power to require a company to prove its products’ safety.

You can find the FDA final guidance and other relevant documents here.

Finally, Sylvain Charlebois, associate dean at the College of Business and Economics at the University of Guelph, offers a rather provocative (and not from the perspective you might expect given his credentials) opinion on the topic of ‘nano and food’  in a July 18, 2014 article for TheRecord.com,

Nanotechnology and nanoparticles have been around for quite some time. In fact, consumers have been eating nanoparticles for years without being aware they are in their food.

Some varieties of Dentyne gum and Jell-O, M&M’s, Betty Crocker whipped cream frosting, Kool-Aid, Pop-Tarts, you name it, contain them. Even food packaging, such as plastic containers and beer bottles, have nanoparticles.

While consumers and interest groups alike are registering their concerns about genetically modified organisms, the growing role of nanotechnology in food and agriculture is impressive. When considering the socio-economic and ethical implications of nanotechnology, comparisons to the genetic modification debate are unavoidable.

The big picture is this. For years, capitalism has demonstrated its ability to create wealth while relying on consumers’ willingness to intrinsically trust what is being offered to them. With trans fats, genetically modified organisms and now nanoparticles, our food industry is literally playing with fire. [emphasis mine]

Most consumers may not have the knowledge to fully comprehend the essence of what nanotechnology is or what it can do. However, in an era where data access in almost constant real-time is king, the industry should at least give public education a shot.

In the end and despite their tactics, the activist groups do have a point. The food and agricultural industries need to be more frank about what they’re doing with our food. As Charlebois notes, they might want to invest in some public education, perhaps taking a leaf out of the Irish Food Board’s book and presenting the public with information both flattering and nonflattering about their efforts with our food.

Part one (an FOE report is published)

Part two (the problem with research)

ETA Aug. 22, 2014: Coincidentally, Michael Berger has written an Aug. 22, 2014 Nanowerk Spotlight article titled: How to identify nanomaterials in food.

ETA Sept. 1, 2014: Even more coincidentally, Michael Berger has written a 2nd Nanowerk Spotlight (dated Aug. 25, 2014) on the food and nano topic titled, ‘Nanotechnology in Agriculture’ based on the European Union’s Joint Research Centre’s ‘Workshop on Nanotechnology for the agricultural sector: from research to the field”, held on November 21-22 2013′.

Nanotechnology, tobacco plants, and the Ebola virus

Before presenting information about the current Ebola crisis and issues with vaccines and curatives, here’s a description of the disease from its Wikipedia entry,

Ebola virus disease (EVD) or Ebola hemorrhagic fever (EHF) is a disease of humans and other primates caused by an ebola virus. Symptoms start two days to three weeks after contracting the virus, with a fever, sore throat, muscle pain, and headaches. Typically nausea, vomiting, and diarrhea follow, along with decreased functioning of the liver and kidneys. Around this time, affected people may begin to bleed both within the body and externally. [1]

As for the current crisis in countries situated on the west coast of the African continent, there’s this from an Aug. 14, 2014 news item on ScienceDaily,

The outbreak of Ebola virus disease that has claimed more than 1,000 lives in West Africa this year poses a serious, ongoing threat to that region: the spread to capital cities and Nigeria — Africa’s most populous nation — presents new challenges for healthcare professionals. The situation has garnered significant attention and fear around the world, but proven public health measures and sharpened clinical vigilance will contain the epidemic and thwart a global spread, according to a new commentary by Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Dr. Fauci’s Aug. 13, 2014 commentary (open access) in the New England Journal of Medicine provides more detail (Note: A link has been removed),

An outbreak of Ebola virus disease (EVD) has jolted West Africa, claiming more than 1000 lives since the virus emerged in Guinea in early 2014 (see figure) Ebola Virus Cases and Deaths in West Africa (Guinea, Liberia, Nigeria, and Sierra Leone), as of August 11, 2014 (Panel A), and Over Time (Panel B).). The rapidly increasing numbers of cases in the African countries of Guinea, Liberia, and Sierra Leone have had public health authorities on high alert throughout the spring and summer. More recent events including the spread of EVD to Nigeria (Africa’s most populous country) and the recent evacuation to the United States of two American health care workers with EVD have captivated the world’s attention and concern. Health professionals and the general public are struggling to comprehend these unfolding dynamics and to separate misinformation and speculation from truth.

In early 2014, EVD emerged in a remote region of Guinea near its borders with Sierra Leone and Liberia. Since then, the epidemic has grown dramatically, fueled by several factors. First, Guinea, Sierra Leone, and Liberia are resource-poor countries already coping with major health challenges, such as malaria and other endemic diseases, some of which may be confused with EVD. Next, their borders are porous, and movement between countries is constant. Health care infrastructure is inadequate, and health workers and essential supplies including personal protective equipment are scarce. Traditional practices, such as bathing of corpses before burial, have facilitated transmission. The epidemic has spread to cities, which complicates tracing of contacts. Finally, decades of conflict have left the populations distrustful of governing officials and authority figures such as health professionals. Add to these problems a rapidly spreading virus with a high mortality rate, and the scope of the challenge becomes clear.

