Tag Archives: US National Institute of Standards and Technology

Watching rust turn into iron

a) Colorized SEM images of iron oxide nanoblades used in the experiment. b) Colorized cross-section of SEM image of the nanoblades. c) Colorized SEM image of nanoblades after 1 hour of reduction reaction at 500 °C in molecular hydrogen, showing the sawtooth shape along the edges (square). d) Colorized SEM image showing the formation of holes after 2 hours of reduction. The scale bar is 1 micrometer. Credit: W. Zhu et al./ACS Nano and K. Irvine/NIST

Here’s more about being able to watch iron transition from one state to the next according to an April 5, 2017 news item on phys.org

Using a state-of-the-art microscopy technique, experimenters at the National Institute of Standards and Technology (NIST) and their colleagues have witnessed a slow-motion, atomic-scale transformation of rust—iron oxide—back to pure iron metal, in all of its chemical steps.

An April 4, 2017 NIST news release describes the role iron plays in modern lifestyles and the purpose of this research,

Among the most abundant minerals on Earth, iron oxides play a leading role in magnetic data storage, cosmetics, the pigmentation of paints and drug delivery. These materials also serve as catalysts for several types of chemical reactions, including the production of ammonia for fertilizer.

To fine-tune the properties of these minerals for each application, scientists work with nanometer-scale particles of the oxides. But to do so, researchers need a detailed, atomic-level understanding of reduction, a key chemical reaction that iron oxides undergo. That knowledge, however, is often lacking because reduction—a process that is effectively the opposite of rusting—proceeds too rapidly for many types of probes to explore at such a fine level.

In a new effort to study the microscopic details of metal oxide reduction, researchers used a specially adapted transmission electron microscope (TEM) at NIST’s NanoLab facility to document the step-by-step transformation of nanocrystals of the iron oxide hematite (Fe2O3) to the iron oxide magnetite (Fe3O4), and finally to iron metal.

“Even though people have studied iron oxide for many years, there have been no dynamic studies at the atomic scale,” said Wenhui Zhu of the State University of New York at Binghamton, who worked on her doctorate in the NanoLab in 2015 and 2016. “We are seeing what’s actually happening during the entire reduction process instead of studying just the initial steps.”

That’s critical, added NIST’s Renu Sharma, “if you want to control the composition or properties of iron oxides and understand the relationships between them.”

By lowering the temperature of the reaction and decreasing the pressure of the hydrogen gas that acted as the reducing agent, the scientists slowed down the reduction process so that it could be captured with an environmental TEM—a specially configured TEM that can study both solids and gas. The instrument enables researchers to perform atomic-resolution imaging of a sample under real-life conditions—in this case the gaseous environment necessary for iron oxides to undergo reduction–rather than under the vacuum needed in ordinary TEMs.

“This is the most powerful tool I’ve used in my research and one of the very few in the United States,” said Zhu. She, Sharma and their colleagues describe their findings in a recent issue of ACS Nano.

The team examined the reduction process in a bicrystal of iron oxide, consisting of two identical iron oxide crystals rotated at 21.8 degrees with respect to each other. The bicrystal structure also served to slow down the reduction process, making it easier to follow with the environmental TEM.

In studying the reduction reaction, the researchers identified a previously unknown intermediate state in the transformation from magnetite to hematite. In the middle stage, the iron oxide retained its original chemical structure, Fe2O3, but changed the crystallographic arrangement of its atoms from rhombohedral (a diagonally stretched cube) to cubic.

This intermediate state featured a defect in which oxygen atoms fail to populate some of the sites in the crystal that they normally would. This so-called oxygen vacancy defect is not uncommon and is known to strongly influence the electrical and catalytic properties of oxides. But the researchers were surprised to find that the defects occurred in an ordered pattern, which had never been found before in the reduction of Fe2O3 to Fe3O4, Sharma said.

The significance of the intermediate state remains under study, but it may be important for controlling the reduction rate and other properties of the reduction process, she adds. “The more we understand, the better we can manipulate the microstructure of these oxides,” said Zhu. By manipulating the microstructure, researchers may be able to enhance the catalytic activity of iron oxides.

Even though a link has already been provided for the paper, I will give it again along with a citation,

In Situ Atomic-Scale Probing of the Reduction Dynamics of Two-Dimensional Fe2O3 Nanostructures by Wenhui Zhu, Jonathan P. Winterstein, Wei-Chang David Yang, Lu Yuan, Renu Sharma, and Guangwen Zhou. ACS Nano, 2017, 11 (1), pp 656–664 DOI: 10.1021/acsnano.6b06950 Publication Date (Web): December 13, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

Transparent silver

This March 21, 2017 news item on Nanowerk is the first I’ve heard of transparent silver; it’s usually transparent aluminum (Note: A link has been removed),

The thinnest, smoothest layer of silver that can survive air exposure has been laid down at the University of Michigan, and it could change the way touchscreens and flat or flexible displays are made (Advanced Materials, “High-performance Doped Silver Films: Overcoming Fundamental Material Limits for Nanophotonic Applications”).

It could also help improve computing power, affecting both the transfer of information within a silicon chip and the patterning of the chip itself through metamaterial superlenses.

