Tag Archives: virtual reality

Mathematicians get illustrative

Frank A. Farris, an associate Professor of Mathematics at Santa Clara University (US), writes about the latest in mathematicians and data visualization in an April 4, 2017 essay on The Conversation (Note: Links have been removed),

Today, digital tools like 3-D printing, animation and virtual reality are more affordable than ever, allowing mathematicians to investigate and illustrate their work at the same time. Instead of drawing a complicated surface on a chalkboard, we can now hand students a physical model to feel or invite them to fly over it in virtual reality.

Last year, a workshop called “Illustrating Mathematics” at the Institute for Computational and Experimental Research in Mathematics (ICERM) brought together an eclectic group of mathematicians and digital art practitioners to celebrate what seems to be a golden age of mathematical visualization. Of course, visualization has been central to mathematics since Pythagoras, but this seems to be the first time it had a workshop of its own.

Visualization plays a growing role in mathematical research. According to John Sullivan at the Technical University of Berlin, mathematical thinking styles can be roughly categorized into three groups: “the philosopher,” who thinks purely in abstract concepts; “the analyst,” who thinks in formulas; and “the geometer,” who thinks in pictures.

Mathematical research is stimulated by collaboration between all three types of thinkers. Many practitioners believe teaching should be calibrated to connect with different thinking styles.

Borromean Rings, the logo of the International Mathematical Union. John Sullivan

Sullivan’s own work has benefited from images. He studies geometric knot theory, which involves finding “best” configurations. For example, consider his Borromean rings, which won the logo contest of the International Mathematical Union several years ago. The rings are linked together, but if one of them is cut, the others fall apart, which makes it a nice symbol of unity.

Apparently this new ability to think mathematics visually has influenced mathematicians in some unexpected ways,

Take mathematician Fabienne Serrière, who raised US$124,306 through Kickstarter in 2015 to buy an industrial knitting machine. Her dream was to make custom-knit scarves that demonstrate cellular automata, mathematical models of cells on a grid. To realize her algorithmic design instructions, Serrière hacked the code that controls the machine. She now works full-time on custom textiles from a Seattle studio.

In this sculpture by Edmund Harriss, the drill traces are programmed to go perpendicular to the growth rings of the tree. This makes the finished sculpture a depiction of a concept mathematicians know as ‘paths of steepest descent.’ Edmund Harriss, Author provided

Edmund Harriss of the University of Arkansas hacked an architectural drilling machine, which he now uses to make mathematical sculptures from wood. The control process involves some deep ideas from differential geometry. Since his ideas are basically about controlling a robot arm, they have wide application beyond art. According to his website, Harriss is “driven by a passion to communicate the beauty and utility of mathematical thinking.”

Mathematical algorithms power the products made by Nervous System, a studio in Massachusetts that was founded in 2007 by Jessica Rosenkrantz, a biologist and architect, and Jess Louis-Rosenberg, a mathematician. Many of their designs, for things like custom jewelry and lampshades, look like naturally occurring structures from biology or geology.

Farris’ essay is a fascinating look at mathematics and data visualization.

Science, technology, engineering, arts, and mathematics (STEAM) for the Canada Science and Technology Museums Corporation gala on May 17, 2017

The Canada National Science and Technology Museums Corporation (CSTMC) gala is known officially as the National Science and Innovation Gala according to a May 11, 2017 announcement (received via email),

FULL STEAM AHEAD TO THE NATIONAL SCIENCE AND INNOVATION GALA

LET’S TALK STEAM
Demonstrating Canada’s commitment to a vibrant, national science
culture, the evening’s panel brings together influencers from the
private and public sectors to discuss the importance of education in the
STEAM (science, technology, engineering, arts, mathematics) fields.

FAMILIAR FACES
Experience a whimsical and wonderful evening hosted by CBC News
Network’s Heather Hiscox. Join her for the presentation of the first
ever STEAM Horizon Awards.

APPETITE FOR INNOVATION
From virtual reality to wearable technologies, the innovation is so real
you can taste it.  Chef Michael Blackie’s culinary creations will
underscore the spirit of ingenuity with a refined but approachable menu.
Prepare your taste buds to savour food and beverages that will fuel your
body and mind.

TIME IS RUNNING OUT. BUY YOUR TICKETS TODAY! [3]

[4]

À TOUTE VAPEUR VERS LE GALA NATIONAL DES SCIENCES ET DE L’INNOVATION

PARLONS STIAM
Témoignant de l’engagement du Canada à créer une culture
scientifique dynamique à l’échelle du pays, le groupe d’experts
invité rassemblera des gens d’influence issus des secteurs privé et
public, afin qu’ils discutent de l’importance de l’éducation dans
les domaines des STIAM (sciences, technologies, ingénierie, arts et
mathématiques).