Although the regional threat of Ebola in West Africa looms large, the chance that the virus will establish a foothold in the United States or another high-resource country remains extremely small. Although global air transit could, and most likely will, allow an infected, asymptomatic person to board a plane and unknowingly carry Ebola virus to a higher-income country, containment should be readily achievable. Hospitals in such countries generally have excellent capacity to isolate persons with suspected cases and to care for them safely should they become ill. Public health authorities have the resources and training necessary to trace and monitor contacts. Protocols exist for the appropriate handling of corpses and disposal of biohazardous materials. In addition, characteristics of the virus itself limit its spread. Numerous studies indicate that direct contact with infected bodily fluids — usually feces, vomit, or blood — is necessary for transmission and that the virus is not transmitted from person to person through the air or by casual contact. Isolation procedures have been clearly outlined by the Centers for Disease Control and Prevention (CDC). A high index of suspicion, proper infection-control practices, and epidemiologic investigations should quickly limit the spread of the virus.

Fauci’s article makes it clear that public concerns are rising in the US and I imagine that’s true of Canada too and many other parts of the world, not to mention the countries currently experiencing the EVD outbreak. In the midst of all this comes a US Food and Drug Administration (FDA) warning as per an Aug. 15, 2014 news item (originated by Reuters reporter Toni Clarke) on Nanowerk,

The U.S. Food and Drug Administration said on Thursday [Aug. 14, 2014] it has become aware of products being sold online that fraudulently claim to prevent or treat Ebola.

The FDA’s warning comes on the heels of comments by Nigeria’s top health official, Onyebuchi Chukwu, who reportedly said earlier Thursday [Aug. 14, 2014] that eight Ebola patients in Lagos, the country’s capital, will receive an experimental treatment containing nano-silver.

Erica Jefferson, a spokeswoman for the FDA, said she could not provide any information about the product referenced by the Nigerians.

The Aug. 14,  2014 FDA warning reads in part,

The U.S. Food and Drug Administration is advising consumers to be aware of products sold online claiming to prevent or treat the Ebola virus. Since the outbreak of the Ebola virus in West Africa, the FDA has seen and received consumer complaints about a variety of products claiming to either prevent the Ebola virus or treat the infection.

There are currently no FDA-approved vaccines or drugs to prevent or treat Ebola. Although there are experimental Ebola vaccines and treatments under development, these investigational products are in the early stages of product development, have not yet been fully tested for safety or effectiveness, and the supply is very limited. There are no approved vaccines, drugs, or investigational products specifically for Ebola available for purchase on the Internet. By law, dietary supplements cannot claim to prevent or cure disease.

As per the FDA’s reference to experimental vaccines, an Aug. 6, 2014 article by Caroline Chen, Mark Niquette, Mark Langreth, and Marie French for Bloomberg describes the ZMapp vaccine/treatment (Note: Links have been removed),

On a small plot of land incongruously tucked amid a Kentucky industrial park sit five weather-beaten greenhouses. At the site, tobacco plants contain one of the most promising hopes for developing an effective treatment for the deadly Ebola virus.

The plants contain designer antibodies developed by San Diego-based Mapp Biopharmaceutical Inc. and are grown in Kentucky by a unit of Reynolds American Inc. Two stricken U.S. health workers received an experimental treatment containing the antibodies in Liberia last week. Since receiving doses of the drug, both patients’ conditions have improved.

Tobacco plant-derived medicines, which are also being developed by a company whose investors include Philip Morris International Inc., are part of a handful of cutting edge plant-based treatments that are in the works for everything from pandemic flu to rabies using plants such as lettuce, carrots and even duckweed. While the technique has existed for years, the treatments have only recently begun to reach the marketplace.

Researchers try to identify the best antibodies in the lab, before testing them on mice, then eventually on monkeys. Mapp’s experimental drug, dubbed ZMapp, has three antibodies, which work together to alert the immune system and neutralize the Ebola virus, she [Erica Ollman Saphire, a molecular biologist at the Scripps Research Institute,] said.

This is where the tobacco comes in: the plants are used as hosts to grow large amounts of the antibodies. Genes for the desired antibodies are fused to genes for a natural tobacco virus, Charles Arntzen, a plant biotechnology expert at Arizona State University, said in an Aug. 4 [2014] telephone interview.

The tobacco plants are then infected with this new artificial virus, and antibodies are grown inside the plant. Eventually, the tobacco is ground up and the antibody is extracted, Arntzen said.

The process of growing antibodies in mammals risks transferring viruses that could infect humans, whereas “plants are so far removed, so if they had some sort of plant virus we wouldn’t get sick because viruses are host-specific,” said Qiang Chen, a plant biologist at Arizona State University in Tempe, Arizona, in a telephone interview.

There is a Canadian (?) company working on a tobacco-based vaccines including one for EVD but as the Bloomberg writers note the project is highly secret,

Another tobacco giant-backed company working on biotech drugs grown in tobacco plants is Medicago Inc. in Quebec City, which is owned by Mitsubishi Tanabe Pharma Corp. and Philip Morris. [emphasis mine]

Medicago is working on testing a vaccine for pandemic influenza and has a production greenhouse facility in North Carolina, said Jean-Luc Martre, senior director for government affairs at Medicago. Medicago is planning a final stage trial of the pandemic flu vaccine for next year, he said in a telephone interview.

The plant method is flexible and capable of making antibodies and vaccines for numerous types of viruses, said Martre. In addition to influenza, the company’s website says it is in early stages of testing products for rabies and rotavirus.

Medicago ‘‘is currently closely working with partners for the production of an Ebola antibody as well as other antibodies that are of interest for bio-defense,” he said in an e-mail. He would not disclose who the partners were. [emphasis mine]

I have checked both the English and French language versions of Medicago’s website and cannot find any information about their work on ebola. (The Bloomberg article provides a good overview of the ebola situation and more. I recommend reading it and/or the Aug. 15, 2014 posting on CTV [Canadian Television Network] which originated from an Associated Press article by Malcolm Ritter).

