Tag Archives: Von Neumann architecture

Brainy and brainy: a novel synaptic architecture and a neuromorphic computing platform called SpiNNaker

I have two items about brainlike computing. The first item hearkens back to memristors, a topic I have been following since 2008. (If you’re curious about the various twists and turns just enter  the term ‘memristor’ in this blog’s search engine.) The latest on memristors is from a team than includes IBM (US), École Politechnique Fédérale de Lausanne (EPFL; Swizterland), and the New Jersey Institute of Technology (NJIT; US). The second bit comes from a Jülich Research Centre team in Germany and concerns an approach to brain-like computing that does not include memristors.

Multi-memristive synapses

In the inexorable march to make computers function more like human brains (neuromorphic engineering/computing), an international team has announced its latest results in a July 10, 2018 news item on Nanowerk,

Two New Jersey Institute of Technology (NJIT) researchers, working with collaborators from the IBM Research Zurich Laboratory and the École Polytechnique Fédérale de Lausanne, have demonstrated a novel synaptic architecture that could lead to a new class of information processing systems inspired by the brain.

The findings are an important step toward building more energy-efficient computing systems that also are capable of learning and adaptation in the real world. …

A July 10, 2018 NJIT news release (also on EurekAlert) by Tracey Regan, which originated by the news item, adds more details,

The researchers, Bipin Rajendran, an associate professor of electrical and computer engineering, and S. R. Nandakumar, a graduate student in electrical engineering, have been developing brain-inspired computing systems that could be used for a wide range of big data applications.

Over the past few years, deep learning algorithms have proven to be highly successful in solving complex cognitive tasks such as controlling self-driving cars and language understanding. At the heart of these algorithms are artificial neural networks – mathematical models of the neurons and synapses of the brain – that are fed huge amounts of data so that the synaptic strengths are autonomously adjusted to learn the intrinsic features and hidden correlations in these data streams.

However, the implementation of these brain-inspired algorithms on conventional computers is highly inefficient, consuming huge amounts of power and time. This has prompted engineers to search for new materials and devices to build special-purpose computers that can incorporate the algorithms. Nanoscale memristive devices, electrical components whose conductivity depends approximately on prior signaling activity, can be used to represent the synaptic strength between the neurons in artificial neural networks.

While memristive devices could potentially lead to faster and more power-efficient computing systems, they are also plagued by several reliability issues that are common to nanoscale devices. Their efficiency stems from their ability to be programmed in an analog manner to store multiple bits of information; however, their electrical conductivities vary in a non-deterministic and non-linear fashion.

In the experiment, the team showed how multiple nanoscale memristive devices exhibiting these characteristics could nonetheless be configured to efficiently implement artificial intelligence algorithms such as deep learning. Prototype chips from IBM containing more than one million nanoscale phase-change memristive devices were used to implement a neural network for the detection of hidden patterns and correlations in time-varying signals.

“In this work, we proposed and experimentally demonstrated a scheme to obtain high learning efficiencies with nanoscale memristive devices for implementing learning algorithms,” Nandakumar says. “The central idea in our demonstration was to use several memristive devices in parallel to represent the strength of a synapse of a neural network, but only chose one of them to be updated at each step based on the neuronal activity.”

Here’s a link to and a citation for the paper,

Neuromorphic computing with multi-memristive synapses by Irem Boybat, Manuel Le Gallo, S. R. Nandakumar, Timoleon Moraitis, Thomas Parnell, Tomas Tuma, Bipin Rajendran, Yusuf Leblebici, Abu Sebastian, & Evangelos Eleftheriou. Nature Communications volume 9, Article number: 2514 (2018) DOI: https://doi.org/10.1038/s41467-018-04933-y Published 28 June 2018

This is an open access paper.

Also they’ve got a couple of very nice introductory paragraphs which I’m including here, (from the June 28, 2018 paper in Nature Communications; Note: Links have been removed),

The human brain with less than 20 W of power consumption offers a processing capability that exceeds the petaflops mark, and thus outperforms state-of-the-art supercomputers by several orders of magnitude in terms of energy efficiency and volume. Building ultra-low-power cognitive computing systems inspired by the operating principles of the brain is a promising avenue towards achieving such efficiency. Recently, deep learning has revolutionized the field of machine learning by providing human-like performance in areas, such as computer vision, speech recognition, and complex strategic games1. However, current hardware implementations of deep neural networks are still far from competing with biological neural systems in terms of real-time information-processing capabilities with comparable energy consumption.