VISAGES FAMILIERS
Venez vivre l’expérience d’une soirée empreinte de fantaisie et de
merveilleux qu’animera Heather Hiscox, lectrice de nouvelles au
réseau CBC News Network. Assistez à la remise des tout premiers prix
Horizon STIAM.

LE GOÛT DE L’INNOVATION
De la réalité virtuelle aux technologies portables, l’innovation est
si réelle qu’on peut même y goûter. Les créations culinaires du
chef Michael Blackie illustrent cet esprit d’ingéniosité dans un
menu raffiné et invitant. Préparez vos papilles à savourer mets et
boissons qui nourriront votre corps et votre esprit.

LE TEMPS COMMENCE À MANQUER! ACHETEZ VOS BILLETS DÈS MAINTENANT! [5]

THANK YOU TO OUR SPONSORS
MERCI À NOS COMMANDITAIRES

Logistics (from the CSTMC’s gala event page),

WHAT DO YOU NEED TO KNOW?

  • Date: May 17, 2017
  • Time: Doors open at 5:30 p.m.
  • Location: Canada Aviation and Space Museum
  • Dress Code: Semi-formal. Guests are encouraged to add a Steampunk twist to their outfits.

Your ticket includes gourmet food, one drink ticket, entertainment, music performed by a Steampunk DJ, coat check and parking.

Tickets: $150 per person, $1250 for a group of 10.

The email didn’t quite convey the flavour of the gala,

What can you expect?

Heather Hiscox

Familiar Faces

Experience a whimsical and wonderful evening hosted by CBC [Canadian Broadcasting Corporation] News Network’s Heather Hiscox. Join her for the presentation of the first ever STEAM Horizon Awards.

Let’s Talk STEAM

Demonstrating Canada’s commitment to a vibrant, national science culture, the evening’s panel brings together influencers from the private and public sectors [emphasis mine] to discuss the importance of education in the STEAM (science, technology, engineering, arts, mathematics) fields. The panel will exchange insights on a wide-range of topics, including Canadian youth, women and girls in STEAM, and the imperative for coming generations of Canadians to embrace the fields of science and technology.

Let's Talk STEAM
appetite for innovation

Appetite for Innovation

From virtual reality to wearable technologies, the innovation is so real you can taste it. Chef Michael Blackie’s culinary creations will underscore the spirit of ingenuity with a refined but approachable menu. Prepare your taste buds to savour food and beverages that will fuel your body and mind.

Steampunk Factory

Be dazzled by technological wonders spread over different zones as you explore interactive installations developed by leading-edge industry partners and teams from local universities and colleges. From virtual reality to wearable technologies, get a hands-on look at the technologies of tomorrow − steampunk style!

Steampunk Factory
Future-VR

Virtual Reality

Do you have what it takes to be a steampunk aviator or train engineer? Test your skills and open up your mind to new horizons in our aviation simulators and virtual reality environments. If art and design are more your style, our virtual art exhibit will give all new meaning to abstract.

Autonomous Vehicles

Race your drones to the finish line or try your hand at controlling a rover developed to withstand the rigours of Mars. You are no longer required to leave your seat in order to take to the skies or visit other planets!

Autonomous Vehicles
Flying Time Machine

Wonderful Flying Time Machine

Travel back in time aboard the Wonderful Flying Time Machine equipped with a photo booth to make sure you capture the moment in time!

STEAM Horizon Awards

Amidst the wonders and whimsy of the Steampunk soiree, the Gala will also be host to the first ever STEAM Horizon Awards. Funded by the Canada Science and Technology Museums Corporation Foundation and six founding partners, the awards celebrate the important contributions of Canada’s youth in the fields of science, technology, engineering, arts, and math (STEAM). The seven winners, hailing from across Canada, have been invited to the Gala where they will be recognized for their individual achievements and receive a $25 000 prize to go towards their post-secondary education.

STEAM Horizon Awards
robotics

Robotics

Get acquainted with young innovators and their robot inventions. From flying machines to robot dogs, these whimsical inventions offer a peek into the automated future.

Networking

Spend the night mingling with industry innovators and academics alike as we honour the achievements of young Canadians in science, technology, engineering, arts, and math. Take advantage of this opportunity to connect with influential Canadians in STEAM industries in business and government.

networking
Roving Steampunk Performers

Roving Steampunk Performers

From stilt walkers to illusionists, experience a steampunk spectacle like no other as larger than life entertainers present a magical escape from the modern world.

Wearable Technology Fashion Show

Lights, camera, fashion! Enjoy a unique wearable technology fashion show where innovation meets performance and theatre. A collaboration between a number of Canada’s leading wearable technology companies and young innovators, this fashion show will take you to another world − or era!

Wearable Tech
DJ and Dancing

Do the Robot

Let off some steam and dance the night away amid a unique scene of motion and sound as robotic dancers come to life powered by the music of our Steampunk DJ.