Moving on to more research and ebola, Dexter Johnson in an Aug. 14, 2014 posting (on his Nanoclast blog on the IEEE [Institute of Electrical and Electronics Engineers] website,) describes some work from Northeastern University (US), Note: Links have been removed,

With the Ebola virus death toll now topping 1000 and even the much publicized experimental treatment ZMapp failing to save the life of a Spanish missionary priest who was treated with it, it is clear that scientists need to explore new ways of fighting the deadly disease. For researchers at Northeastern University in Boston, one possibility may be using nanotechnology.

“It has been very hard to develop a vaccine or treatment for Ebola or similar viruses because they mutate so quickly,” said Thomas Webster, the chair of Northeastern’s chemical engineering department, in a press release. “In nanotechnology we turned our attention to developing nanoparticles that could be attached chemically to the viruses and stop them from spreading.”

Webster, along with many researchers in the nanotechnology community, have been trying to use gold nanoparticles, in combination with near-infrared light, to kill cancer cells with heat. The hope is that the same approach could be used to kill the Ebola virus.

There is also an Aug. 6, 2014 Northeastern University news release by Joe O’Connell describing the technique being used by Webster’s team,

… According to Web­ster, gold nanopar­ti­cles are cur­rently being used to treat cancer. Infrared waves, he explained, heat up the gold nanopar­ti­cles, which, in turn, attack and destroy every­thing from viruses to cancer cells, but not healthy cells.

Rec­og­nizing that a larger sur­face area would lead to a quicker heat-​​up time, Webster’s team cre­ated gold nanos­tars. “The star has a lot more sur­face area, so it can heat up much faster than a sphere can,” Web­ster said. “And that greater sur­face area allows it to attack more viruses once they absorb to the par­ti­cles.” The problem the researchers face, how­ever, is making sure the hot gold nanopar­ti­cles attack the virus or cancer cells rather than the healthy cells.

At this point, there don’t seem to be any curative measures generally available although some are available experimentally in very small quantities.

Graphene and an artificial retina

A graphene-based artificial retina project has managed to intermingle the European Union’s two major FET (Future and Emerging Technologies) funding projects, 1B Euros each to be disbursed over 10 years, the Graphene Flagship and the Human Brain Project. From an Aug. 7, 2014 Technische Universitaet Muenchen (TUM) news release (also on EurekAlert),

Because of its unusual properties, graphene holds great potential for applications, especially in the field of medical technology. A team of researchers led by Dr. Jose A. Garrido at the Walter Schottky Institut of the TUM is taking advantage of these properties. In collaboration with partners from the Institut de la Vision of the Université Pierre et Marie Curie in Paris and the French company Pixium Vision, the physicists are developing key components of an artificial retina made of graphene.

Retina implants can serve as optical prostheses for blind people whose optical nerves are still intact. The implants convert incident light into electrical impulses that are transmitted to the brain via the optical nerve. There, the information is transformed into images. Although various approaches for implants exist today, the devices are often rejected by the body and the signals transmitted to the brain are generally not optimal.

Already funded by the Human Brain Project as part of the Neurobotics effort, Garrido and his colleagues will now also receive funding from the Graphene Flagship. As of July 2014, the Graphene Flagship has added 86 new partners including TUM according to the news release.

Here’s an image of an ‘invisible’ graphene sensor (a precursor to developing an artificial retina),

Graphene electronics can be prepared on flexible substrates. Only the gold metal leads are visible in the transparent graphene sensor. (Photo: Natalia Hutanu / TUM)

Graphene electronics can be prepared on flexible substrates. Only the gold metal leads are visible in the transparent graphene sensor. (Photo: Natalia Hutanu / TUM)

Artificial retinas were first featured on this blog in an Aug. 18, 2011 posting about video game Deus Ex: Human Revolution which features a human character with artificial sight. The post includes links to a video of a scientist describing an artificial retina trial with 30 people and an Israeli start-up company, ‘Nano Retina’, along with information about ‘Eyeborg’, a Canadian filmmaker who on losing an eye in an accident had a camera implanted in the previously occupied eye socket.

More recently, a Feb. 15, 2013 posting featured news about the US Food and Drug Administration’s decision to allow sale of the first commercial artificial retinas in the US in the context of news about a neuroprosthetic implant in a rat which allowed it to see in the infrared range, normally an impossible feat.

DNA damage from engineered nanoparticles (zinc oxide, silver, silicon dioxide, cerium oxide and iron oxide)

Before launching into this research, there are a few provisos. This work was done in a laboratory, a highly specialized environment that does not mimic real-life conditions, and performed on animal cells (a hamster’s). As well, naturally occurring nanoparticles were not included (my Nov. 24, 2011 post has some information about naturally occurring nanomaterials including nanosilver which we have been ingesting for centuries).

That said, the studies from the Massachusetts Institute of Techology (MIT) and the Harvard School of Public Health (HSPH; last mentioned here in an April 2, 2014 post) are concerning (from an April 9, 2014 news item on Azonano).

A new study from MIT and the Harvard School of Public Health (HSPH) suggests that certain nanoparticles can also harm DNA. This research was led by Bevin Engelward, a professor of biological engineering at MIT, and associate professor Philip Demokritou, director of HSPH’s Center for Nanotechnology and Nanotoxicology.

