Tag Archives: Vladimir Putin

Limitless energy and the International Thermonuclear Experimental Reactor (ITER)

Over 30 years in the dreaming, the International Thermonuclear Experimental Reactor (ITER) is now said to be 1/2 way to completing construction. A December 6, 2017 ITER press release (received via email) makes the joyful announcement,

ITER is proving that fusion is the future source of clean, abundant, safe and economic energy_

The International Thermonuclear Experimental Reactor (ITER), a project to prove that fusion power can be produced on a commercial scale and is sustainable, is now 50 percent built to initial operation. Fusion is the same energy source from the Sun that gives the Earth its light and warmth.

ITER will use hydrogen fusion, controlled by superconducting magnets, to produce massive heat energy. In the commercial machines that will follow, this heat will drive turbines to produce electricity with these positive benefits:

* Fusion energy is carbon-free and environmentally sustainable, yet much more powerful than fossil fuels. A pineapple-sized amount of hydrogen offers as much fusion energy as 10,000 tons of coal.

* ITER uses two forms of hydrogen fuel: deuterium, which is easily extracted from seawater; and tritium, which is bred from lithium inside the fusion reactor. The supply of fusion fuel for industry and megacities is abundant, enough for millions of years.

* When the fusion reaction is disrupted, the reactor simply shuts down-safely and without external assistance. Tiny amounts of fuel are used, about 2-3 grams at a time; so there is no physical possibility of a meltdown accident.

* Building and operating a fusion power plant is targeted to be comparable to the cost of a fossil fuel or nuclear fission plant. But unlike today’s nuclear plants, a fusion plant will not have the costs of high-level radioactive waste disposal. And unlike fossil fuel plants,
fusion will not have the environmental cost of releasing CO2 and other pollutants.

ITER is the most complex science project in human history. The hydrogen plasma will be heated to 150 million degrees Celsius, ten times hotter than the core of the Sun, to enable the fusion reaction. The process happens in a donut-shaped reactor, called a tokamak(*), which is surrounded by giant magnets that confine and circulate the superheated, ionized plasma, away from the metal walls. The superconducting magnets must be cooled to minus 269°C, as cold as interstellar space.

The ITER facility is being built in Southern France by a scientific partnership of 35 countries. ITER’s specialized components, roughly 10 million parts in total, are being manufactured in industrial facilities all over the world. They are subsequently shipped to the ITER worksite, where they must be assembled, piece-by-piece, into the final machine.

Each of the seven ITER members-the European Union, China, India, Japan, Korea, Russia, and the United States-is fabricating a significant portion of the machine. This adds to ITER’s complexity.

In a message dispatched on December 1 [2017] to top-level officials in ITER member governments, the ITER project reported that it had completed 50 percent of the “total construction work scope through First Plasma” (**). First Plasma, scheduled for December 2025, will be the first stage of operation for ITER as a functional machine.

“The stakes are very high for ITER,” writes Bernard Bigot, Ph.D., Director-General of ITER. “When we prove that fusion is a viable energy source, it will eventually replace burning fossil fuels, which are non-renewable and non-sustainable. Fusion will be complementary with wind, solar, and other renewable energies.

“ITER’s success has demanded extraordinary project management, systems engineering, and almost perfect integration of our work.

“Our design has taken advantage of the best expertise of every member’s scientific and industrial base. No country could do this alone. We are all learning from each other, for the world’s mutual benefit.”

The ITER 50 percent milestone is getting significant attention.

“We are fortunate that ITER and fusion has had the support of world leaders, historically and currently,” says Director-General Bigot. “The concept of the ITER project was conceived at the 1985 Geneva Summit between Ronald Reagan and Mikhail Gorbachev. When the ITER Agreement was signed in 2006, it was strongly supported by leaders such as French President Jacques Chirac, U.S. President George W. Bush, and Indian Prime Minister Manmohan Singh.

“More recently, President Macron and U.S. President Donald Trump exchanged letters about ITER after their meeting this past July. One month earlier, President Xi Jinping of China hosted Russian President Vladimir Putin and other world leaders in a showcase featuring ITER and fusion power at the World EXPO in Astana, Kazakhstan.

“We know that other leaders have been similarly involved behind the scenes. It is clear that each ITER member understands the value and importance of this project.”

Why use this complex manufacturing arrangement?

More than 80 percent of the cost of ITER, about $22 billion or EUR18 billion, is contributed in the form of components manufactured by the partners. Many of these massive components of the ITER machine must be precisely fitted-for example, 17-meter-high magnets with less than a millimeter of tolerance. Each component must be ready on time to fit into the Master Schedule for machine assembly.