Take part in an unforgettable experience. Buy your tickets now! $150 per person, $1250 for a group of 10.

My compliments on the imagination they’ve put into organizing this event. Still, I am wondering about a few things. It would seem the only person over the age of 30 who’s expected to attend is the CBC host, Heather Hiscox. Also, the panel seems to be comprised of a set of furniture.. Are they planning something like those unconferences where attendees spontaneously volunteer to present. or in this case, to be a panelist?

If anyone who’s attending is inclined, please do leave comments after you’ve attended. I’d love to know how it all came together.

Virtual Reality (VR) becomes educational (at Case Western Reserve University and Miami Children’s Hospital)

I have two virtual reality news bits the most recent concerning Case Western Reserve University (CWRU; located in Cleveland, Ohio) and Microsoft’s HoloLens in an April 29, 2015 CWRU press release (also on EurekAlert), Note: Some of this academic press release reads like marketing collateral,

Case Western Reserve University Radiology Professor Mark Griswold knew his world had changed the moment he first used a prototype of Microsoft’s HoloLens headset. Two months later, one of the university’s medical students illustrated exactly why.

“There’s the aortic valve,” Satyam Ghodasara exclaimed as he used Microsoft’s device to examine a holographic heart. “Now I understand.”

Today, Griswold told tens of thousands of people how HoloLens can transform learning across countless subjects, including those as complex as the human body. Speaking to an in-person and online audience at Microsoft’s annual Build conference, he highlighted disciplines as disparate as art history and engineering–but started with a holographic heart. In traditional anatomy, after all, students like Ghodasara cut into cadavers to understand the body’s intricacies.

With HoloLens, Griswold explained, “you see it truly in 3D. You can take parts in and out. You can turn it around. You can see the blood pumping–the entire system.”

In other words, technology not only can match existing educational methods–it can actually improve upon them. Which, in many ways, is why Cleveland Clinic CEO Toby Cosgrove contacted then-Microsoft executive Craig Mundie in 2013, after the hospital and university first agreed to partner on a new education building.

“We launched this collaboration to prepare students for a health care future that is still being imagined,” Cleveland Clinic CEO Delos “Toby” Cosgrove said of what has become a 485,000-square-foot Health Education Campus project. “By combining a state-of-the-art structure, pioneering technology, and cutting-edge teaching techniques, we will provide them the innovative education required to lead in this new era.”

As Cosgrove, Case Western Reserve President Barbara R. Snyder and other academic leaders engaged more extensively with Microsoft, the more potential everyone saw.

“For more than a century, our medical school has been renowned for inventing and reinventing approaches to teaching and learning that take root nationwide,” President Snyder said. “When we match that expertise with the interdisciplinary knowledge of our faculty, we create a rich environment to explore the educational potential of Microsoft’s extraordinary technology.”

After a small group including Griswold, engineering professor Marc Buchner and Cleveland Clinic education technology leader Neil Mehta first experienced HoloLens in December, the faculty returned to Cleveland to create a core team dedicated to exploring the technology’s academic potential. In February, 10 members of the team–including Ghodasara–returned to Microsoft for a HoloLens programming deep dive.

Ghodasara already had taken the traditional anatomy class at Case Western Reserve, but it wasn’t until he used the HoloLens headset that he first visualized the aortic valve in its entirety–unobstructed by other elements of the cardiac system and undamaged by earlier dissection efforts. Members of the Microsoft team were in the room when Ghodasara had his “aha” moment; a few weeks later, the heart demonstration became part of the Build conference agenda.

Case Western Reserve is the only university represented during the three-day event, a distinction Griswold attributes in part to the core team’s breadth of expertise and collegial approach.

“Without all of those people coming together,” Griswold said, “this would not have happened.”

When Griswold took the stage as part of Microsoft’s opening keynote at the Build conference, Ghodasara, Buchner and Chief Information Officer Sue Workman also were in the audience. Back in Cleveland, three of Professor Buchner’s undergraduates–John Billingsley, Henry Eastman and Tim Sesler–demonstrated some of the potential of the HoloLens technology live in the Tinkham Veale University Center.

Buchner, whose specialties include simulation and game design, believes Microsoft’s innovation “has the capability to transform engineering education.”

Because the technology is relatively easy to use, students will be able to build, operate and analyze all manner of devices and systems. “[It will] encourage experimentation,” Buchner said, “leading to deeper understanding and improved product design.”

In truth, HoloLens ultimately could have applications for dozens of Case Western Reserve’s academic programs. NASA’s Jet Propulsion Laboratory already has worked with Microsoft to develop software that will allow Earth-based scientists to work on Mars with a specially designed rover vehicle. A similar collaboration could enable students here to take part in archeological digs around the world. Or astronomy students could stand in the midst of colliding galaxies, securing front-row view of the unfolding chaos. Art history professors could present masterpieces in their original settings–a centuries-old castle, or even the Sistine Chapel.