One of the reasons for this inefficiency is that most neural networks are implemented on computing systems based on the conventional von Neumann architecture with separate memory and processing units. There are a few attempts to build custom neuromorphic hardware that is optimized to implement neural algorithms2,3,4,5. However, as these custom systems are typically based on conventional silicon complementary metal oxide semiconductor (CMOS) circuitry, the area efficiency of such hardware implementations will remain relatively low, especially if in situ learning and non-volatile synaptic behavior have to be incorporated. Recently, a new class of nanoscale devices has shown promise for realizing the synaptic dynamics in a compact and power-efficient manner. These memristive devices store information in their resistance/conductance states and exhibit conductivity modulation based on the programming history6,7,8,9. The central idea in building cognitive hardware based on memristive devices is to store the synaptic weights as their conductance states and to perform the associated computational tasks in place.

The two essential synaptic attributes that need to be emulated by memristive devices are the synaptic efficacy and plasticity. …

It gets more complicated from there.

Now onto the next bit.

SpiNNaker

At a guess, those capitalized N’s are meant to indicate ‘neural networks’. As best I can determine, SpiNNaker is not based on the memristor. Moving on, a July 11, 2018 news item on phys.org announces work from a team examining how neuromorphic hardware and neuromorphic software work together,

A computer built to mimic the brain’s neural networks produces similar results to that of the best brain-simulation supercomputer software currently used for neural-signaling research, finds a new study published in the open-access journal Frontiers in Neuroscience. Tested for accuracy, speed and energy efficiency, this custom-built computer named SpiNNaker, has the potential to overcome the speed and power consumption problems of conventional supercomputers. The aim is to advance our knowledge of neural processing in the brain, to include learning and disorders such as epilepsy and Alzheimer’s disease.

A July 11, 2018 Frontiers Publishing news release on EurekAlert, which originated the news item, expands on the latest work,

“SpiNNaker can support detailed biological models of the cortex–the outer layer of the brain that receives and processes information from the senses–delivering results very similar to those from an equivalent supercomputer software simulation,” says Dr. Sacha van Albada, lead author of this study and leader of the Theoretical Neuroanatomy group at the Jülich Research Centre, Germany. “The ability to run large-scale detailed neural networks quickly and at low power consumption will advance robotics research and facilitate studies on learning and brain disorders.”

The human brain is extremely complex, comprising 100 billion interconnected brain cells. We understand how individual neurons and their components behave and communicate with each other and on the larger scale, which areas of the brain are used for sensory perception, action and cognition. However, we know less about the translation of neural activity into behavior, such as turning thought into muscle movement.

Supercomputer software has helped by simulating the exchange of signals between neurons, but even the best software run on the fastest supercomputers to date can only simulate 1% of the human brain.

“It is presently unclear which computer architecture is best suited to study whole-brain networks efficiently. The European Human Brain Project and Jülich Research Centre have performed extensive research to identify the best strategy for this highly complex problem. Today’s supercomputers require several minutes to simulate one second of real time, so studies on processes like learning, which take hours and days in real time are currently out of reach.” explains Professor Markus Diesmann, co-author, head of the Computational and Systems Neuroscience department at the Jülich Research Centre.

He continues, “There is a huge gap between the energy consumption of the brain and today’s supercomputers. Neuromorphic (brain-inspired) computing allows us to investigate how close we can get to the energy efficiency of the brain using electronics.”

Developed over the past 15 years and based on the structure and function of the human brain, SpiNNaker — part of the Neuromorphic Computing Platform of the Human Brain Project — is a custom-built computer composed of half a million of simple computing elements controlled by its own software. The researchers compared the accuracy, speed and energy efficiency of SpiNNaker with that of NEST–a specialist supercomputer software currently in use for brain neuron-signaling research.

“The simulations run on NEST and SpiNNaker showed very similar results,” reports Steve Furber, co-author and Professor of Computer Engineering at the University of Manchester, UK. “This is the first time such a detailed simulation of the cortex has been run on SpiNNaker, or on any neuromorphic platform. SpiNNaker comprises 600 circuit boards incorporating over 500,000 small processors in total. The simulation described in this study used just six boards–1% of the total capability of the machine. The findings from our research will improve the software to reduce this to a single board.”