Members asked for this deal for three reasons. First, it means that most of the ITER costs paid by any member are actually paid to that member’s companies; the funding stays in-country. Second, the companies working on ITER build new industrial expertise in major fields-such as electromagnetics, cryogenics, robotics, and materials science. Third, this new expertise leads to innovation and spin-offs in other fields.

For example, expertise gained working on ITER’s superconducting magnets is now being used to map the human brain more precisely than ever before.

The European Union is paying 45 percent of the cost; China, India, Japan, Korea, Russia, and the United States each contribute 9 percent equally. All members share in ITER’s technology; they receive equal access to the intellectual property and innovation that comes from building ITER.

When will commercial fusion plants be ready?

ITER scientists predict that fusion plants will start to come on line as soon as 2040. The exact timing, according to fusion experts, will depend on the level of public urgency and political will that translates to financial investment.

How much power will they provide?

The ITER tokamak will produce 500 megawatts of thermal power. This size is suitable for studying a “burning” or largely self-heating plasma, a state of matter that has never been produced in a controlled environment on Earth. In a burning plasma, most of the plasma heating comes from the fusion reaction itself. Studying the fusion science and technology at ITER’s scale will enable optimization of the plants that follow.

A commercial fusion plant will be designed with a slightly larger plasma chamber, for 10-15 times more electrical power. A 2,000-megawatt fusion electricity plant, for example, would supply 2 million homes.

How much would a fusion plant cost and how many will be needed?

The initial capital cost of a 2,000-megawatt fusion plant will be in the range of $10 billion. These capital costs will be offset by extremely low operating costs, negligible fuel costs, and infrequent component replacement costs over the 60-year-plus life of the plant. Capital costs will decrease with large-scale deployment of fusion plants.

At current electricity usage rates, one fusion plant would be more than enough to power a city the size of Washington, D.C. The entire D.C. metropolitan area could be powered with four fusion plants, with zero carbon emissions.

“If fusion power becomes universal, the use of electricity could be expanded greatly, to reduce the greenhouse gas emissions from transportation, buildings and industry,” predicts Dr. Bigot. “Providing clean, abundant, safe, economic energy will be a miracle for our planet.”

*     *     *


* “Tokamak” is a word of Russian origin meaning a toroidal or donut-shaped magnetic chamber. Tokamaks have been built and operated for the past six decades. They are today’s most advanced fusion device design.

** “Total construction work scope,” as used in ITER’s project performance metrics, includes design, component manufacturing, building construction, shipping and delivery, assembly, and installation.

It is an extraordinary project on many levels as Henry Fountain notes in a March 27, 2017 article for the New York Times (Note: Links have been removed),

At a dusty construction site here amid the limestone ridges of Provence, workers scurry around immense slabs of concrete arranged in a ring like a modern-day Stonehenge.

It looks like the beginnings of a large commercial power plant, but it is not. The project, called ITER, is an enormous, and enormously complex and costly, physics experiment. But if it succeeds, it could determine the power plants of the future and make an invaluable contribution to reducing planet-warming emissions.

ITER, short for International Thermonuclear Experimental Reactor (and pronounced EAT-er), is being built to test a long-held dream: that nuclear fusion, the atomic reaction that takes place in the sun and in hydrogen bombs, can be controlled to generate power.

ITER will produce heat, not electricity. But if it works — if it produces more energy than it consumes, which smaller fusion experiments so far have not been able to do — it could lead to plants that generate electricity without the climate-affecting carbon emissions of fossil-fuel plants or most of the hazards of existing nuclear reactors that split atoms rather than join them.

Success, however, has always seemed just a few decades away for ITER. The project has progressed in fits and starts for years, plagued by design and management problems that have led to long delays and ballooning costs.

ITER is moving ahead now, with a director-general, Bernard Bigot, who took over two years ago after an independent analysis that was highly critical of the project. Dr. Bigot, who previously ran France’s atomic energy agency, has earned high marks for resolving management problems and developing a realistic schedule based more on physics and engineering and less on politics.

The site here is now studded with tower cranes as crews work on the concrete structures that will support and surround the heart of the experiment, a doughnut-shaped chamber called a tokamak. This is where the fusion reactions will take place, within a plasma, a roiling cloud of ionized atoms so hot that it can be contained only by extremely strong magnetic fields.

Here’s a rendering of the proposed reactor,

Source: ITER Organization

It seems the folks at the New York Times decided to remove the notes which help make sense of this image. However, it does get the idea across.

If I read the article rightly, the official cost in March 2017 was around 22 B Euros and more will likely be needed. You can read Fountain’s article for more information about fusion and ITER or go to the ITER website.