The researchers found that zinc oxide nanoparticles, often used in sunscreen to block ultraviolet rays, significantly damage DNA. Nanoscale silver, which has been added to toys, toothpaste, clothing, and other products for its antimicrobial properties, also produces substantial DNA damage, they found.

The findings, published in a recent issue of the journal ACS Nano, relied on a high-speed screening technology to analyze DNA damage. This approach makes it possible to study nanoparticles’ potential hazards at a much faster rate and larger scale than previously possible.

More details about current testing requirements and the specific nanoparticles studied can be found in the April 8, 2014 MIT news release, which originated the news item,

The Food and Drug Administration does not require manufacturers to test nanoscale additives for a given material if the bulk material has already been shown to be safe. However, there is evidence that the nanoparticle form of some of these materials may be unsafe: Due to their immensely small size, these materials may exhibit different physical, chemical, and biological properties, and penetrate cells more easily.

“The problem is that if a nanoparticle is made out of something that’s deemed a safe material, it’s typically considered safe. There are people out there who are concerned, but it’s a tough battle because once these things go into production, it’s very hard to undo,” Engelward says.

The researchers focused on five types of engineered nanoparticles — silver, zinc oxide, iron oxide, cerium oxide, and silicon dioxide (also known as amorphous silica) — that are used industrially. Some of these nanomaterials can produce free radicals called reactive oxygen species, which can alter DNA. Once these particles get into the body, they may accumulate in tissues, causing more damage.

“It’s essential to monitor and evaluate the toxicity or the hazards that these materials may possess. There are so many variations of these materials, in different sizes and shapes, and they’re being incorporated into so many products,” says Christa Watson, a postdoc at HSPH and the paper’s lead author. “This toxicological screening platform gives us a standardized method to assess the engineered nanomaterials that are being developed and used at present.”

The researchers hope that this screening technology could also be used to help design safer forms of nanoparticles; they are already working with partners in industry to engineer safer UV-blocking nanoparticles. Demokritou’s lab recently showed that coating zinc oxide particles with a nanothin layer of amorphous silica can reduce the particles’ ability to damage DNA.

Given that Demokritou was part of a team that recently announced a new testing platform (Volumetric Centrifugation Method [VCM]) for nanoparticles as mentioned in my April 2, 2014 post, I was a little curious about the  platform for this project ( the CometChip) and, as always, curious about the results for all the tested engineered nanoparticles (Note: A link has been removed), from the news release,

Until now, most studies of nanoparticle toxicity have focused on cell survival after exposure. Very few have examined genotoxicity, or the ability to damage DNA — a phenomenon that may not necessarily kill a cell, but one that can lead to cancerous mutations if the damage is not repaired.

A common way to study DNA damage in cells is the so-called “comet assay,” named for the comet-shaped smear that damaged DNA forms during the test. The procedure is based on gel electrophoresis, a test in which an electric field is applied to DNA placed in a matrix, forcing the DNA to move across the gel. During electrophoresis, damaged DNA travels farther than undamaged DNA, producing a comet-tail shape.

Measuring how far the DNA can travel reveals how much DNA damage has occurred. This procedure is very sensitive, but also very tedious.

In 2010, Engelward and MIT professor Sangeeta Bhatia developed a much more rapid version of the comet assay, known as the CometChip. Using microfabrication technology, single cells can be trapped in tiny microwells within the matrix. This approach makes it possible to process as many as 1,000 samples in the time that it used to take to process just 30 samples — allowing researchers to test dozens of experimental conditions at a time, which can be analyzed using imaging software.

Wolfgang Kreyling, an epidemiologist at the German Research Center for Environmental Health who was not involved in the study, says this technology should help toxicologists catch up to the rapid rate of deployment of engineered nanoparticles (ENPs).

“High-throughput screening platforms are desperately needed,” Kreyling says. “The proposed approach will be not only an important tool for nanotoxicologists developing high-throughput screening strategies for the assessment of possible adverse health effects associated with ENPs, but also of great importance for material scientists working on the development of novel ENPs and safer-by-design approaches.”

Using the CometChip, the MIT and HSPH researchers tested the nanoparticles’ effects on two types of cells that are commonly used for toxicity studies: a type of human blood cells called lymphoblastoids, and an immortalized line of Chinese hamster ovary cells.

Zinc oxide and silver produced the greatest DNA damage in both cell lines. At a concentration of 10 micrograms per milliliter — a dose not high enough to kill all of the cells — these generated a large number of single-stranded DNA breaks.

Silicon dioxide, which is commonly added during food and drug production, generated very low levels of DNA damage. Iron oxide and cerium oxide also showed low genotoxicity.

Happily the researchers are taking a pragmatic approach to the results (from the news release),

More studies are needed to determine how much exposure to metal oxide nanoparticles could be unsafe for humans, the researchers say.

“The biggest challenge we have as people concerned with exposure biology is deciding when is something dangerous and when is it not, based on the dose level. At low levels, probably these things are fine,” Engelward says. “The question is: At what level does it become problematic, and how long will it take for us to notice?”

One of the areas of greatest concern is occupational exposure to nanoparticles, the researchers say. Children and fetuses are also potentially at greater risk because their cells divide more often, making them more vulnerable to DNA damage.

The most common routes that engineered nanoparticles follow into the body are through the skin, lungs, and stomach, so the researchers are now investigating nanoparticle genotoxicity on those cell types. They are also studying the effects of other engineered nanoparticles, including metal oxides used in printer and photocopier toner, which can become airborne and enter the lungs.