A March 21, 2017 University of Michigan  news release, which originated the news item, provides details about the research and features a mention about aluminum,

By combining the silver with a little bit of aluminum, the U-M researchers found that it was possible to produce exceptionally thin, smooth layers of silver that are resistant to tarnishing. They applied an anti-reflective coating to make one thin metal layer up to 92.4 percent transparent.

The team showed that the silver coating could guide light about 10 times as far as other metal waveguides—a property that could make it useful for faster computing. And they layered the silver films into a metamaterial hyperlens that could be used to create dense patterns with feature sizes a fraction of what is possible with ordinary ultraviolet methods, on silicon chips, for instance.

Screens of all stripes need transparent electrodes to control which pixels are lit up, but touchscreens are particularly dependent on them. A modern touch screen is made of a transparent conductive layer covered with a nonconductive layer. It senses electrical changes where a conductive object—such as a finger—is pressed against the screen.

“The transparent conductor market has been dominated to this day by one single material,” said L. Jay Guo, professor of electrical engineering and computer science.

This material, indium tin oxide, is projected to become expensive as demand for touch screens continues to grow; there are relatively few known sources of indium, Guo said.

“Before, it was very cheap. Now, the price is rising sharply,” he said.

The ultrathin film could make silver a worthy successor.

Usually, it’s impossible to make a continuous layer of silver less than 15 nanometers thick, or roughly 100 silver atoms. Silver has a tendency to cluster together in small islands rather than extend into an even coating, Guo said.

By adding about 6 percent aluminum, the researchers coaxed the metal into a film of less than half that thickness—seven nanometers. What’s more, when they exposed it to air, it didn’t immediately tarnish as pure silver films do. After several months, the film maintained its conductive properties and transparency. And it was firmly stuck on, whereas pure silver comes off glass with Scotch tape.

In addition to their potential to serve as transparent conductors for touch screens, the thin silver films offer two more tricks, both having to do with silver’s unparalleled ability to transport visible and infrared light waves along its surface. The light waves shrink and travel as so-called surface plasmon polaritons, showing up as oscillations in the concentration of electrons on the silver’s surface.

Those oscillations encode the frequency of the light, preserving it so that it can emerge on the other side. While optical fibers can’t scale down to the size of copper wires on today’s computer chips, plasmonic waveguides could allow information to travel in optical rather than electronic form for faster data transfer. As a waveguide, the smooth silver film could transport the surface plasmons over a centimeter—enough to get by inside a computer chip.

Here’s a link to and a citation for the paper,

High-Performance Doped Silver Films: Overcoming Fundamental Material Limits for Nanophotonic Applications by Cheng Zhang, Nathaniel Kinsey, Long Chen, Chengang Ji, Mingjie Xu, Marcello Ferrera, Xiaoqing Pan, Vladimir M. Shalaev, Alexandra Boltasseva, and Jay Guo. Advanced Materials DOI: 10.1002/adma.201605177 Version of Record online: 20 MAR 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Formation of a time (temporal) crystal

It’s a crystal arranged in time according to a March 8, 2017 University of Texas at Austin news release (also on EurekAlert), Note: Links have been removed,

Salt, snowflakes and diamonds are all crystals, meaning their atoms are arranged in 3-D patterns that repeat. Today scientists are reporting in the journal Nature on the creation of a phase of matter, dubbed a time crystal, in which atoms move in a pattern that repeats in time rather than in space.

The atoms in a time crystal never settle down into what’s known as thermal equilibrium, a state in which they all have the same amount of heat. It’s one of the first examples of a broad new class of matter, called nonequilibrium phases, that have been predicted but until now have remained out of reach. Like explorers stepping onto an uncharted continent, physicists are eager to explore this exotic new realm.

“This opens the door to a whole new world of nonequilibrium phases,” says Andrew Potter, an assistant professor of physics at The University of Texas at Austin. “We’ve taken these theoretical ideas that we’ve been poking around for the last couple of years and actually built it in the laboratory. Hopefully, this is just the first example of these, with many more to come.”

Some of these nonequilibrium phases of matter may prove useful for storing or transferring information in quantum computers.

Potter is part of the team led by researchers at the University of Maryland who successfully created the first time crystal from ions, or electrically charged atoms, of the element ytterbium. By applying just the right electrical field, the researchers levitated 10 of these ions above a surface like a magician’s assistant. Next, they whacked the atoms with a laser pulse, causing them to flip head over heels. Then they hit them again and again in a regular rhythm. That set up a pattern of flips that repeated in time.

Crucially, Potter noted, the pattern of atom flips repeated only half as fast as the laser pulses. This would be like pounding on a bunch of piano keys twice a second and notes coming out only once a second. This weird quantum behavior was a signature that he and his colleagues predicted, and helped confirm that the result was indeed a time crystal.

The team also consists of researchers at the National Institute of Standards and Technology, the University of California, Berkeley and Harvard University, in addition to the University of Maryland and UT Austin.

Frank Wilczek, a Nobel Prize-winning physicist at the Massachusetts Institute of Technology, was teaching a class about crystals in 2012 when he wondered whether a phase of matter could be created such that its atoms move in a pattern that repeats in time, rather than just in space.

Potter and his colleague Norman Yao at UC Berkeley created a recipe for building such a time crystal and developed ways to confirm that, once you had built such a crystal, it was in fact the real deal. That theoretical work was announced publically last August and then published in January in the journal Physical Review Letters.