Van Albada shares her future aspirations for SpiNNaker, “We hope for increasingly large real-time simulations with these neuromorphic computing systems. In the Human Brain Project, we already work with neuroroboticists who hope to use them for robotic control.”

Before getting to the link and citation for the paper, here’s a description of SpiNNaker’s hardware from the ‘Spiking neural netowrk’ Wikipedia entry, Note: Links have been removed,

Neurogrid, built at Stanford University, is a board that can simulate spiking neural networks directly in hardware. SpiNNaker (Spiking Neural Network Architecture) [emphasis mine], designed at the University of Manchester, uses ARM processors as the building blocks of a massively parallel computing platform based on a six-layer thalamocortical model.[5]

Now for the link and citation,

Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model by
Sacha J. van Albada, Andrew G. Rowley, Johanna Senk, Michael Hopkins, Maximilian Schmidt, Alan B. Stokes, David R. Lester, Markus Diesmann, and Steve B. Furber. Neurosci. 12:291. doi: 10.3389/fnins.2018.00291 Published: 23 May 2018

As noted earlier, this is an open access paper.

Leftover 2017 memristor news bits

i have two bits of news, one from this October 2017 about using light to control a memristor’s learning properties and one from December 2017 about memristors and neural networks.

Shining a light on the memristor

Michael Berger wrote an October 30, 2017 Nanowerk Sportlight article about some of the latest work concerning memristors and light,

Memristors – or resistive memory – are nanoelectronic devices that are very promising components for next generation memory and computing devices. They are two-terminal electric elements similar to a conventional resistor – however, the electric resistance in a memristor is dependent on the charge passing through it; which means that its conductance can be precisely modulated by charge or flux through it. Its special property is that its resistance can be programmed (resistor function) and subsequently remains stored (memory function).

In this sense, a memristor is similar to a synapse in the human brain because it exhibits the same switching characteristics, i.e. it is able, with a high level of plasticity, to modify the efficiency of signal transfer between neurons under the influence of the transfer itself. That’s why researchers are hopeful to use memristors for the fabrication of electronic synapses for neuromorphic (i.e. brain-like) computing that mimics some of the aspects of learning and computation in human brains.

Human brains may be slow at pure number crunching but they are excellent at handling fast dynamic sensory information such as image and voice recognition. Walking is something that we take for granted but this is quite challenging for robots, especially over uneven terrain.

“Memristors present an opportunity to make new types of computers that are different from existing von Neumann architectures, which traditional computers are based upon,” Dr Neil T. Kemp, a Lecturer in Physics at the University of Hull [UK], tells Nanowerk. “Our team at the University of Hull is focussed on making memristor devices dynamically reconfigurable and adaptive – we believe this is the route to making a new generation of artificial intelligence systems that are smarter and can exhibit complex behavior. Such systems would also have the advantage of memristors, high density integration and lower power usage, so these systems would be more lightweight, portable and not need re-charging so often – which is something really needed for robots etc.”

In their new paper in Nanoscale (“Reversible Optical Switching Memristors with Tunable STDP Synaptic Plasticity: A Route to Hierarchical Control in Artificial Intelligent Systems”), Kemp and his team demonstrate the ability to reversibly control the learning properties of memristors via optical means.

The reversibility is achieved by changing the polarization of light. The researchers have used this effect to demonstrate tuneable learning in a memristor. One way this is achieved is through something called Spike Timing Dependent Plasticity (STDP), which is an effect known to occur in human brains and is linked with sensory perception, spatial reasoning, language and conscious thought in the neocortex.

STDP learning is based upon differences in the arrival time of signals from two adjacent neurons. The University of Hull team has shown that they can modulate the synaptic plasticity via optical means which enables the devices to have tuneable learning.

“Our research findings are important because it demonstrates that light can be used to control the learning properties of a memristor,” Kemp points out. “We have shown that light can be used in a reversible manner to change the connection strength (or conductivity) of artificial memristor synapses and as well control their ability to forget i.e. we can dynamically change device to have short-term or long-term memory.”

According to the team, there are many potential applications, such as adaptive electronic circuits controllable via light, or in more complex systems, such as neuromorphic computing, the development of optically reconfigurable neural networks.

Having optically controllable memristors can also facilitate the implementation of hierarchical control in larger artificial-brain like systems, whereby some of the key processes that are carried out by biological molecules in human brains can be emulated in solid-state devices through patterning with light.

Some of these processes include synaptic pruning, conversion of short term memory to long term memory, erasing of certain memories that are no longer needed or changing the sensitivity of synapses to be more adept at learning new information.