Kudos to the writer for the clarity and care shown here (I think it’s Anne Trafton but MIT is not including bylines as it did previously, so I’m uncertain).

Here’s a link to and a citation for the research paper,

High-Throughput Screening Platform for Engineered Nanoparticle-Mediated Genotoxicity Using CometChip Technology by Christa Watson, Jing Ge, Joel Cohen, Georgios Pyrgiotakis, Bevin P. Engelward, and Philip Demokritou. ACS Nano, 2014, 8 (3), pp 2118–2133 DOI: 10.1021/nn404871p Publication Date (Web): March 11, 2014
Copyright © 2014 American Chemical Society

This article is behind a paywall.

Food and nanotechnology (as per Popular Mechanics) and zinc oxide nanoparticles in soil (as per North Dakota State University)

I wouldn’t expect to find an article about food in a magazine titled Popular Mechanics but there it is, a Feb. 19,2014 article by Christina Ortiz (Note: A link has been removed),

For a little more than a decade, the food industry has been using nanotechnology to change the way we grow and maintain our food. The grocery chain Albertsons currently has a list of nanotech-touched foods in its home brand, ranging from cookies to cheese blends.

Nanotechnology use in food has real advantages: The technology gives producers the power to control how food looks, tastes, and even how long it lasts.

Looks Good and Good for You?

The most commonly used nanoparticle in foods is titanium dioxide. It’s used to make foods such as yogurt and coconut flakes look as white as possible, provide opacity to other food colorings, and prevent ingredients from caking up. Nanotech isn’t just about aesthetics, however. The biggest potential use for this method involves improving the nutritional value of foods.

Nano additives can enhance or prevent the absorption of certain nutrients. In an email interview with Popular Mechanics, Jonathan Brown, a research fellow at the University of Minnesota, says this method could be used to make mayonnaise less fattening by replacing fat molecules with water droplets.

I did check out US grocer, Albertson’s list of ‘nanofoods’, which they provide and discovered that it’s an undated listing on the Project of Emerging Nanotechnologies’ Consumer Products Inventory (CPI). The inventory has been revived recently after lying moribund for a few years (my Oct. 28, 2013 posting describes the fall and rise) and I believe that this 2013 CPI incarnation includes some oversight and analysis of the claims made, which the earlier version did not include. Given that the Albertson’s list is undated it’s difficult to assess the accuracy of the claims regarding the foodstuffs.

If you haven’t read about nanotechnology and food before, the Ortiz article provides a relatively even-handed primer although it does end on a cautionary note. In any event, it was interesting to get a bit of information about the process of ‘nanofood’ regulation in the US and other jurisdictions (from the Ortiz article),

Aside from requiring manufacturers to provide proof that nanotechnology foods are safe, the FDA has yet to implement specific testing of its own. But many countries are researching ways to balance innovation and regulation in this market. In 2012 the European Food Safety Authority (EFSA) released an annual risk assessment report outlining how the European Union is addressing the issue of nanotech in food. In Canada the Food Directorate “is taking a case-by-case approach to the safety assessment of food products containing or using nanomaterials.”

I featured the FDA’s efforts regarding regulation and ‘nanofood’ in an April 23, 2012 posting,

It looks to me like this [FDA’s draft guidance for ‘nanofoods’] is an attempt to develop a relationship where the industry players in the food industry to police their nanotechnology initiatives with the onus being on industry to communicate with the regulators in a continuous process, if not at the research stage certainly at the production stage.

At least one of the primary issues with any emerging technology revolves around the question of risk. Do we stop all manufacturing and development of nanotechnology-enabled food products until we’ve done the research? That question assumes that taking any risks is not worth the currently perceived benefits. The corresponding question, do we move forward and hope for the best? does get expressed perhaps not quite so baldly; I have seen material which suggests that research into risks needlessly hampers progress.

After reading on this topic for five or so years, my sense is that most people are prepared to combine the two approaches, i.e., move forward while researching possible risks. The actual conflicts seem to centre around these questions, how quickly do we move forward; how much research do we need; and what is an acceptable level of risk?

On the topic of researching the impact that nanoparticles might have on plants (food or otherwise), a January 24, 2013 North Dakota State University (NDSU) news release highlights a student researcher’s work on soil, plants, and zinc oxide nanoparticles,

NDSU senior Hannah Passolt is working on a project that is venturing into a very young field of research. The study about how crops’ roots absorb a microscopic nutrient might be described as being ahead of the cutting-edge.

In a laboratory of NDSU’s Wet Ecosystem Research Group, in collaboration with plant sciences, Passolt is exploring how two varieties of wheat take up extremely tiny pieces of zinc, called nanoparticles, from the soil.

As a point of reference, the particles Passolt is examining are measured at below 30 nanometers. A nanometer is 1 billionth of a meter.

“It’s the mystery of nanoparticles that is fascinating to me,” explained the zoology major from Fargo. “The behavior of nanoparticles in the environment is largely unknown as it is a very new, exciting science. This type of project has never been done before.”

In Passolt’s research project, plants supplied by NDSU wheat breeders are grown in a hydroponic solution, with different amounts of zinc oxide nanoparticles introduced into the solution.

Compared to naturally occurring zinc, engineered zinc nanoparticles can have very different properties. They can be highly reactive, meaning they can injure cells and tissues, and may cause genetic damage. The plants are carefully observed for any changes in growth rate and appearance. When the plants are harvested, researchers will analyze them for actual zinc content.