“The whole campus has the potential to use this,” Griswold said. “Our ability to use this for education is almost limitless.”

For now, however, the top priority is creating a full digital anatomy curriculum, a process launched with the advent of the Health Education Campus, and now experiencing even greater momentum. Among the key collaborators are a team of medical students and anatomy and radiology faculty who are already investigating the use of these kinds of technology. This team, led by Amy Wilson­Delfosse, the medical school’s associate dean for curriculum, and Suzanne Wish-Baratz, an assistant professor who is one of the primary leaders of anatomy education, fully expects to have a digital curriculum ready for the new Health Education Campus.

Also essential, Griswold said, has been the advice and assistance of Microsoft’s HoloLens team and executives.

“It’s been a joy to work with them. They have been so friendly, so collaborative, so willing to work with us on this,” Griswold said. “We’re going to do incredible things together.”

Ohio is not the only state where virtual reality is being incorporated into medical education.

Florida

From an April 30, 2015 Next Galaxy Corp. news release,

Incorporating eye gaze control, gestures, and voice commands while “walking around” inside an emergency medical experience, Next Galaxy’s Virtual Reality Model educates participants far beyond today’s methodology of passively watching video and taking written tests.

Next Galaxy Corp (OTC: NXGA) recently announced the signing of an agreement with Miami Children’s Hospital to use the Company’s VR Model to develop immersive Virtual Reality medical instructional content for patient and medical professional education. Per the multi-year agreement, Next Galaxy and Miami Children’s Hospital are jointly developing VR Instructionals on cardiopulmonary resuscitation (CPR) and other lifesaving procedures, which will be released as an application for smartphones.

Assessments are incorporated directly into the medical VR models, creating situations where participants are required to make the appropriate decisions about proper techniques. The Virtual CPR instructional will measure metrics and provide real-time feedback ensuring participants accurately perform CPR techniques. Further, the instructional will explain any mistake and prompt users to try again when errors are made. Supportive messages are delivered upon success.

The medical VR models will be viewable through smartphones and desktops as 3D, and via VR devices such as Google Cardboard, VRONE and Oculus Rift.

About Next Galaxy Corporation

Next Galaxy Corporation is a leading developer of innovative content solutions and fully Immersive Consumer Virtual Reality technology. The Company’s flagship consumer product in development is CEEK, a next-generation fully immersive entertainment and educational social virtual reality platform featuring a combination of live action and 3D experiences. Next Galaxy’s CEEK simulates the communal experience of attending events, such as concerts, sporting events, movies or conferences through Virtual Reality. Next Galaxy is developing entertainment and educational experiences for VR Cinema, VR Concerts, VR Sports, VR Business, VR Tourism and more. In short, Next Galaxy is building the meeting places of the future. For further information, visit www.nextgalaxycorp.com

This seems to be the second time this information has been distributed (March 11, 2015 news release on PRNewswire), a widely adopted practice. Consequently and thankfully, there’s a March 11, 2015 article by Celia Ampel for the South Florida Business Journal which provides more details about the technology and explaining how a smartphone fits into virtual reality,

The best way to learn CPR is an immersive experience, Miami Children’s Hospital leaders believe — not a video.

“If I’m watching a video, I can pause and count, but there’s no way to tell if I counted to six or seven,” Next Galaxy President Mary Spio said. “Because [the virtual reality application] is voice-activated, they’re going to be able to count out loud and self-assess whether they’re doing it correctly.”

Next Galaxy (Pink Sheets: NXGA)’s virtual reality technology uses a smartphone app. Users can put their smartphone into a virtual reality headset for an immersive experience, or see 3D content through the phone.

The application will be available to the public in the next few months, Spio said.

This deal and another with Miami-Dade Country Public Schools are transforming Next Galaxy Corp according to Ampel’s article,

The five-person company will be hiring about 20 full-time employees in the next six months, focusing on developers with 3D modeling and gaming experience, she said.

Quadrupling the size of your company in six months can be quite a challenge. I wish them good luck with their expansion and their virtual reality course materials.

As to what all this mixed-reality/virtual reality might look like, there’s this image from Case Western Reserve University,

Courtesy: Case Western Reserve University

Courtesy: Case Western Reserve University

Brain, brains, brains: a roundup

I’ve decided to do a roundup of the various brain-related projects I’ve been coming across in the last several months. I was inspired by this article (Real-life Jedi: Pushing the limits of mind control) by Katia Moskvitch,

You don’t have to be a Jedi to make things move with your mind.

Granted, we may not be able to lift a spaceship out of a swamp like Yoda does in The Empire Strikes Back, but it is possible to steer a model car, drive a wheelchair and control a robotic exoskeleton with just your thoughts.