A team led by Chris Monroe of the University of Maryland in College Park built a time crystal, and Potter and Yao helped confirm that it indeed had the properties they predicted. The team announced that breakthrough—constructing a working time crystal—last September and is publishing the full, peer-reviewed description today in Nature.

A team led by Mikhail Lukin at Harvard University created a second time crystal a month after the first team, in that case, from a diamond.

Here’s a link to and a citation for the paper,

Observation of a discrete time crystal by J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.-D. Potirniche, A. C. Potter, A. Vishwanath, N. Y. Yao, & C. Monroe. Nature 543, 217–220 (09 March 2017) doi:10.1038/nature21413 Published online 08 March 2017

This paper is behind a paywall.

Using sugar for a better way to clean nanoparticles from organisms

Researchers at the US National Institute of Standards and Technology (NIST) have found that a laboratory technique used for over 60 years is the best way to date to clean nanoparticles from organisms. From a Jan. 26, 2017 news item on ScienceDaily,

Sometimes old-school methods provide the best ways of studying cutting-edge tech and its effects on the modern world.

Giving a 65-year-old laboratory technique a new role, researchers at the National Institute of Standards and Technology (NIST) have performed the cleanest separation to date of synthetic nanoparticles from a living organism. The new NIST method is expected to significantly improve experiments looking at the potential environmental and health impacts of these manufactured entities. It will allow scientists to more accurately count how many nanoparticles have actually been ingested by organisms exposed to them.

A Jan. 26, 2017 NIST news release (also on EurekAlert), which originated the news item, offers more detail,

The common roundworm Caenorhabditis elegans has been used in recent years as a living model for laboratory studies of how biological and chemical compounds may affect multicellular organisms. These compounds include engineered nanoparticles (ENPs), bits of material between 1 and 100 nanometers (billionths of a meter, or about 1/10,000 the diameter of a red blood cell). Previous research has often focused on quantifying the amount and size of engineered nanoparticles ingested by C. elegans. Measuring the nanoparticles that actually make it into an organism is considered a more relevant indicator of potential toxicity than just the amount of ENPs to which the worms are exposed.

Traditional methods for counting ingested ENPs have produced questionable results. Currently, researchers expose C. elegans to metal ENPs such as silver or gold in solution, then rinse the excess particles away with water followed by centrifugation and freeze-drying. A portion of the “cleaned” sample produced is then typically examined by a technique that determines the amount of metal present, known as inductively coupled plasma mass spectrometry (ICP-MS). It often yields ENP counts in the tens of thousands per worm; however, those numbers always seem too high to NIST researchers working with C. elegans.

“Since ICP-MS will detect all of the nanoparticles associated with the worms, both those ingested and those that remain attached externally, we suspect that the latter is what makes the ‘ENPs’ per-worm counts so high,” said NIST analytical chemist Monique Johnson (link sends e-mail), the lead author on the ACS Nano paper. “Since we only wanted to quantify the ingested ENPs, a more robust and reliable separation method was needed.”

Luckily, the solution to the problem was already in the lab.

Cross section of the roundworm C. elegans

Scanning electron micrograph showing a cross section of the roundworm C. elegans with two ingested engineered nanoparticles (red dots just right of center). Images such as this provided NIST researchers with visual confirmation that nanoparticle consumption actually occurred. Credit: K. Scott/NIST

In the course of culturing C. elegans for ENP-exposure experiments, Johnson and her colleagues had used sucrose density gradient centrifugation, a decades-old and established system for cleanly separating cellular components, to isolate the worms from debris and bacteria. “We wondered if the same process would allow us to perform an organism-from-ENP separation as well, so I designed a study to find out,” Johnson said.

In their experiment, the NIST researchers first exposed separate samples of C. elegans to low and high concentrations of two sizes of gold nanospheres, 30 and 60 nanometers in diameter. The researchers put each of the samples into a centrifuge and removed the supernatant (liquid portion), leaving the worms and ENPs in the remaining pellets. These were centrifuged twice in a salt solution (rather than just water as in previous separation methods), and then centrifuged again, but this time, through a uniquely designed sucrose density gradient.

“From top to bottom, our gradient consisted of a salt solution layer to trap excess ENPs and three increasingly dense layers of sucrose [20, 40 and 50 percent] to isolate the C. elegans,” Johnson explained. “We followed up the gradient with three water rinses and with centrifugations to ensure that only worms with ingested ENPs, and not the sucrose separation medium with any excess ENPs, would make it into the final pellet.”

Analyzing the range of masses in the ultrapurified samples indicated gold levels more in line with what the researchers expected would be found as ingested ENPs. Experimental validation of the NIST separation method’s success came when the worms were examined in detail under a scanning electron microscope (SEM).

“For me, the eureka moment was when I first saw gold ENPs in the cross section images taken from the C. elegans samples that had been processed through the sucrose density gradient,” Johnson said. “I had been dreaming about finding ENPs in the worm’s digestive tract and now they were really there!”

The high-resolution SEM images also provided visual evidence that only ingested ENPs were counted. “No ENPs were attached to the cuticle, the exoskeleton of C. elegans, in any of the sucrose density gradient samples,” Johnson said. “When we examined worms from our control experiments [processed using the traditional no-gradient, water-rinse-only separation method], there were a number of nanospheres found attached to the cuticle.