“The ability to control this dynamically, both spatially and temporally, is particularly interesting since it would allow neural networks to be reconfigurable on the fly through either spatial patterning or by adjusting the intensity of the light source,” notes Kemp.

In their new paper in Nanoscale Currently, the devices are more suited to neuromorphic computing applications, which do not need to be as fast. Optical control of memristors opens the route to dynamically tuneable and reprogrammable synaptic circuits as well the ability (via optical patterning) to have hierarchical control in larger and more complex artificial intelligent systems.

“Artificial Intelligence is really starting to come on strong in many areas, especially in the areas of voice/image recognition and autonomous systems – we could even say that this is the next revolution, similarly to what the industrial revolution was to farming and production processes,” concludes Kemp. “There are many challenges to overcome though. …

That excerpt should give you the gist of Berger’s article and, for those who need more information, there’s Berger’s article and, also, a link to and a citation for the paper,

Reversible optical switching memristors with tunable STDP synaptic plasticity: a route to hierarchical control in artificial intelligent systems by Ayoub H. Jaafar, Robert J. Gray, Emanuele Verrelli, Mary O’Neill, Stephen. M. Kelly, and Neil T. Kemp. Nanoscale, 2017,9, 17091-17098 DOI: 10.1039/C7NR06138B First published on 24 Oct 2017

This paper is behind a paywall.

The memristor and the neural network

It would seem machine learning could experience a significant upgrade if the work in Wei Lu’s University of Michigan laboratory can be scaled for general use. From a December 22, 2017 news item on ScienceDaily,

A new type of neural network made with memristors can dramatically improve the efficiency of teaching machines to think like humans.

The network, called a reservoir computing system, could predict words before they are said during conversation, and help predict future outcomes based on the present.

The research team that created the reservoir computing system, led by Wei Lu, professor of electrical engineering and computer science at the University of Michigan, recently published their work in Nature Communications.

A December 19, 2017 University of Michigan news release (also on EurekAlert) by Dan Newman, which originated the news item, expands on the theme,

Reservoir computing systems, which improve on a typical neural network’s capacity and reduce the required training time, have been created in the past with larger optical components. However, the U-M group created their system using memristors, which require less space and can be integrated more easily into existing silicon-based electronics.

Memristors are a special type of resistive device that can both perform logic and store data. This contrasts with typical computer systems, where processors perform logic separate from memory modules. In this study, Lu’s team used a special memristor that memorizes events only in the near history.

Inspired by brains, neural networks are composed of neurons, or nodes, and synapses, the connections between nodes.

To train a neural network for a task, a neural network takes in a large set of questions and the answers to those questions. In this process of what’s called supervised learning, the connections between nodes are weighted more heavily or lightly to minimize the amount of error in achieving the correct answer.

Once trained, a neural network can then be tested without knowing the answer. For example, a system can process a new photo and correctly identify a human face, because it has learned the features of human faces from other photos in its training set.

“A lot of times, it takes days or months to train a network,” says Lu. “It is very expensive.”

Image recognition is also a relatively simple problem, as it doesn’t require any information apart from a static image. More complex tasks, such as speech recognition, can depend highly on context and require neural networks to have knowledge of what has just occurred, or what has just been said.

“When transcribing speech to text or translating languages, a word’s meaning and even pronunciation will differ depending on the previous syllables,” says Lu.

This requires a recurrent neural network, which incorporates loops within the network that give the network a memory effect. However, training these recurrent neural networks is especially expensive, Lu says.

Reservoir computing systems built with memristors, however, can skip most of the expensive training process and still provide the network the capability to remember. This is because the most critical component of the system – the reservoir – does not require training.

When a set of data is inputted into the reservoir, the reservoir identifies important time-related features of the data, and hands it off in a simpler format to a second network. This second network then only needs training like simpler neural networks, changing weights of the features and outputs that the first network passed on until it achieves an acceptable level of error.

Enlargereservoir computing system

IMAGE:  Schematic of a reservoir computing system, showing the reservoir with internal dynamics and the simpler output. Only the simpler output needs to be trained, allowing for quicker and lower-cost training. Courtesy Wei Lu.

 

“The beauty of reservoir computing is that while we design it, we don’t have to train it,” says Lu.