We are standing in a testing room at IBM’s Emerging Technologies lab in Winchester, England.

On my head is a strange headset that looks like a black plastic squid. Its 14 tendrils, each capped with a moistened electrode, are supposed to detect specific brain signals.

In front of us is a computer screen, displaying an image of a floating cube.

As I think about pushing it, the cube responds by drifting into the distance.

Moskvitch goes on to discuss a number of projects that translate thought into movement via various pieces of equipment before she mentions a project at Brown University (US) where researchers are implanting computer chips into brains,

Headsets and helmets offer cheap, easy-to-use ways of tapping into the mind. But there are other,

Imagine some kind of a wireless computer device in your head that you’ll use for mind control – what if people hacked into that”

At Brown Institute for Brain Science in the US, scientists are busy inserting chips right into the human brain.

The technology, dubbed BrainGate, sends mental commands directly to a PC.

Subjects still have to be physically “plugged” into a computer via cables coming out of their heads, in a setup reminiscent of the film The Matrix. However, the team is now working on miniaturising the chips and making them wireless.

The researchers are recruiting for human clinical trials, from the BrainGate Clinical Trials webpage,

Clinical Trials – Now Recruiting

The purpose of the first phase of the pilot clinical study of the BrainGate2 Neural Interface System is to obtain preliminary device safety information and to demonstrate the feasibility of people with tetraplegia using the System to control a computer cursor and other assistive devices with their thoughts. Another goal of the study is to determine the participants’ ability to operate communication software, such as e-mail, simply by imagining the movement of their own hand. The study is invasive and requires surgery.

Individuals with limited or no ability to use both hands due to cervical spinal cord injury, brainstem stroke, muscular dystrophy, or amyotrophic lateral sclerosis (ALS) or other motor neuron diseases are being recruited into a clinical study at Massachusetts General Hospital (MGH) and Stanford University Medical Center. Clinical trial participants must live within a three-hour drive of Boston, MA or Palo Alto, CA. Clinical trial sites at other locations may be opened in the future. The study requires a commitment of 13 months.

They have been recruiting since at least November 2011, from the Nov. 14, 2011 news item by Tanya Lewis on MedicalXpress,

Stanford University researchers are enrolling participants in a pioneering study investigating the feasibility of people with paralysis using a technology that interfaces directly with the brain to control computer cursors, robotic arms and other assistive devices.

The pilot clinical trial, known as BrainGate2, is based on technology developed at Brown University and is led by researchers at Massachusetts General Hospital, Brown and the Providence Veterans Affairs Medical Center. The researchers have now invited the Stanford team to establish the only trial site outside of New England.

Under development since 2002, BrainGate is a combination of hardware and software that directly senses electrical signals in the brain that control movement. The device — a baby-aspirin-sized array of electrodes — is implanted in the cerebral cortex (the outer layer of the brain) and records its signals; computer algorithms then translate the signals into digital instructions that may allow people with paralysis to control external devices.

Confusingly, there seemto be two BrainGate organizations. One appears to be a research entity where a number of institutions collaborate and the other is some sort of jointly held company. From the About Us webpage of the BrainGate research entity,

In the late 1990s, the initial translation of fundamental neuroengineering research from “bench to bedside” – that is, to pilot clinical testing – would require a level of financial commitment ($10s of millions) available only from private sources. In 2002, a Brown University spin-off/startup medical device company, Cyberkinetics, Inc. (later, Cyberkinetics Neurotechnology Systems, Inc.) was formed to collect the regulatory permissions and financial resources required to launch pilot clinical trials of a first-generation neural interface system. The company’s efforts and substantial initial capital investment led to the translation of the preclinical research at Brown University to an initial human device, the BrainGate Neural Interface System [Caution: Investigational Device. Limited by Federal Law to Investigational Use]. The BrainGate system uses a brain-implantable sensor to detect neural signals that are then decoded to provide control signals for assistive technologies. In 2004, Cyberkinetics received from the U.S. Food and Drug Administration (FDA) the first of two Investigational Device Exemptions (IDEs) to perform this research. Hospitals in Rhode Island, Massachusetts, and Illinois were established as clinical sites for the pilot clinical trial run by Cyberkinetics. Four trial participants with tetraplegia (decreased ability to use the arms and legs) were enrolled in the study and further helped to develop the BrainGate device. Initial results from these trials have been published or presented, with additional publications in preparation.