Now that it has been successfully demonstrated, the NIST researchers plan to refine and further validate their system for evaluating the uptake of ENPs by C. elegans. “Hopefully, our method will become a useful and valuable tool for reducing the measurement variability and sampling bias that can plague environmental nanotoxicology studies,” Johnson said.

They’ve tested this technique on gold nanoparticles, which begs the question, What kinds of nanoparticles can this technique be used for? Metal nanoparticles only or all nanoparticles?

I’m sure the researchers have already asked these questions and started researching the answers. While the rest of us wait, here’s a link to and a citation for the paper about this promising new technique,

Separation, Sizing, and Quantitation of Engineered Nanoparticles in an Organism Model Using Inductively Coupled Plasma Mass Spectrometry and Image Analysis by Monique E. Johnson, Shannon K. Hanna, Antonio R. Montoro Bustos, Christopher M. Sims, Lindsay C. C. Elliott, Akshay Lingayat, Adrian C. Johnston, Babak Nikoobakht, John T. Elliott, R. David Holbrook, Keana C. K. Scott, Karen E. Murphy, Elijah J. Petersen, Lee L. Yu, and Bryant C. Nelson. ACS Nano, 2017, 11 (1), pp 526–540 DOI: 10.1021/acsnano.6b06582 Publication Date (Web): December 16, 2016

Copyright This article not subject to U.S. Copyright. Published 2016 by the American Chemical Society

This paper is behind a paywall.

Investigating nanoparticles and their environmental impact for industry?

It seems the Center for the Environmental Implications of Nanotechnology (CEINT) at Duke University (North Carolina, US) is making an adjustment to its focus and opening the door to industry, as well as, government research. It has for some years (my first post about the CEINT at Duke University is an Aug. 15, 2011 post about its mesocosms) been focused on examining the impact of nanoparticles (also called nanomaterials) on plant life and aquatic systems. This Jan. 9, 2017 US National Science Foundation (NSF) news release (h/t Jan. 9, 2017 Nanotechnology Now news item) provides a general description of the work,

We can’t see them, but nanomaterials, both natural and manmade, are literally everywhere, from our personal care products to our building materials–we’re even eating and drinking them.

At the NSF-funded Center for Environmental Implications of Nanotechnology (CEINT), headquartered at Duke University, scientists and engineers are researching how some of these nanoscale materials affect living things. One of CEINT’s main goals is to develop tools that can help assess possible risks to human health and the environment. A key aspect of this research happens in mesocosms, which are outdoor experiments that simulate the natural environment – in this case, wetlands. These simulated wetlands in Duke Forest serve as a testbed for exploring how nanomaterials move through an ecosystem and impact living things.

CEINT is a collaborative effort bringing together researchers from Duke, Carnegie Mellon University, Howard University, Virginia Tech, University of Kentucky, Stanford University, and Baylor University. CEINT academic collaborations include on-going activities coordinated with faculty at Clemson, North Carolina State and North Carolina Central universities, with researchers at the National Institute of Standards and Technology and the Environmental Protection Agency labs, and with key international partners.

The research in this episode was supported by NSF award #1266252, Center for the Environmental Implications of NanoTechnology.

The mention of industry is in this video by O’Brien and Kellan, which describes CEINT’s latest work ,

Somewhat similar in approach although without a direction reference to industry, Canada’s Experimental Lakes Area (ELA) is being used as a test site for silver nanoparticles. Here’s more from the Distilling Science at the Experimental Lakes Area: Nanosilver project page,

Water researchers are interested in nanotechnology, and one of its most commonplace applications: nanosilver. Today these tiny particles with anti-microbial properties are being used in a wide range of consumer products. The problem with nanoparticles is that we don’t fully understand what happens when they are released into the environment.

The research at the IISD-ELA [International Institute for Sustainable Development Experimental Lakes Area] will look at the impacts of nanosilver on ecosystems. What happens when it gets into the food chain? And how does it affect plants and animals?

Here’s a video describing the Nanosilver project at the ELA,

You may have noticed a certain tone to the video and it is due to some political shenanigans, which are described in this Aug. 8, 2016 article by Bartley Kives for the Canadian Broadcasting Corporation’s (CBC) online news.

Hopes for nanocellulose in the fields of medicine and green manufacturing

Initially this seemed like an essay extolling the possibilities for nanocellulose but it is also a research announcement. From a Nov. 7, 2016 news item on Nanowerk,

What if you could take one of the most abundant natural materials on earth and harness its strength to lighten the heaviest of objects, to replace synthetic materials, or use it in scaffolding to grow bone, in a fast-growing area of science in oral health care?

This all might be possible with cellulose nanocrystals, the molecular matter of all plant life. As industrial filler material, they can be blended with plastics and other synthetics. They are as strong as steel, tough as glass, lightweight, and green.

“Plastics are currently reinforced with fillers made of steel, carbon, Kevlar, or glass. There is an increasing demand in manufacturing for sustainable materials that are lightweight and strong to replace these fillers,” said Douglas M. Fox, associate professor of chemistry at American University.
“Cellulose nanocrystals are an environmentally friendly filler. If there comes a time that they’re used widely in manufacturing, cellulose nanocrystals will lessen the weight of materials, which will reduce energy.”