The team proved the reservoir computing concept using a test of handwriting recognition, a common benchmark among neural networks. Numerals were broken up into rows of pixels, and fed into the computer with voltages like Morse code, with zero volts for a dark pixel and a little over one volt for a white pixel.

Using only 88 memristors as nodes to identify handwritten versions of numerals, compared to a conventional network that would require thousands of nodes for the task, the reservoir achieved 91% accuracy.

Reservoir computing systems are especially adept at handling data that varies with time, like a stream of data or words, or a function depending on past results.

To demonstrate this, the team tested a complex function that depended on multiple past results, which is common in engineering fields. The reservoir computing system was able to model the complex function with minimal error.

Lu plans on exploring two future paths with this research: speech recognition and predictive analysis.

“We can make predictions on natural spoken language, so you don’t even have to say the full word,” explains Lu.

“We could actually predict what you plan to say next.”

In predictive analysis, Lu hopes to use the system to take in signals with noise, like static from far-off radio stations, and produce a cleaner stream of data. “It could also predict and generate an output signal even if the input stopped,” he says.

EnlargeWei Lu

IMAGE:  Wei Lu, Professor of Electrical Engineering & Computer Science at the University of Michigan holds a memristor he created. Photo: Marcin Szczepanski.

 

The work was published in Nature Communications in the article, “Reservoir computing using dynamic memristors for temporal information processing”, with authors Chao Du, Fuxi Cai, Mohammed Zidan, Wen Ma, Seung Hwan Lee, and Prof. Wei Lu.

The research is part of a $6.9 million DARPA [US Defense Advanced Research Projects Agency] project, called “Sparse Adaptive Local Learning for Sensing and Analytics [also known as SALLSA],” that aims to build a computer chip based on self-organizing, adaptive neural networks. The memristor networks are fabricated at Michigan’s Lurie Nanofabrication Facility.

Lu and his team previously used memristors in implementing “sparse coding,” which used a 32-by-32 array of memristors to efficiently analyze and recreate images.

Here’s a link to and a citation for the paper,

Reservoir computing using dynamic memristors for temporal information processing by Chao Du, Fuxi Cai, Mohammed A. Zidan, Wen Ma, Seung Hwan Lee & Wei D. Lu. Nature Communications 8, Article number: 2204 (2017) doi:10.1038/s41467-017-02337-y Published online: 19 December 2017

This is an open access paper.

US white paper on neuromorphic computing (or the nanotechnology-inspired Grand Challenge for future computing)

The US has embarked on a number of what is called “Grand Challenges.” I first came across the concept when reading about the Bill and Melinda Gates (of Microsoft fame) Foundation. I gather these challenges are intended to provide funding for research that advances bold visions.

There is the US National Strategic Computing Initiative established on July 29, 2015 and its first anniversary results were announced one year to the day later. Within that initiative a nanotechnology-inspired Grand Challenge for Future Computing was issued and, according to a July 29, 2016 news item on Nanowerk, a white paper on the topic has been issued (Note: A link has been removed),

Today [July 29, 2016), Federal agencies participating in the National Nanotechnology Initiative (NNI) released a white paper (pdf) describing the collective Federal vision for the emerging and innovative solutions needed to realize the Nanotechnology-Inspired Grand Challenge for Future Computing.

The grand challenge, announced on October 20, 2015, is to “create a new type of computer that can proactively interpret and learn from data, solve unfamiliar problems using what it has learned, and operate with the energy efficiency of the human brain.” The white paper describes the technical priorities shared by the agencies, highlights the challenges and opportunities associated with these priorities, and presents a guiding vision for the research and development (R&D) needed to achieve key technical goals. By coordinating and collaborating across multiple levels of government, industry, academia, and nonprofit organizations, the nanotechnology and computer science communities can look beyond the decades-old approach to computing based on the von Neumann architecture and chart a new path that will continue the rapid pace of innovation beyond the next decade.