“Zinc is essential for a plant’s development. However, in excess, it can be harmful,” Passolt said. “In one of my experiments, we are using low and high levels of zinc, and the high concentrations are showing detrimental effects. However, we will have to analyze the plants for zinc concentrations to see if there have been any effects from the zinc nanoparticles.”

Passolt has conducted undergraduate research with the Wet Ecosystem Research Group for the past two years. She said working side-by-side with Donna Jacob, research assistant professor of biological sciences; Marinus Otte; professor of biological sciences; and Mohamed Mergoum, professor of plant sciences, has proven to be challenging, invigorating and rewarding.

“I’ve gained an incredible skill set – my research experience has built upon itself. I’ve gotten to the point where I have a pretty big role in an important study. To me, that is invaluable,” Passolt said. “To put effort into something that goes for the greater good of science is a very important lesson to learn.”

According to Jacob, Passolt volunteered two years ago, and she has since become an important member of the group. She has assisted graduate students and worked on her own small project, the results of which she presented at regional and international scientific conferences. “We offered her this large, complex experiment, and she’s really taken charge,” Jacob said, noting Passolt assisted with the project’s design, handled care of the plants and applied the treatments. When the project is completed, Passolt will publish a peer-reviewed scientific article.

“There is nothing like working on your own experiment to fully understand science,” Jacob said. “Since coming to NDSU in 2006, the Wet Ecosystem Research Group has worked with more than 50 undergraduates, possible only because of significant support from the North Dakota IDeA Networks of Biomedical Research Excellence program, known as INBRE, of the NIH National Center for Research Resources.”

Jacob said seven undergraduate students from the lab have worked on their own research projects and presented their work at conferences. Two articles, so far, have been published by undergraduate co-authors. “I believe the students gain valuable experience and an understanding of what scientists really do during fieldwork and in the laboratory,” Jacob said. “They see it is vastly different from book learning, and that scientists use creativity and ingenuity daily. I hope they come away from their experience with some excitement about research, in addition to a better resume.”

Passolt anticipates the results of her work could be used in a broader view of our ecosystem. She notes zinc nanoparticles are an often-used ingredient in such products as lotions, sunscreens and certain drug delivery systems. “Zinc nanoparticles are being introduced into the environment,” she said. “It gets to plants at some point, so we want to see if zinc nanoparticles have a positive or negative effect, or no effect at all.”

Researching nanoparticles the effects they might have on the environment and on health is a complex process as there are many types of nanoparticles some of which have been engineered and some of which occur naturally, silver nanoparticles being a prime example of both engineered and naturally occurring nanoparticles. (As well, the risks may lie more with interactions between nanomaterials.) For an example of research, which seems similar to the NDSU effort, there’s this open access research article,

Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario by Benjamin P. Colman, Christina L. Arnaout, Sarah Anciaux, Claudia K. Gunsch, Michael F. Hochella Jr, Bojeong Kim, Gregory V. Lowry,  Bonnie M. McGill, Brian C. Reinsch, Curtis J. Richardson, Jason M. Unrine, Justin P. Wright, Liyan Yin, and Emily S. Bernhardt. PLoS ONE 2013; 8 (2): e57189 DOI: 10.1371/journal.pone.0057189

One last comment, the Wet Ecosystem Research Group (WERG) mentioned in the news release about Passolt has an interesting history (from the homepage; Note: Links have been removed),

Marinus Otte and Donna Jacob brought WERG to the Department of Biological Sciences in the Fall of 2006.  Prior to that, the research group had been going strong at University College Dublin, Ireland, since 1992.

The aims for the research group are to train graduate and undergraduate students in scientific research, particularly wetlands, plants, biogeochemistry, watershed ecology and metals in the environment.  WERG research  covers a wide range of scales, from microscopic (e.g. biogeochemical processes in the rhizosphere of plants) to landscape (e.g. chemical and ecological connectivity between prairie potholes across North Dakota).  Regardless of the scale, the central theme is biogeochemistry and the interactions between multiple elements in wet environments.

The group works to collaborate with a variety of researchers, including soil scientists, geologists, environmental engineers, microbiologists, as well as with groups underpinning management of natural resources, such the Minnesota Department of Natural Resources, the Department of Natural Resources of Red Lake Indian Reservation, and the North Dakota Department of Health, Division of Water Quality.

Currently, WERG has several projects, mostly in North Dakota and Minnesota.  Otte and Jacob are also Co-directors of the North Dakota INBRE Metal Analysis Core, providing laboratory facilities and mentoring for researchers in undergraduate colleges throughout the state. Otte and Jacob are also members of the Upper Midwest Aerospace Consortium.

Dengue fever and NanoViricides, Inc.

Since 1970, dengue has grown to be a major health problem according to the World Health Organization Fact Sheet no. 117 (November 2012) and it’s one NanoViricides, Inc. hopes to tackle with its current European Medicines Agency (EMA) drug application. From the July 2, 2013 news item on Azonano,

NanoViricides, Inc. (the “Company”) announced today that it has submitted its letter of intent to file an Orphan Drug Application with the European Medicines Agency (EMA) for DengueCide™, its drug candidate for the treatment of dengue and dengue hemorrhagic fever.

EMA requires a notification of intent to file at least 60 days prior to the actual filing, unlike the US FDA. The actual application will need to be translated into 27 different languages prior to submission.

… The Company has recently filed an Orphan Drug Designation application for DengueCide to the US FDA.