A Nov. 7, 2016 American University news release on EurekAlert, which originated the news item, continues into the research,

Fox has submitted a patent for his work with cellulose nanocrystals, which involves a simple, scalable method to improve their performance. Published results of his method can be found in the chemistry journal ACS Applied Materials and Interfaces. Fox’s method could be used as a biomaterial and for applications in transportation, infrastructure and wind turbines.

The power of cellulose

Cellulose gives stems, leaves and other organic material in the natural world their strength. That strength already has been harnessed for use in many commercial materials. At the nano-level, cellulose fibers can be broken down into tiny crystals, particles smaller than ten millionths of a meter. Deriving cellulose from natural sources such as wood, tunicate (ocean-dwelling sea cucumbers) and certain kinds of bacteria, researchers prepare crystals of different sizes and strengths.

For all of the industry potential, hurdles abound. As nanocellulose disperses within plastic, scientists must find the sweet spot: the right amount of nanoparticle-matrix interaction that yields the strongest, lightest property. Fox overcame four main barriers by altering the surface chemistry of nanocrystals with a simple process of ion exchange. Ion exchange reduces water absorption (cellulose composites lose their strength if they absorb water); increases the temperature at which the nanocrystals decompose (needed to blend with plastics); reduces clumping; and improves re-dispersal after the crystals dry.

Cell growth

Cellulose nanocrystals as a biomaterial is yet another commercial prospect. In dental regenerative medicine, restoring sufficient bone volume is needed to support a patient’s teeth or dental implants. Researchers at the National Institute of Standards and Technology [NIST], through an agreement with the National Institute of Dental and Craniofacial Research of the National Institutes of Health, are looking for an improved clinical approach that would regrow a patient’s bone. When researchers experimented with Fox’s modified nanocrystals, they were able to disperse the nanocrystals in scaffolds for dental regenerative medicine purposes.

“When we cultivated cells on the cellulose nanocrystal-based scaffolds, preliminary results showed remarkable potential of the scaffolds for both their mechanical properties and the biological response. This suggests that scaffolds with appropriate cellulose nanocrystal concentrations are a promising approach for bone regeneration,” said Martin Chiang, team leader for NIST’s Biomaterials for Oral Health Project.

Another collaboration Fox has is with Georgia Institute of Technology and Owens Corning, a company specializing in fiberglass insulation and composites, to research the benefits to replace glass-reinforced plastic used in airplanes, cars and wind turbines. He also is working with Vireo Advisors and NIST to characterize the health and safety of cellulose nanocrystals and nanofibers.

“As we continue to show these nanomaterials are safe, and make it easier to disperse them into a variety of materials, we get closer to utilizing nature’s chemically resistant, strong, and most abundant polymer in everyday products,” Fox said.

Here’s a link to and a citation for the paper,

Simultaneously Tailoring Surface Energies and Thermal Stabilities of Cellulose Nanocrystals Using Ion Exchange: Effects on Polymer Composite Properties for Transportation, Infrastructure, and Renewable Energy Applications by Douglas M. Fox, Rebeca S. Rodriguez, Mackenzie N. Devilbiss, Jeremiah Woodcock, Chelsea S. Davis, Robert Sinko, Sinan Keten, and Jeffrey W. Gilman. ACS Appl. Mater. Interfaces, 2016, 8 (40), pp 27270–27281 DOI: 10.1021/acsami.6b06083 Publication Date (Web): September 14, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

Mimicking rain and sun to test plastic for nanoparticle release

One of Canada’s nanotechnology experts once informed a House of Commons Committee on Health that nanoparticles encased in plastic (he was talking about cell phones) weren’t likely to harm you except in two circumstances (when workers were using them in the manufacturing process and when the product was being disposed of). Apparently, under some circumstances, that isn’t true any more. From a Sept. 30, 2016 news item on Nanowerk,

If the 1967 film “The Graduate” were remade today, Mr. McGuire’s famous advice to young Benjamin Braddock would probably be updated to “Plastics … with nanoparticles.” These days, the mechanical, electrical and durability properties of polymers—the class of materials that includes plastics—are often enhanced by adding miniature particles (smaller than 100 nanometers or billionths of a meter) made of elements such as silicon or silver. But could those nanoparticles be released into the environment after the polymers are exposed to years of sun and water—and if so, what might be the health and ecological consequences?

A Sept. 30, 2016 US National Institute of Standards and Technology (NIST) news release, which originated the news item, describes how the research was conducted and its results (Note: Links have been removed),

In a recently published paper (link is external), researchers from the National Institute of Standards and Technology (NIST) describe how they subjected a commercial nanoparticle-infused coating to NIST-developed methods for accelerating the effects of weathering from ultraviolet (UV) radiation and simulated washings of rainwater. Their results indicate that humidity and exposure time are contributing factors for nanoparticle release, findings that may be useful in designing future studies to determine potential impacts.

In their recent experiment, the researchers exposed multiple samples of a commercially available polyurethane coating containing silicon dioxide nanoparticles to intense UV radiation for 100 days inside the NIST SPHERE (Simulated Photodegradation via High-Energy Radiant Exposure), a hollow, 2-meter (7-foot) diameter black aluminum chamber lined with highly UV reflective material that bears a casual resemblance to the Death Star in the film “Star Wars.” For this study, one day in the SPHERE was equivalent to 10 to 15 days outdoors. All samples were weathered at a constant temperature of 50 degrees Celsius (122 degrees Fahrenheit) with one group done in extremely dry conditions (approximately 0 percent humidity) and the other in humid conditions (75 percent humidity).