While scientific progress towards the creation of this promising technology has been steady and encouraging, Cyberkinetics’ financial sponsorship of the BrainGate research – without which the research could not have been started – began to wane. In 2007, in response to business pressures and changes in the capital markets, Cyberkinetics turned its focus to other medical devices. Although Cyberkinetics’ own funds became unavailable for BrainGate research, the research continued through grants and subcontracts from federal sources. By early 2008 it became clear that Cyberkinetics would eventually need to withdraw completely from directing the pilot clinical trials of the BrainGate device. Also in 2008, Cyberkinetics spun off its device manufacturing to new ownership, BlackRock Microsystems, Inc., which now produces and is further developing research products as well as clinically-validated (510(k)-cleared) implantable neural recording devices.

Beginning in mid 2008, with the agreement of Cyberkinetics, a new, fully academically-based IDE application (for the “BrainGate2 Neural Interface System”) was developed to continue this important research. In May 2009, the FDA provided a new IDE for the BrainGate2 pilot clinical trial. [Caution: Investigational Device. Limited by Federal Law to Investigational Use.] The BrainGate2 pilot clinical trial is directed by faculty in the Department of Neurology at Massachusetts General Hospital, a teaching affiliate of Harvard Medical School; the research is performed in close scientific collaboration with Brown University’s Department of Neuroscience, School of Engineering, and Brown Institute for Brain Sciences, and the Rehabilitation Research and Development Service of the U.S. Department of Veteran’s Affairs at the Providence VA Medical Center. Additionally, in late 2011, Stanford University joined the BrainGate Research Team as a clinical site and is currently enrolling participants in the clinical trial. This interdisciplinary research team includes scientific partners from the Functional Electrical Stimulation Center at Case Western Reserve University and the Cleveland VA Medical Center. As was true of the decades of fundamental, preclinical research that provided the basis for the recent clinical studies, funding for BrainGate research is now entirely from federal and philanthropic sources.

The BrainGate Research Team at Brown University, Massachusetts General Hospital, Stanford University, and Providence VA Medical Center comprises physicians, scientists, and engineers working together to advance understanding of human brain function and to develop neurotechnologies for people with neurologic disease, injury, or limb loss.

I think they’re saying there was a reverse takeover of Cyberkinetics, from the BrainGate company About webpage,

The BrainGate™ Co. is a privately-held firm focused on the advancement of the BrainGate™ Neural Interface System.  The Company owns the Intellectual property of the BrainGate™ system as well as new technology being developed by the BrainGate company.  In addition, the Company also owns  the intellectual property of Cyberkinetics which it purchased in April 2009.

Meanwhile, in Europe there are two projects BrainAble and the Human Brain Project. The BrainAble project is similar to BrainGate in that it is intended for people with injuries but they seem to be concentrating on a helmet or cap for thought transmission (as per Moskovitch’s experience at the beginning of this posting). From the Feb. 28, 2012 news item on Science Daily,

In the 2009 film Surrogates, humans live vicariously through robots while safely remaining in their own homes. That sci-fi future is still a long way off, but recent advances in technology, supported by EU funding, are bringing this technology a step closer to reality in order to give disabled people more autonomy and independence than ever before.

“Our aim is to give people with motor disabilities as much autonomy as technology currently allows and in turn greatly improve their quality of life,” says Felip Miralles at Barcelona Digital Technology Centre, a Spanish ICT research centre.

Mr. Miralles is coordinating the BrainAble* project (http://www.brainable.org/), a three-year initiative supported by EUR 2.3 million in funding from the European Commission to develop and integrate a range of different technologies, services and applications into a commercial system for people with motor disabilities.

Here’s more from the BrainAble home page,

In terms of HCI [human-computer interface], BrainAble improves both direct and indirect interaction between the user and his smart home. Direct control is upgraded by creating tools that allow controlling inner and outer environments using a “hybrid” Brain Computer Interface (BNCI) system able to take into account other sources of information such as measures of boredom, confusion, frustration by means of the so-called physiological and affective sensors.

Furthermore, interaction is enhanced by means of Ambient Intelligence (AmI) focused on creating a proactive and context-aware environments by adding intelligence to the user’s surroundings. AmI’s main purpose is to aid and facilitate the user’s living conditions by creating proactive environments to provide assistance.

Human-Computer Interfaces are complemented by an intelligent Virtual Reality-based user interface with avatars and scenarios that will help the disabled move around freely, and interact with any sort of devices. Even more the VR will provide self-expression assets using music, pictures and text, communicate online and offline with other people, play games to counteract cognitive decline, and get trained in new functionalities and tasks.

Perhaps this video helps,

Another European project, NeuroCare, which I discussed in my March 5, 2012 posting, is focused on creating neural implants to replace damaged and/or destroyed sensory cells in the eye or the ear.

The Human Brain Project is, despite its title, a neuromorphic engineering project (although the researchers do mention some medical applications on the project’s home page)  in common with the work being done at the University of Michigan/HRL Labs mentioned in my April 19, 2012 posting (A step closer to artificial synapses courtesy of memritors) about that project. From the April 11, 2012 news item about the Human Brain Project on Science Daily,

Researchers at the EPFL [Ecole Polytechnique Fédérale de Lausanne] have discovered rules that relate the genes that a neuron switches on and off, to the shape of that neuron, its electrical properties and its location in the brain.