The July 1, 2013 NanoViricides news release, which originated the news item, goes on to explain (a direct link to the news release is not possible but you can find it on the company’s home page),

Dengue fever, a very old disease, has reemerged in the past 20 years with an expanded geographic distribution of both the viruses and the mosquito vectors, increased epidemic activity, the development of hyper-endemicity (the co-circulation of multiple serotypes), and the emergence of dengue hemorrhagic fever in new geographic regions. In 2013, this mosquito-borne disease is one of the most important tropical infectious diseases globally, with an estimated 400 million cases of dengue fever, over one million cases of dengue hemorrhagic fever, and 50,000-100,000 deaths annually. Dengue virus occurs in four primary serotypes. Although the disease is endemic in many tropical parts of the world, it is considered an orphan disease in the USA and Europe. (From Clinical Microbiology Reviews).

The news release also describes the proposed DengueCide treatment’s effectiveness in animal trials,

DengueCide is a nanoviricide® that has shown very high effectiveness in an animal model of dengue virus infection. These animal studies were conducted in the laboratory of Dr. Eva Harris, Professor of Public Health and Infectious Diseases at the University of California, Berkeley. Professor Harris has developed a mouse model simulating antibody-dependent-enhancement (ADE) of dengue infection using a special laboratory mouse strain called AG129. ADE in humans is thought to to lead to dengue hemorrhagic fever, and is associated with a high fatality rate. In this model, infection with a dengue virus, when the mice are left untreated, is 100% fatal. In contrast, in the same study, animals treated with NanoViricides’ DengueCide achieved an unprecedented 50% survival rate.

There is currently neither an effective drug treatment nor a vaccine for dengue virus infection. Tremendous efforts have been made for dengue vaccine development but, to date, no vaccine candidate has succeeded in clinical trials towards approval.

In an attempt to give their DengueCide application more heft, the news release provides a description of the company’s work with anti-influenza drugs,

NanoViricides is developing broad-spectrum anti-influenza drugs as part of its rich drug pipeline. The Company believes that its FluCide™ drug candidates will be effective against most if not all influenza viruses, including the H7N9 bird flu, H3N2 or H1N1 epidemic viruses, H5N1 bird flu, seasonal influenzas, as well as novel influenza viruses. This is because FluCide is based on the Company’s biomimetic technology, mimicking the natural sialic acid receptors for the influenza virus on the surface of a nanoviricide® polymeric micelle. It is important to note that all influenza viruses bind to the sialic acid receptors, even if they rapidly mutate. The FluCide drug candidates have already shown strong effectiveness against H1N1 and H3N2 influenza viruses in highly lethal animal models. The injectable FluCide drug candidates have shown 1,000X greater viral load reduction as compared to oseltamivir (Tamiflu®), the current standard of care, in a highly lethal influenza infection animal model. The Company believes that these animal model results should translate readily into humans.

NanoViricides has also developed an oral drug candidate against influenza. This oral version is also dramatically more effective than TamiFlu in the animals given a lethal influenza virus infection. This oral FluCide may be the very first nanomedicine that is effective when taken by mouth.

I hope they are successful with this new dengue drug. Oddly, the news release seemed to understate the scope of the problem. Here’s more from the WHO (World Health Organization) fact sheet no. 117,

The incidence of dengue has grown dramatically around the world in recent decades. Over 2.5 billion people – over 40% of the world’s population – are now at risk from dengue. WHO currently estimates there may be 50–100 million dengue infections worldwide every year.

Before 1970, only nine countries had experienced severe dengue epidemics. The disease is now endemic in more than 100 countries in Africa, the Americas, the Eastern Mediterranean, South-east Asia and the Western Pacific. The American, South-east Asia and the Western Pacific regions are the most seriously affected.

Cases across the Americas, South-east Asia and Western Pacific have exceeded 1.2 million cases in 2008 and over 2.3 million in 2010 (based on official data submitted by Member States). Recently the number of reported cases has continued to increase. In 2010, 1.6 million cases of dengue were reported in the Americas alone, of which 49 000 cases were severe dengue.

Not only is the number of cases increasing as the disease spreads to new areas, but explosive outbreaks are occurring. The threat of a possible outbreak of dengue fever now exists in Europe and local transmission of dengue was reported for the first time in France and Croatia in 2010 and imported cases were detected in three other European countries. A recent (2012) outbreak of dengue on Madeira islands of Portugal has resulted in over 1800 cases and imported cases were detected in five other countries in Europe apart from mainland Portugal.

An estimated 500 000 people with severe dengue require hospitalization each year, a large proportion of whom are children. About 2.5% of those affected die.

Human Bionic Project; amputations, prosthetics. and disabilities

Sydney Brownstone’s June 26, 2013 article about The Human Bionic Project  for Fast Company touches on human tragedy and the ways in which we attempt to cope by focusing on researcher David Sengeh’s work (Note: Links have been removed),

In the Iraq and Afghanistan wars alone, nearly 1,600 American soldiers have woken up without a limb. Fifteen survivors of the Boston marathon bombings are new amputees. And in Sierra Leone, where MIT graduate student David Sengeh is from, brutal tactics during the country’s 11-year civil war resulted in somewhere between 4,000 and 10,000 amputations in a country of less than 6 million people.

Many amputees go through the costly, lengthy process of transitioning to prosthetics, but it’s difficult even for prosthetic research specialists to gather information about the replacement parts outside their narrow fields. That’s part of the reason why, in December of last year, Sengeh and a research team began developing an interactive Inspector Gadget–a repository of all the FDA-approved [US Food and Drug Administration] replacement parts they could find.