To determine if any nanoparticles were released from the polymer coating during UV exposure, the researchers used a technique they created and dubbed “NIST simulated rain.” Filtered water was converted into tiny droplets, sprayed under pressure onto the individual samples, and then the runoff—with any loose nanoparticles—was collected in a bottle. This procedure was conducted at the beginning of the UV exposure, at every two weeks during the weathering run and at the end. All of the runoff fluids were then analyzed by NIST chemists for the presence of silicon and in what amounts. Additionally, the weathered coatings were examined with atomic force microscopy (AFM) and scanning electron microscopy (SEM) to reveal surface changes resulting from UV exposure.

Both sets of coating samples—those weathered in very low humidity and the others in very humid conditions—degraded but released only small amounts of nanoparticles. The researchers found that more silicon was recovered from the samples weathered in humid conditions and that nanoparticle release increased as the UV exposure time increased. Microscopic examination showed that deformations in the coating surface became more numerous with longer exposure time, and that nanoparticles left behind after the coating degraded often bound together in clusters.

“These data, and the data from future experiments of this type, are valuable for developing computer models to predict the long-term release of nanoparticles from commercial coatings used outdoors, and in turn, help manufacturers, regulatory officials and others assess any health and environmental impacts from them,” said NIST research chemist Deborah Jacobs, lead author on the study published in the Journal of Coatings Technology and Research (link is external).

Here’s a link to and a citation for the paper,

Surface degradation and nanoparticle release of a commercial nanosilica/polyurethane coating under UV exposure by Deborah S. Jacobs, Sin-Ru Huang, Yu-Lun Cheng, Savelas A. Rabb, Justin M. Gorham, Peter J. Krommenhoek, Lee L. Yu, Tinh Nguyen, Lipiin Sung. J Coat Technol Res (2016) 13: 735. doi:10.1007/s11998-016-9796-2 First published online 13 July 2016

This paper is behind a paywall.

For anyone interested in the details about the House of Commons nano story I told at the start of this post, here’s the June 23, 2010 posting where I summarized the hearing on nanotechnology. If you scroll down about 50% of the way, you’ll find Dr. Nils Petersen’s (then director of Canada’s National Institute of Nanotechnology) comments about nanoparticles being encased. The topic had been nanosunscreens and he was describing the conditions under which he believed nanoparticles could be dangerous.

Creating multiferroic material at room temperature

A Sept. 23, 2016 news item on ScienceDaily describes some research from Cornell University (US),

Multiferroics — materials that exhibit both magnetic and electric order — are of interest for next-generation computing but difficult to create because the conditions conducive to each of those states are usually mutually exclusive. And in most multiferroics found to date, their respective properties emerge only at extremely low temperatures.

Two years ago, researchers in the labs of Darrell Schlom, the Herbert Fisk Johnson Professor of Industrial Chemistry in the Department of Materials Science and Engineering, and Dan Ralph, the F.R. Newman Professor in the College of Arts and Sciences, in collaboration with professor Ramamoorthy Ramesh at UC Berkeley, published a paper announcing a breakthrough in multiferroics involving the only known material in which magnetism can be controlled by applying an electric field at room temperature: the multiferroic bismuth ferrite.

Schlom’s group has partnered with David Muller and Craig Fennie, professors of applied and engineering physics, to take that research a step further: The researchers have combined two non-multiferroic materials, using the best attributes of both to create a new room-temperature multiferroic.

Their paper, “Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic,” was published — along with a companion News & Views piece — Sept. 22 [2016] in Nature. …

A Sept. 22, 2016 Cornell University news release by Tom Fleischman, which originated the news item, details more about the work (Note: A link has been removed),

The group engineered thin films of hexagonal lutetium iron oxide (LuFeO3), a material known to be a robust ferroelectric but not strongly magnetic. The LuFeO3 consists of alternating single monolayers of lutetium oxide and iron oxide, and differs from a strong ferrimagnetic oxide (LuFe2O4), which consists of alternating monolayers of lutetium oxide with double monolayers of iron oxide.

The researchers found, however, that they could combine these two materials at the atomic-scale to create a new compound that was not only multiferroic but had better properties that either of the individual constituents. In particular, they found they need to add just one extra monolayer of iron oxide to every 10 atomic repeats of the LuFeO3 to dramatically change the properties of the system.

That precision engineering was done via molecular-beam epitaxy (MBE), a specialty of the Schlom lab. A technique Schlom likens to “atomic spray painting,” MBE let the researchers design and assemble the two different materials in layers, a single atom at a time.

The combination of the two materials produced a strongly ferrimagnetic layer near room temperature. They then tested the new material at the Lawrence Berkeley National Laboratory (LBNL) Advanced Light Source in collaboration with co-author Ramesh to show that the ferrimagnetic atoms followed the alignment of their ferroelectric neighbors when switched by an electric field.

“It was when our collaborators at LBNL demonstrated electrical control of magnetism in the material that we made that things got super exciting,” Schlom said. “Room-temperature multiferroics are exceedingly rare and only multiferroics that enable electrical control of magnetism are relevant to applications.”

In electronics devices, the advantages of multiferroics include their reversible polarization in response to low-power electric fields – as opposed to heat-generating and power-sapping electrical currents – and their ability to hold their polarized state without the need for continuous power. High-performance memory chips make use of ferroelectric or ferromagnetic materials.