I could have sworn a local (Vancouver area) company called General Fusion was involved in the ITER project but I can’t track down any sources for confirmation. The sole connection I could find is in a documentary about fusion technology,

Here’s a little context for the film from a July 4, 2017 General Fusion news release (Note: A link has been removed),

A new documentary featuring General Fusion has captured the exciting progress in fusion across the public and private sectors.

Let There Be Light made its international premiere at the South By Southwest (SXSW) music and film festival in March [2017] to critical acclaim. The film was quickly purchased by Amazon Video, where it will be available for more than 70 million users to stream.

Let There Be Light follows scientists at General Fusion, ITER and Lawrenceville Plasma Physics in their pursuit of a clean, safe and abundant source of energy to power the world.

The feature length documentary has screened internationally across Europe and North America. Most recently it was shown at the Hot Docs film festival in Toronto, where General Fusion founder and Chief Scientist Dr. Michel Laberge joined fellow fusion physicist Dr. Mark Henderson from ITER at a series of Q&A panels with the filmmakers.

Laberge and Henderson were also interviewed by the popular CBC radio science show Quirks and Quarks, discussing different approaches to fusion, its potential benefits, and the challenges it faces.

It is yet to be confirmed when the film will be release for streaming, check Amazon Video for details.

You can find out more about General Fusion here.

Brief final comment

ITER is a breathtaking effort but if you’ve read about other large scale projects such as building a railway across the Canadian Rocky Mountains, establishing telecommunications in an  astonishing number of countries around the world, getting someone to the moon, eliminating small pox, building the pyramids, etc., it seems standard operating procedure both for the successes I’ve described and for the failures we’ve forgotten. Where ITER will finally rest on the continuum between success and failure is yet to be determined but the problems experienced so far are not necessarily a predictor.

I wish the engineers, scientists, visionaries, and others great success with finding better ways to produce energy.

Russians offer nanotechnology report at Paris Climate talks

Sadly I cannot find the report presented by the Russians  at the Paris Climate Talks (also known as World Climate Change Conference 2015 [COP21]) but did find this reference to it in a Dec. 7, 2015 article in the New York Times,

One of the surprises of the Paris climate talks was the sudden interest by Russia in appearing as a player in the efforts to reel in greenhouse gases.

The second part occurred on Monday, when an event was added to the schedule of news briefings: “Russia Proposes a New Approach to Climate Change.”

And so Russia did, putting forth a plan — and a report — that in the end seemed largely geared toward promoting a government-funded business, run by a prominent politician.

The Russian Times (rt.com) published a Nov. 30, 2015 article detailing President Vladimir Putin’s address to the conference attendees,

“We have gone beyond the target fixed by the Kyoto Protocol for the period from 1991 to 2012. Russia not only prevented the growth of greenhouse gas emission, by also significantly reduced it,” Putin said.

“Nearly 40 billion tons of carbon dioxide equivalent weren’t released into the atmosphere. As a comparison, the total emissions of all countries in 2012 reached 46 billion tons.”

Russia is planning to keep progressing by bringing breakthrough technologies into practice, “including nanotechnology,” Putin continued saying the country is also open to exchange and share the findings.

Apart from that, Putin has also promised Russia will reduce its polluting emissions by 70 percent by 2030 as compared to base level in 1990.

A Dec. 8, 2015 article by Jasper Nikki De La Cruz for The Science Times provides more detail about the Russian report/proposal (Note: A link has been removed),

Russia proposes a “New Approach” when it comes to dealing with climate change. The proposal focuses on efforts to reduce emissions involving five materials: steel, cement, aluminum, plastic and paper. The proposal is not on the reduction of the production of these materials but rather making these materials lighter, stronger and more efficient. With this approach, nanotechnology is put into the spotlight as the primary technology in making this proposal possible in real-world applications.

Rusnano is a company that is dedicated to nanotechnology. They received $10B of funding from the Russian government. They are pegged to be the frontrunner in research and application of nanotechnology in the production of the mentioned materials.

“Carbon nanotubes have been shown to toughen aluminum, make plastics conductive, extend the life of lithium-ion batteries,” Anatoly B. Chubais, Rusnano founder, said. “So all that is true. Tangentially, that can then lower CO2 emissions, I suppose.”

James Tour, a scientist at Rice University, commented for the New York Times Dec. 7, 2015 article on this suggestion that greater use of carbon nanotubes could reduce emissions,

A report laying out the materials thesis rested heavily on contentions about the use of carbon nanotubes. For a moment that puzzled James M. Tour, a professor of chemistry and materials science at Rice University and an expert on nanomaterials, who was asked about the proposal.

“Carbon nanotubes have been shown to toughen aluminum, make plastics conductive, extend the life of lithium-ion batteries,” he said in an email. “So all that is true. Tangentially, that can then lower CO2 emissions, I suppose.”