The discovery, using state-of-the-art informatics tools, increases the likelihood that it will be possible to predict much of the fundamental structure and function of the brain without having to measure every aspect of it. That in turn makes the Holy Grail of modelling the brain in silico — the goal of the proposed Human Brain Project — a more realistic, less Herculean, prospect. “It is the door that opens to a world of predictive biology,” says Henry Markram, the senior author on the study, which is published this week in PLoS ONE.

Here’s a bit more about the Human Brain Project (from the home page),

Today, simulating a single neuron requires the full power of a laptop computer. But the brain has billions of neurons and simulating all them simultaneously is a huge challenge. To get round this problem, the project will develop novel techniques of multi-level simulation in which only groups of neurons that are highly active are simulated in detail. But even in this way, simulating the complete human brain will require a computer a thousand times more powerful than the most powerful machine available today. This means that some of the key players in the Human Brain Project will be specialists in supercomputing. Their task: to work with industry to provide the project with the computing power it will need at each stage of its work.

The Human Brain Project will impact many different areas of society. Brain simulation will provide new insights into the basic causes of neurological diseases such as autism, depression, Parkinson’s, and Alzheimer’s. It will give us new ways of testing drugs and understanding the way they work. It will provide a test platform for new drugs that directly target the causes of disease and that have fewer side effects than current treatments. It will allow us to design prosthetic devices to help people with disabilities. The benefits are potentially huge. As world populations grow older, more than a third will be affected by some kind of brain disease. Brain simulation provides us with a powerful new strategy to tackle the problem.

The project also promises to become a source of new Information Technologies. Unlike the computers of today, the brain has the ability to repair itself, to take decisions, to learn, and to think creatively – all while consuming no more energy than an electric light bulb. The Human Brain Project will bring these capabilities to a new generation of neuromorphic computing devices, with circuitry directly derived from the circuitry of the brain. The new devices will help us to build a new generation of genuinely intelligent robots to help us at work and in our daily lives.

The Human Brain Project builds on the work of the Blue Brain Project. Led by Henry Markram of the Ecole Polytechnique Fédérale de Lausanne (EPFL), the Blue Brain Project has already taken an essential first towards simulation of the complete brain. Over the last six years, the project has developed a prototype facility with the tools, know-how and supercomputing technology necessary to build brain models, potentially of any species at any stage in its development. As a proof of concept, the project has successfully built the first ever, detailed model of the neocortical column, one of the brain’s basic building blocks.

The Human Brain Project is a flagship project  in contention for the 1B Euro research prize that I’ve mentioned in the context of the GRAPHENE-CA flagship project (my Feb. 13, 2012 posting gives a better description of these flagship projects while mentioned both GRAPHENE-CA and another brain-computer interface project, PRESENCCIA).

Part of the reason for doing this roundup, is the opportunity to look at a number of these projects in one posting; the effect is more overwhelming than I expected.

For anyone who’s interested in Markram’s paper (open access),

Georges Khazen, Sean L. Hill, Felix Schürmann, Henry Markram. Combinatorial Expression Rules of Ion Channel Genes in Juvenile Rat (Rattus norvegicus) Neocortical Neurons. PLoS ONE, 2012; 7 (4): e34786 DOI: 10.1371/journal.pone.0034786

I do have earlier postings on brains and neuroprostheses, one of the more recent ones is this March 16, 2012 posting. Meanwhile, there are  new announcements from Northwestern University (US) and the US National Institutes of Health (National Institute of Neurological Disorders and Stroke). From the April 18, 2012 news item (originating from the National Institutes of Health) on Science Daily,

An artificial connection between the brain and muscles can restore complex hand movements in monkeys following paralysis, according to a study funded by the National Institutes of Health.

In a report in the journal Nature, researchers describe how they combined two pieces of technology to create a neuroprosthesis — a device that replaces lost or impaired nervous system function. One piece is a multi-electrode array implanted directly into the brain which serves as a brain-computer interface (BCI). The array allows researchers to detect the activity of about 100 brain cells and decipher the signals that generate arm and hand movements. The second piece is a functional electrical stimulation (FES) device that delivers electrical current to the paralyzed muscles, causing them to contract. The brain array activates the FES device directly, bypassing the spinal cord to allow intentional, brain-controlled muscle contractions and restore movement.

From the April 19, 2012 news item (originating from Northwestern University) on Science Daily,

A new Northwestern Medicine brain-machine technology delivers messages from the brain directly to the muscles — bypassing the spinal cord — to enable voluntary and complex movement of a paralyzed hand. The device could eventually be tested on, and perhaps aid, paralyzed patients.

