Tag Archives: US National Aeronatuics and Space Administration

Turn yourself into a robot

Turning yourself into a robot is a little easier than I would have thought,

William Weir’s September 19, 2018 Yale University news release (also on EurekAlert) covers some of the same ground and fills in a few details,

When you think of robotics, you likely think of something rigid, heavy, and built for a specific purpose. New “Robotic Skins” technology developed by Yale researchers flips that notion on its head, allowing users to animate the inanimate and turn everyday objects into robots.

Developed in the lab of Rebecca Kramer-Bottiglio, assistant professor of mechanical engineering & materials science, robotic skins enable users to design their own robotic systems. Although the skins are designed with no specific task in mind, Kramer-Bottiglio said, they could be used for everything from search-and-rescue robots to wearable technologies. The results of the team’s work are published today in Science Robotics.

The skins are made from elastic sheets embedded with sensors and actuators developed in Kramer-Bottiglio’s lab. Placed on a deformable object — a stuffed animal or a foam tube, for instance — the skins animate these objects from their surfaces. The makeshift robots can perform different tasks depending on the properties of the soft objects and how the skins are applied.

We can take the skins and wrap them around one object to perform a task — locomotion, for example — and then take them off and put them on a different object to perform a different task, such as grasping and moving an object,” she said. “We can then take those same skins off that object and put them on a shirt to make an active wearable device.”

Robots are typically built with a single purpose in mind. The robotic skins, however, allow users to create multi-functional robots on the fly. That means they can be used in settings that hadn’t even been considered when they were designed, said Kramer-Bottiglio.

Additionally, using more than one skin at a time allows for more complex movements. For instance, Kramer-Bottiglio said, you can layer the skins to get different types of motion. “Now we can get combined modes of actuation — for example, simultaneous compression and bending.”

To demonstrate the robotic skins in action, the researchers created a handful of prototypes. These include foam cylinders that move like an inchworm, a shirt-like wearable device designed to correct poor posture, and a device with a gripper that can grasp and move objects.

Kramer-Bottiglio said she came up with the idea for the devices a few years ago when NASA  [US National Aeronautics and Space Administration] put out a call for soft robotic systems. The technology was designed in partnership with NASA, and its multifunctional and reusable nature would allow astronauts to accomplish an array of tasks with the same reconfigurable material. The same skins used to make a robotic arm out of a piece of foam could be removed and applied to create a soft Mars rover that can roll over rough terrain. With the robotic skins on board, the Yale scientist said, anything from balloons to balls of crumpled paper could potentially be made into a robot with a purpose.

One of the main things I considered was the importance of multifunctionality, especially for deep space exploration where the environment is unpredictable,” she said. “The question is: How do you prepare for the unknown unknowns?”

For the same line of research, Kramer-Bottiglio was recently awarded a $2 million grant from the National Science Foundation, as part of its Emerging Frontiers in Research and Innovation program.

Next, she said, the lab will work on streamlining the devices and explore the possibility of 3D printing the components.

Just in case the link to the paper becomes obsolete, here’s a citation for the paper,

OmniSkins: Robotic skins that turn inanimate objects into multifunctional robots by Joran W. Booth, Dylan Shah, Jennifer C. Case, Edward L. White, Michelle C. Yuen, Olivier Cyr-Choiniere, and Rebecca Kramer-Bottiglio. Science Robotics 19 Sep 2018: Vol. 3, Issue 22, eaat1853 DOI: 10.1126/scirobotics.aat1853

This paper is behind a paywall.

Mimicking the sea urchin’s mouth and teeth for space exploration

Researchers at the University of California at San Diego (UCSD) have designed a new device for use in space exploration that is based on the structure and mechanics of a sea urchin’s mouth and teeth. From a May 2, 2016 news item on ScienceDaily,

The sea urchin’s intricate mouth and teeth are the model for a claw-like device developed by a team of engineers and marine biologists at the University of California, San Diego to sample sediments on other planets, such as Mars. The researchers detail their work in a recent issue of the Journal of Visualized Experiments.

A May 2, 2016 UCSD press release (also on EurekAlert), which originated the news item, expands on the theme by hearkening back to Aristotle (a Greek philosopher),

The urchin’s mouthpiece was first described in detail by the Greek philosopher Aristotle, earning it the nickname “Aristotle’s lantern.” It is comprised of an intricate framework of muscles and five curved teeth with triangle-shaped tips that can scrape, cut, chew and bore holes into the toughest rocks—a colony of sea urchins can destroy an entire kelp forest by churning through rock and uprooting seaweed.  The teeth are arranged in a dome-like formation that opens outwards and closes inwards in a smooth motion, similar to a claw in an arcade prize-grabbing machine.

The news release goes on to describe the methodology,

Bio-inspiration for the study came from pink sea urchins (Strongylocentrotus fragilis), which live off the West Coast of North America, at depths ranging from 100 to 1000 meters in the Pacific Ocean. The urchins were collected for scientific research by the Scripps Institution of Oceanography at UC San Diego.

Researchers extracted the urchins’ mouthpieces, scanned them with microCT, essentially a 3D microscopy technique, and analyzed the structures at the National Center for Microscopy and Imaging Research at the School of Medicine at UC San Diego. This allowed engineers to build a highly accurate model of the mouthpiece’s geometry.

Researchers also used finite element analysis to investigate the structure of the teeth, a method that allowed them to determine the importance of the keel to the teeth’s performance.

Engineers then turned the microCT data into a user-friendly file that a team of undergraduate engineering students at UC San Diego used to start iterating prototypes of the claw-like device, under the supervision of Ph.D. students in McKittrick’s lab.

The first iteration was very close to the mouthpiece’s natural structure, but didn’t do a very good job at grasping sand.  In the second iteration, students flattened the pointed end of the teeth so the device would scoop up sand better. But the device wasn’t opening quite right. Finally, on the third iteration, they connected the teeth differently to the rest of the device, which allowed it to open much easier. The students were able to quickly modify each prototype by using 3D printers in the UC San Diego Design Studio.

The device was then attached to a remote-controlled small rover. The researchers first tested the claw on beach sand, where it performed well. They then used the claw on sand that simulates Martian soil in density and humidity (or lack thereof). The device was able to scoop up sand efficiently. Researchers envision a fleet of mini rovers equipped with the claw that could be deployed to collect samples and bring them back to a main rover. Frank hopes that this design will be of interest to NASA [US National Aeronautics and Space Administraton] and SpaceX [a private enterprise for designing, manufacturing, and launching craft bound for space].

Here’s a link to and a citation for the paper,

A Protocol for Bioinspired Design: A Ground Sampler Based on Sea Urchin Jaws by Michael B. Frank, Steven E. Naleway, Taylor S. Wirth, Jae-Young Jung, Charlene L. Cheung, Faviola B. Loera, Sandra Medina, Kirk N. Sato, Jennifer R. A. Taylor, Joanna McKittrick. Journal of Visualized Experiments, 2016; (110) DOI: 10.3791/53554 Date Published: 4/24/2016

This paper and its video are behind a paywall. For those unfamiliar with the Journal of Visualized Experiments (JOVE), it is focused largely on videos which demonstrate the various techniques and protocols being described in the accompanying papers.

The researchers have made an introductory video available courtesy of UCSD,