A July 29, 2016 US National Nanotechnology Coordination Office news release, which originated the news item, further and succinctly describes the contents of the paper,

“Materials and devices for computing have been and will continue to be a key application domain in the field of nanotechnology. As evident by the R&D topics highlighted in the white paper, this challenge will require the convergence of nanotechnology, neuroscience, and computer science to create a whole new paradigm for low-power computing with revolutionary, brain-like capabilities,” said Dr. Michael Meador, Director of the National Nanotechnology Coordination Office. …

The white paper was produced as a collaboration by technical staff at the Department of Energy, the National Science Foundation, the Department of Defense, the National Institute of Standards and Technology, and the Intelligence Community. …

The white paper titled “A Federal Vision for Future Computing: A Nanotechnology-Inspired Grand Challenge” is 15 pp. and it offers tidbits such as this (Note: Footnotes not included),

A new materials base may be needed for future electronic hardware. While most of today’s electronics use silicon, this approach is unsustainable if billions of disposable and short-lived sensor nodes are needed for the coming Internet-of-Things (IoT). To what extent can the materials base for the implementation of future information technology (IT) components and systems support sustainability through recycling and bio-degradability? More sustainable materials, such as compostable or biodegradable systems (polymers, paper, etc.) that can be recycled or reused,  may play an important role. The potential role for such alternative materials in the fabrication of integrated systems needs to be explored as well. [p. 5]

The basic architecture of computers today is essentially the same as those built in the 1940s—the von Neumann architecture—with separate compute, high-speed memory, and high-density storage components that are electronically interconnected. However, it is well known that continued performance increases using this architecture are not feasible in the long term, with power density constraints being one of the fundamental roadblocks.7 Further advances in the current approach using multiple cores, chip multiprocessors, and associated architectures are plagued by challenges in software and programming models. Thus,  research and development is required in radically new and different computing architectures involving processors, memory, input-output devices, and how they behave and are interconnected. [p. 7]

Neuroscience research suggests that the brain is a complex, high-performance computing system with low energy consumption and incredible parallelism. A highly plastic and flexible organ, the human brain is able to grow new neurons, synapses, and connections to cope with an ever-changing environment. Energy efficiency, growth, and flexibility occur at all scales, from molecular to cellular, and allow the brain, from early to late stage, to never stop learning and to act with proactive intelligence in both familiar and novel situations. Understanding how these mechanisms work and cooperate within and across scales has the potential to offer tremendous technical insights and novel engineering frameworks for materials, devices, and systems seeking to perform efficient and autonomous computing. This research focus area is the most synergistic with the national BRAIN Initiative. However, unlike the BRAIN Initiative, where the goal is to map the network connectivity of the brain, the objective here is to understand the nature, methods, and mechanisms for computation,  and how the brain performs some of its tasks. Even within this broad paradigm,  one can loosely distinguish between neuromorphic computing and artificial neural network (ANN) approaches. The goal of neuromorphic computing is oriented towards a hardware approach to reverse engineering the computational architecture of the brain. On the other hand, ANNs include algorithmic approaches arising from machinelearning,  which in turn could leverage advancements and understanding in neuroscience as well as novel cognitive, mathematical, and statistical techniques. Indeed, the ultimate intelligent systems may as well be the result of merging existing ANN (e.g., deep learning) and bio-inspired techniques. [p. 8]

As government documents go, this is quite readable.

For anyone interested in learning more about the future federal plans for computing in the US, there is a July 29, 2016 posting on the White House blog celebrating the first year of the US National Strategic Computing Initiative Strategic Plan (29 pp. PDF; awkward but that is the title).

Plastic memristors for neural networks

There is a very nice explanation of memristors and computing systems from the Moscow Institute of Physics and Technology (MIPT). First their announcement, from a Jan. 27, 2016 news item on ScienceDaily,

A group of scientists has created a neural network based on polymeric memristors — devices that can potentially be used to build fundamentally new computers. These developments will primarily help in creating technologies for machine vision, hearing, and other machine sensory systems, and also for intelligent control systems in various fields of applications, including autonomous robots.

The authors of the new study focused on a promising area in the field of memristive neural networks – polymer-based memristors – and discovered that creating even the simplest perceptron is not that easy. In fact, it is so difficult that up until the publication of their paper in the journal Organic Electronics, there were no reports of any successful experiments (using organic materials). The experiments conducted at the Nano-, Bio-, Information and Cognitive Sciences and Technologies (NBIC) centre at the Kurchatov Institute by a joint team of Russian and Italian scientists demonstrated that it is possible to create very simple polyaniline-based neural networks. Furthermore, these networks are able to learn and perform specified logical operations.