“Our work shows that an entirely different mechanism is active in this new material,” Schlom said, “giving us hope for even better – higher-temperature and stronger – multiferroics for the future.”

Collaborators hailed from the University of Illinois at Urbana-Champaign, the National Institute of Standards and Technology, the University of Michigan and Penn State University.

Here is a link and a citation to the paper and to a companion piece,

Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic by Julia A. Mundy, Charles M. Brooks, Megan E. Holtz, Jarrett A. Moyer, Hena Das, Alejandro F. Rébola, John T. Heron, James D. Clarkson, Steven M. Disseler, Zhiqi Liu, Alan Farhan, Rainer Held, Robert Hovden, Elliot Padgett, Qingyun Mao, Hanjong Paik, Rajiv Misra, Lena F. Kourkoutis, Elke Arenholz, Andreas Scholl, Julie A. Borchers, William D. Ratcliff, Ramamoorthy Ramesh, Craig J. Fennie, Peter Schiffer et al. Nature 537, 523–527 (22 September 2016) doi:10.1038/nature19343 Published online 21 September 2016

Condensed-matter physics: Multitasking materials from atomic templates by Manfred Fiebig. Nature 537, 499–500  (22 September 2016) doi:10.1038/537499a Published online 21 September 2016

Both the paper and its companion piece are behind a paywall.

US white paper on neuromorphic computing (or the nanotechnology-inspired Grand Challenge for future computing)

The US has embarked on a number of what is called “Grand Challenges.” I first came across the concept when reading about the Bill and Melinda Gates (of Microsoft fame) Foundation. I gather these challenges are intended to provide funding for research that advances bold visions.

There is the US National Strategic Computing Initiative established on July 29, 2015 and its first anniversary results were announced one year to the day later. Within that initiative a nanotechnology-inspired Grand Challenge for Future Computing was issued and, according to a July 29, 2016 news item on Nanowerk, a white paper on the topic has been issued (Note: A link has been removed),

Today [July 29, 2016), Federal agencies participating in the National Nanotechnology Initiative (NNI) released a white paper (pdf) describing the collective Federal vision for the emerging and innovative solutions needed to realize the Nanotechnology-Inspired Grand Challenge for Future Computing.

The grand challenge, announced on October 20, 2015, is to “create a new type of computer that can proactively interpret and learn from data, solve unfamiliar problems using what it has learned, and operate with the energy efficiency of the human brain.” The white paper describes the technical priorities shared by the agencies, highlights the challenges and opportunities associated with these priorities, and presents a guiding vision for the research and development (R&D) needed to achieve key technical goals. By coordinating and collaborating across multiple levels of government, industry, academia, and nonprofit organizations, the nanotechnology and computer science communities can look beyond the decades-old approach to computing based on the von Neumann architecture and chart a new path that will continue the rapid pace of innovation beyond the next decade.

A July 29, 2016 US National Nanotechnology Coordination Office news release, which originated the news item, further and succinctly describes the contents of the paper,

“Materials and devices for computing have been and will continue to be a key application domain in the field of nanotechnology. As evident by the R&D topics highlighted in the white paper, this challenge will require the convergence of nanotechnology, neuroscience, and computer science to create a whole new paradigm for low-power computing with revolutionary, brain-like capabilities,” said Dr. Michael Meador, Director of the National Nanotechnology Coordination Office. …

The white paper was produced as a collaboration by technical staff at the Department of Energy, the National Science Foundation, the Department of Defense, the National Institute of Standards and Technology, and the Intelligence Community. …

The white paper titled “A Federal Vision for Future Computing: A Nanotechnology-Inspired Grand Challenge” is 15 pp. and it offers tidbits such as this (Note: Footnotes not included),

A new materials base may be needed for future electronic hardware. While most of today’s electronics use silicon, this approach is unsustainable if billions of disposable and short-lived sensor nodes are needed for the coming Internet-of-Things (IoT). To what extent can the materials base for the implementation of future information technology (IT) components and systems support sustainability through recycling and bio-degradability? More sustainable materials, such as compostable or biodegradable systems (polymers, paper, etc.) that can be recycled or reused,  may play an important role. The potential role for such alternative materials in the fabrication of integrated systems needs to be explored as well. [p. 5]

The basic architecture of computers today is essentially the same as those built in the 1940s—the von Neumann architecture—with separate compute, high-speed memory, and high-density storage components that are electronically interconnected. However, it is well known that continued performance increases using this architecture are not feasible in the long term, with power density constraints being one of the fundamental roadblocks.7 Further advances in the current approach using multiple cores, chip multiprocessors, and associated architectures are plagued by challenges in software and programming models. Thus,  research and development is required in radically new and different computing architectures involving processors, memory, input-output devices, and how they behave and are interconnected. [p. 7]