But, he added, “All of the above was well known long before Rusnano came around.”

Reporters, too, were confused. When one asked whether the announcement was “a distraction from real action,” Mr. Chubais said the proposal was a means to the same end.

I don’t find the Russian proposal all that outlandish although the emphasis on carbon nanotubes seems a bit outsized (pun intended). In any event, there’s certainly a role for emerging technologies to play in the attempts to change our lifestyles and ameliorate climate change.

Russia’s nanotechnology efforts falter?

The title for Leonid Bershidksy’s May 16, 2013 Bloomberg.com article, Power Grab Trumps Nanotechnology in Putin’s Russia, casts an ominous shadow over Rusnano’s situation (Note: Links have been removed),

The projects, known as Rusnano and Skolkovo, were meant to propel Russia’s raw-material economy into the technology age. They involved multibillion-dollar government investments, the first in nanotechnology and the second in a new city that would become Russia’s answer to Silicon Valley. They were supposed to provide the infrastructure and stability required to attract large amounts of foreign investment.

Now, both have become targets in Putin’s campaign to demonstrate that he’s being tough on corruption and mismanagement of government funds. As a result, their chances of succeeding are looking increasingly remote.

Trouble came in April [2013], when the Accounting Chamber, a body charged with auditing government spending, accused Rusnano of inefficient management in a report that received ample coverage on state-owned TV. It said that Rusnano had transferred about $40 million to shell companies and pointed out that a silicon factory in which Rusnano invested about $450 million was not functioning and was about to be declared insolvent. The report also highlighted the state company’s 2012 losses of 2.5 billion rubles ($80 million) and the 24.4-billion-ruble (about $800 million) in reserves Rusnano had formed against potential losses from risky ventures.

Anatoly Medetsky’s Apr. 29, 2013 article for The Moscow Times provides more insight into the situation,

The government’s Audit Chamber on Friday [April 26, 2013] accused state-owned Rusnano of multiple infractions in a blow to the high-tech corporation’s chief, Anatoly Chubais.

The chamber’s critical conclusions followed President Vladimir Putin’s reproof of the company during a live call-in show the previous day.

Auditors made their statement after examining Rusnano’s records in response to a request by Chubais’ political nemesis, the Communist Party.

“The audit’s materials attest that Rusnano’s performance was inappropriate to attain the goals that it was entrusted with, which are the development of the national nano industry,” the Audit Chamber said in a statement.

Auditor Sergei Agaptsov said separately that Rusnano is unlikely to achieve the goal of 300 billion rubles in annual sales of nano-tech products by the companies it co-owns in 2015 — the target that the government set for the company, Interfax reported.

I’m sorry to read about Rusnano’s difficulties especially in light my first piece about it where I compared the Canadian effort unfavourably to, what was then, a relatively new and promising organization in my Apr. 14, 2009 posting. About seventeen months later, officials with Rusnano signed a memorandum of understanding with John Varghese, CEO and Managing Partner of Toronto based venture capital firm, VentureLink Funds as noted in my Sept. 14, 2010 posting. Nothing further seemed to come of that agreement.

I have one last thought about Rusnano’s current travails, will they have an impact on US commercialization efforts? In my Oct. 28, 2011 posting where I was contrasting nanotechnology commercialization efforts by the US, Spain, and Rusnano, I mentioned this deal Rusnano had made with two US nanomedicine companies,

Then RUSNANO announced its investments in Selecta Biosciences and BIND Biosiences, from the Oct. 27, 2011 news item on Nanowerk,

BIND Biosciences and Selecta Biosciences, two leading nanomedicine companies, announced today that they have entered into investment agreements with RUSNANO, a $10-billion Russian Federation fund that supports high-tech and nanotechnology advances. [emphasis mine]

RUSNANO is co-investing $25 million in BIND and $25 million in Selecta, for a total RUSNANO investment of $50 million within the total financing rounds of $94.5 million in the two companies combined. …

The proprietary technology platforms of BIND and Selecta originated in laboratories at Harvard Medical School directed by Professor Omid Farokhzad, MD, and in laboratories at MIT directed by Professor Robert Langer, ScD, a renowned scientist who is a recipient of the US National Medal of Science, the highest US honor for scientists, and is an inventor of approximately 850 patents issued or pending worldwide. Drs. Langer and Farokhzad are founders of both companies.

Ripple effects, eh? Rusnano was very active internationally.

ETA June 14, 2013:  Nanowerk has a June 13, 2013 news item, which updates the situation with the news that Rusnano has opted out of presenting an ‘initial public offering’, aka, listing itself on a stock exchange in 2015 and will instead attract private investment.