Tag Archives: Victor Hugo

Goats, spider silk, and silkworms

A few years ago (2008), I attended the Cascadia Nanotech Symposium organized by the now defunct, Nanotech BC (British Columbia, Canada) and heard Dr. Frank Ko speak. He is a Canada Research Chair at the University of British Columbia (UBC) who leads the Advanced Fibrous Materials Laboratory and, in his talk, he mentioned that he had added spider genes to goats with the intention of easing the process of spinning goat’s milk thereby exploiting spider silk’s properties.

I’m never especially comfortable about mixing genes between species that, as far as I know, would never have occasion to mingle their genetic material together. It’s a little too close to ‘The Isle of Dr. Moreau’ (Victor Hugo’s novel which I have never read but have heard about). But there were people who had some similar concerns about electricity, which I take for granted, violating the natural order of things as per Carolyn Marvin’s book, When old technologies were new. Consequently, I’m willing to think about it but not terribly happy to do it.

Getting back to spider silk and Dr. Ko’s work, he and others are very interested in exploiting the strength inherent in spider silk. Here’s a description of that strength from an article by David Zax on Fast Company,

Oftentimes, nature is better at building stuff than we are. Spider silk is an example. The tiny threads spun by our eight-legged friends has a tensile strength comparable to high-grade steel. If humans could harness the spider and turn it into a manufacturing agent, the industrial and commercial potentials could be immense. One problem, though: Spidey hasn’t been cooperating. Spiders just don’t spin the stuff in great quantities, and there is no commercially viable way of mass-producing spider silk.

In looking at Dr. Ko’s webpage I see that adding a spider gene to goats may have been his solution to the problem of producing more spider silk (and perhaps other issues as well),

An internationally recognized expert in 3-D complex fiber architecture for structural toughening of composites Professor Ko’s pioneering work on the development of continuous nanocomposite fibrils by co-electrospinning has provided a new pathway to connect nanomaterials to macrostructural design. With an objective to understand the structural basis for the outstanding combination of strength and toughness in spider silk Professor Ko has played a leading role in the study of nanocomposite fibrils from recombinant spider silk. It was demonstrated that 10X increase in strength and 5X increase in modulus were attainable with the addition of 1-3 weight % of carbon nanotube to the recombinant spider silk. Research has been extended to various filler geometry that include graphite nanoplatelet (GNP); nanoparticles such as nanodiamonds and various functional particles.

Zax’s article highlights a different approach to producing greater quantities of spider silk,

There is, however, already a silkworm industry, which yields most of the silk–less strong than the spider’s–that we’re familiar with. A few scientists got a bright idea: what if you could make the silkworm, which is already equipped for industry, spin spider silk?

Notre Dame, the University of Wyoming, and Kraig Biocraft Laboratories, Inc. joined heads, and recently announced that they had succeeded in genetically engineering silkworms so that they produce artificial spider silks. Several biologists teamed up to splice certain DNA from spiders into the genomes of silkworms. The altered silkworms now spin cocoons that are a mixture of silkworm silk and spider silk. Though the tensile strength of the altered silk still falls well short of that of pure spider silk, it’s a step in the right direction.

I can certainly see benefits to this but I sometimes wonder if humans have enough humility and foresight as we embark on ever more subtle manipulations of life.

ETA October 29, 2010: If you are interested in the goat/spider issue, take a look at Andrew Manard’s October 27, 2010 posting on his 2020 Science blog. He’s running a poll on the question,

… why not take the gene responsible for making spider silk, and splice it into a goat [to produce more spider silk]?

Be sure to take a look at the comments, if you’re interested in the history of the technique, which apparently stretches back to the 1950s!