So far, the Human Bionic Project has between 40 and 50 points of reference on its corporeal map–everything from artificial hearts to bionic jaws. In addition to photos and descriptions, the team will soon be looking to source videos of prosthetics in action from the public. Sengeh also hopes to integrate a timeline, tracking bionic parts throughout history, from the bionic toes of Ancient Egypt to the 3-D printed fingers of modern times.

“In [Haitian and Sierra Leonian] Creole, the word for disabled, like an amputee, is ‘scrap,'” Sengeh said. “I wanted to change that, because I know that we can get full functionality and become able-bodied.”

Do read Brownstone’s article as I haven’t, by any means, excerpted all the interesting bits.

There’s also more at The Human Bionic Project. Here’s a description (or manifesto) from the home page,

The Human Bionic Project begs for the fundamental redefinition of disability, illness, and disease as we have known it throughout history. It dares us to imagine the seamless interaction between the human being and machines. This interactive learning platform enables the user to visualize and learn about the comprehensive advances in human repair and enhancement that can be achieved with current technology. We can also wonder about what the human being will look like by the 22nd Century (year 2100) based on cutting edge advances in science and technology — more specifically in the fields of biomechanics, and electronics.

The Human Bionic Project serves as a call to action for technologists all around the world to think about the design of bionics in a fundamentally new way; how can we engineer all bionic elements for the human body using a similar protocol and architecture? Could we have the behaviour of the bionic knee be in sync with that of the bionic ankle of an above-knee amputee? How can we design a bionic eye that sees beyond what the biological eye can observe and use that information to help humans in critical situations? We have to imagine bionics not as singular units developed to replace or augment human parts but rather as part of a human-bionic system aimed at redefining what it means to be human.

Some of the ideas presented are already products used today, while others are prototypes explored by various research laboratories and inquisitive humans around the world. The works presented here are not ours and are publicly available. We have credited all the authors who are leading these extraordinary research initiatives.

You can find more about prosthetics, etc. on the ‘Inspector Gadget‘ page (it features an outline of a human body highlighted with red dots (click on a red dot to get details about prosthetics and other forms of augmentation). I don’t find this to be an especially friendly or intuitive interface. I think this is an MIT (Massachusetts Institute of Technology) student project and I find MIT tends to favour minimalism on its institutional and student websites. Still, there’s some fascinating information if you care to persist.

Here are more details about the folks and the funding supporting The Human Bionic Project (from the bottom of the home  page),

A project by David Moinina Sengeh. Collaborator: Reza Naeeni. Web development: Yannik Messerli. Undergraduate research assistant: Nicholas Fine. Funded by The Other Festival at MIT Media Lab (2013). Follow us on twitter: @humanbionicproj. …

I last mentioned human enhancement/augmentation in my June 17, 2013 commentary on You Are Very Star, a transmedia theatre experience taking place in Vancouver until June 29, 2013. I have written many times on the topic of human enhancement including a May 2, 2013 posting about a bionic ear; a Feb. 15, 2013 posting about a bionic eye; and a Jan. 30, 2013 posting about a BBC documentary on building a bionic man, amongst others.

Organ chips for DARPA (Defense Advanced Research Projects Agency)

The Wyss Institute will receive up to  $37M US for a project that integrates ten different organ-on-a-chip projects into one system. From the July 24, 2012 news release on EurekAlert,

With this new DARPA funding, Institute researchers and a multidisciplinary team of collaborators seek to build 10 different human organs-on-chips, to link them together to more closely mimic whole body physiology, and to engineer an automated instrument that will control fluid flow and cell viability while permitting real-time analysis of complex biochemical functions. As an accurate alternative to traditional animal testing models that often fail to predict human responses, this instrumented “human-on-a-chip” will be used to rapidly assess responses to new drug candidates, providing critical information on their safety and efficacy.

This unique platform could help ensure that safe and effective therapeutics are identified sooner, and ineffective or toxic ones are rejected early in the development process. As a result, the quality and quantity of new drugs moving successfully through the pipeline and into the clinic may be increased, regulatory decision-making could be better informed, and patient outcomes could be improved.

Jesse Goodman, FDA Chief Scientist and Deputy Commissioner for Science and Public Health, commented that the automated human-on-chip instrument being developed “has the potential to be a better model for determining human adverse responses. FDA looks forward to working with the Wyss Institute in its development of this model that may ultimately be used in therapeutic development.”

Wyss Founding Director, Donald Ingber, M.D., Ph.D., and Wyss Core Faculty member, Kevin Kit Parker, Ph.D., will co-lead this five-year project.

I note that Kevin Kit Parker was mentioned in an earlier posting today (July 26, 2012) titled, Medusa, jellyfish, and tissue engineering, and Donald Ingber in my Dec.1e, 2011 posting about Shrilk and insect skeletons.

As for the Wyss Institute, here’s a description from the news release,

The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses Nature’s design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Working as an alliance among Harvard’s Schools of Medicine, Engineering, and Arts & Sciences, and in partnership with Beth Israel Deaconess Medical Center, Boston Children’s Hospital, Brigham and Women’s Hospital, , Dana Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Tufts University, and Boston University, the Institute crosses disciplinary and institutional barriers to engage in high-risk research that leads to transformative technological breakthroughs. By emulating Nature’s principles for self-organizing and self-regulating, Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and new start-ups.

I hadn’t thought of an organ-on-a-chip as particularly bioinspired so I’ll have to think about that one for a while.