Neuroscience research suggests that the brain is a complex, high-performance computing system with low energy consumption and incredible parallelism. A highly plastic and flexible organ, the human brain is able to grow new neurons, synapses, and connections to cope with an ever-changing environment. Energy efficiency, growth, and flexibility occur at all scales, from molecular to cellular, and allow the brain, from early to late stage, to never stop learning and to act with proactive intelligence in both familiar and novel situations. Understanding how these mechanisms work and cooperate within and across scales has the potential to offer tremendous technical insights and novel engineering frameworks for materials, devices, and systems seeking to perform efficient and autonomous computing. This research focus area is the most synergistic with the national BRAIN Initiative. However, unlike the BRAIN Initiative, where the goal is to map the network connectivity of the brain, the objective here is to understand the nature, methods, and mechanisms for computation,  and how the brain performs some of its tasks. Even within this broad paradigm,  one can loosely distinguish between neuromorphic computing and artificial neural network (ANN) approaches. The goal of neuromorphic computing is oriented towards a hardware approach to reverse engineering the computational architecture of the brain. On the other hand, ANNs include algorithmic approaches arising from machinelearning,  which in turn could leverage advancements and understanding in neuroscience as well as novel cognitive, mathematical, and statistical techniques. Indeed, the ultimate intelligent systems may as well be the result of merging existing ANN (e.g., deep learning) and bio-inspired techniques. [p. 8]

As government documents go, this is quite readable.

For anyone interested in learning more about the future federal plans for computing in the US, there is a July 29, 2016 posting on the White House blog celebrating the first year of the US National Strategic Computing Initiative Strategic Plan (29 pp. PDF; awkward but that is the title).

Carbon nanotubes: faster, cheaper, easier, and more consistent

One of the big problems with nanomaterials has to do with production issues such as: consistent size and shape. It seems that scientists at the US National Institute of Standards and Technology (NIST) have developed a technique for producing carbon nanotubes (CNTs) which addresses these issues. From a July 19, 2016 news item on Nanotechnology Now,

Just as many of us might be resigned to clogged salt shakers or rush-hour traffic, those working to exploit the special properties of carbon nanotubes have typically shrugged their shoulders when these tiniest of cylinders fill with water during processing. But for nanotube practitioners who have reached their Popeye threshold and “can’t stands no more,” the National Institute of Standards and Technology (NIST) has devised a cheap, quick and effective strategy that reliably enhances the quality and consistency of the materials–important for using them effectively in applications such as new computing technologies.

To prevent filling of the cores of single-wall carbon nanotubes with water or other detrimental substances, the NIST researchers advise intentionally prefilling them with a desired chemical of known properties. Taking this step before separating and dispersing the materials, usually done in water, yields a consistently uniform collection of nanotubes. In quantity and quality, the results are superior to water-filled nanotubes, especially for optical applications such as sensors and photodetectors.

A July 15, 2016 NIST news release, which originated the news item, expands on the theme,

The approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes—rolled up sheets of carbon atoms arranged like chicken wire or honey combs—with improved or new properties.

“This approach is so easy, inexpensive and broadly useful that I can’t think of a reason not to use it,” said NIST chemical engineer Jeffrey Fagan.

In their proof-of-concept experiments, the NIST team inserted more than 20 different compounds into an assortment of single-wall carbon nanotubes with an interior diameter that ranged from more than 2 down to about 0.5 nanometers. Led by visiting researcher Jochen Campo, the scientists tested their strategy by using hydrocarbons called alkanes as fillers.

The alkanes, which include such familiar compounds as propane and butane, served to render the nanotube interiors unreactive. In other words, the alkane-filled nanotubes behaved almost as if they were empty—precisely the goal of Campo, Fagan and colleagues.

Compared with nanotubes filled with water and possibly ions, acids and other unwanted chemicals encountered during processing, empty nanotubes possess far superior properties. For example, when stimulated by light, empty carbon nanotubes fluoresce far brighter and with sharper signals.

Yet, “spontaneous ingestion” of water or other solvents by the nanotubes during processing is an “endemic but often neglected phenomenon with strong implications for the development of nanotube applications,” the NIST team wrote in a recent article in Nanoscale Horizons.

Perhaps because of the additional cost and effort required to filter out and gather nanotubes, researchers tend to tolerate mixed batches of unfilled (empty) and mostly filled single-wall carbon nanotubes. Separating unfilled nanotubes from these mixtures requires expensive ultracentrifuge equipment and, even then, the yield is only about 10 percent, Campo estimates.

“If your goal is to use nanotubes for electronic circuits, for example, or for fluorescent anti-cancer image contrast agents, then you require much greater quantities of materials of consistent composition and quality,” Campo explained, who was exploring these applications while doing postdoctoral research at the University of Antwerp. “This particular need inspired development of the new prefilling method by asking the question, can we put some passive chemical into the nanotube instead to keep the water out.”

From the very first simple experiments, the answer was yes. And the benefits can be significant. In fluorescence experiments, alkane-filled nanotubes emitted signals two to three times stronger than those emitted by water-filled nanotubes. Performance approached that of empty nanotubes—the gold standard for these comparisons.

As important, the NIST-developed prefilling strategy is controllable, versatile and easily incorporated into existing methods for processing single-wall carbon nanotubes, according to the researchers.

Here’s a link to and citation for the paper,

Enhancing single-wall carbon nanotube properties through controlled endohedral filling by J. Campo, Y. Piao, S. Lam, C. M. Stafford, J. K. Streit, J. R. Simpson, A. R. Hight Walker, and J. A. Fagan. Nanoscale Horiz., 2016,1, 317-324 DOI: 10.1039/C6NH00062B First published online 10 May 2016

This paper is open access but you do need to register on the site (it is a free registration).