The research was done in monkeys, whose electrical brain and muscle signals were recorded by implanted electrodes when they grasped a ball, lifted it and released it into a small tube. Those recordings allowed the researchers to develop an algorithm or “decoder” that enabled them to process the brain signals and predict the patterns of muscle activity when the monkeys wanted to move the ball.

These experiments were performed by Christian Ethier, a post-doctoral fellow, and Emily Oby, a graduate student in neuroscience, both at the Feinberg School of Medicine. The researchers gave the monkeys a local anesthetic to block nerve activity at the elbow, causing temporary, painless paralysis of the hand. With the help of the special devices in the brain and the arm — together called a neuroprosthesis — the monkeys’ brain signals were used to control tiny electric currents delivered in less than 40 milliseconds to their muscles, causing them to contract, and allowing the monkeys to pick up the ball and complete the task nearly as well as they did before.

“The monkey won’t use his hand perfectly, but there is a process of motor learning that we think is very similar to the process you go through when you learn to use a new computer mouse or a different tennis racquet. Things are different and you learn to adjust to them,” said Miller [Lee E. Miller], also a professor of physiology and of physical medicine and rehabilitation at Feinberg and a Sensory Motor Performance Program lab chief at the Rehabilitation Institute of Chicago.

The National Institutes of Health news item supplies a little history and background for this latest breakthrough while the Northwestern University news item offers more technical details more technical details.

You can find the researchers’ paper with this citation (assuming you can get past the paywall,

C. Ethier, E. R. Oby, M. J. Bauman, L. E. Miller. Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature, 2012; DOI: 10.1038/nature10987

I was surprised to find the Health Research Fund of Québec listed as one of the funders but perhaps Christian Ethier has some connection with the province.

Less confused about Europe’s FET (Future and Emerging Technologies programme)

I’ve had problems trying figure out the European Union’s Future and Emerging Technologies programme and so I’m glad to say that the Feb. 10, 2012 news item on Nanowerk offers to clear up a few matters for me (and presumably a few other people too).

From the news item,

Go forth and explore the frontiers of science and technology! This is the unspoken motto of the Future and Emerging Technologies programme (FET), which has for more than 20 years been funding and inspiring researchers across Europe to lay new foundations for information and communication technology (ICT). [emphasis mine]

The vanguard researchers of frontier ICT research don’t always come from IT backgrounds or follow the traditional academic career path. The European Commission’s FET programme encourages unconventional match-ups like chemistry and IT, physics and optics, biology and data engineering. Researchers funded by FET are driven by ideas and a sense of purpose which push the boundaries of science and technology.

They have three funding programmes (from the news item),

To address these challenges, the FET scheme supports long-term ICT programmes under three banners:

  • FET-Open, which has simple and fast mechanisms in place to receive new ideas for projects without pre-conceived boundaries or deadlines;
  • FET-Proactive, which spearheads ‘transformative’ research and supports community-building around a number of fundamental long-term ICT challenges; and
  • FET Flagships, which cut across national and European programmes to unite top research teams pursuing ambitious, large-scale, science-driven research with a visionary goal.

The news item goes on to describe a number of projects including the GRAPHENE-CA flagship pilot currently under consideration, along with five other flagship projects, for one of two 1 Billion Euro prizes. I have commented before (my Feb. 6, 2012 posting) on the communication strategies being employed by at least some of the members of this particular flagship project. Amazingly, they’ve done it again; theirs is the only flagship pilot project mentioned.

You can see the original article on the European Union website here where they have described other projects including this one, PRESENCCIA,

‘Light switches, TV remote controls and even house keys could become a thing of the past thanks to brain-computer interface (BCI) technology being developed in Europe that lets users perform everyday tasks with thoughts alone.’ So begins a story on ICT Results about a pioneering EU-funded FET project called Presenccia*.

Primary applications of BCI are in gaming/virtual reality (VR), home entertainment and domestic care, but the project partners also see their work helping the medical profession. ‘A virtual environment could be used to train a disabled person to control an electric wheelchair through a BCI,’ explained Mel Slater, the project coordinator. ‘It is much safer for them to learn in VR than in the real world, where mistakes could have physical consequences.’

So, PRESENCCIA is a project whereby people will be trained to use a BCI in virtual reality before attempting it in real life. I wish there was a bit more information about this BCI technology that is being developed in Europe as I am deeply fascinated and horrified by this notion of thought waves that ‘turn light switches on and off’ or possibly allow you to make a phone call as Professor Mark Welland at Cambridge University was speculating in 2010 (mentioned in my April 30, 2010 posting [scroll 1/2 way down]). Welland did mention that you would need some sort of brain implant to achieve a phone call with your thought waves, which is the aspect that makes me most uncomfortable.