A Jan. 27, 2016 MIPT press release on EurekAlert, which originated the news item, offers an explanation of memristors and a description of the research,

A memristor is an electric element similar to a conventional resistor. The difference between a memristor and a traditional element is that the electric resistance in a memristor is dependent on the charge passing through it, therefore it constantly changes its properties under the influence of an external signal: a memristor has a memory and at the same time is also able to change data encoded by its resistance state! In this sense, a memristor is similar to a synapse – a connection between two neurons in the brain that is able, with a high level of plasticity, to modify the efficiency of signal transmission between neurons under the influence of the transmission itself. A memristor enables scientists to build a “true” neural network, and the physical properties of memristors mean that at the very minimum they can be made as small as conventional chips.

Some estimates indicate that the size of a memristor can be reduced up to ten nanometers, and the technologies used in the manufacture of the experimental prototypes could, in theory, be scaled up to the level of mass production. However, as this is “in theory”, it does not mean that chips of a fundamentally new structure with neural networks will be available on the market any time soon, even in the next five years.

The plastic polyaniline was not chosen by chance. Previous studies demonstrated that it can be used to create individual memristors, so the scientists did not have to go through many different materials. Using a polyaniline solution, a glass substrate, and chromium electrodes, they created a prototype with dimensions that, at present, are much larger than those typically used in conventional microelectronics: the strip of the structure was approximately one millimeter wide (they decided to avoid miniaturization for the moment). All of the memristors were tested for their electrical characteristics: it was found that the current-voltage characteristic of the devices is in fact non-linear, which is in line with expectations. The memristors were then connected to a single neuromorphic network.

A current-voltage characteristic (or IV curve) is a graph where the horizontal axis represents voltage and the vertical axis the current. In conventional resistance, the IV curve is a straight line; in strict accordance with Ohm’s Law, current is proportional to voltage. For a memristor, however, it is not just the voltage that is important, but the change in voltage: if you begin to gradually increase the voltage supplied to the memristor, it will increase the current passing through it not in a linear fashion, but with a sharp bend in the graph and at a certain point its resistance will fall sharply.

Then if you begin to reduce the voltage, the memristor will remain in its conducting state for some time, after which it will change its properties rather sharply again to decrease its conductivity. Experimental samples with a voltage increase of 0.5V hardly allowed any current to pass through (around a few tenths of a microamp), but when the voltage was reduced by the same amount, the ammeter registered a figure of 5 microamps. Microamps are of course very small units, but in this case it is the contrast that is most significant: 0.1 μA to 5 μA is a difference of fifty times! This is more than enough to make a clear distinction between the two signals.

After checking the basic properties of individual memristors, the physicists conducted experiments to train the neural network. The training (it is a generally accepted term and is therefore written without inverted commas) involves applying electric pulses at random to the inputs of a perceptron. If a certain combination of electric pulses is applied to the inputs of a perceptron (e.g. a logic one and a logic zero at two inputs) and the perceptron gives the wrong answer, a special correcting pulse is applied to it, and after a certain number of repetitions all the internal parameters of the device (namely memristive resistance) reconfigure themselves, i.e. they are “trained” to give the correct answer.

The scientists demonstrated that after about a dozen attempts their new memristive network is capable of performing NAND logical operations, and then it is also able to learn to perform NOR operations. Since it is an operator or a conventional computer that is used to check for the correct answer, this method is called the supervised learning method.

Needless to say, an elementary perceptron of macroscopic dimensions with a characteristic reaction time of tenths or hundredths of a second is not an element that is ready for commercial production. However, as the researchers themselves note, their creation was made using inexpensive materials, and the reaction time will decrease as the size decreases: the first prototype was intentionally enlarged to make the work easier; it is physically possible to manufacture more compact chips. In addition, polyaniline can be used in attempts to make a three-dimensional structure by placing the memristors on top of one another in a multi-tiered structure (e.g. in the form of random intersections of thin polymer fibers), whereas modern silicon microelectronic systems, due to a number of technological limitations, are two-dimensional. The transition to the third dimension would potentially offer many new opportunities.

The press release goes to explain what the researchers mean when they mention a fundamentally different computer,

The common classification of computers is based either on their casing (desktop/laptop/tablet), or on the type of operating system used (Windows/MacOS/Linux). However, this is only a very simple classification from a user perspective, whereas specialists normally use an entirely different approach – an approach that is based on the principle of organizing computer operations. The computers that we are used to, whether they be tablets, desktop computers, or even on-board computers on spacecraft, are all devices with von Neumann architecture; without going into too much detail, they are devices based on independent processors, random access memory (RAM), and read only memory (ROM).

The memory stores the code of a program that is to be executed. A program is a set of instructions that command certain operations to be performed with data. Data are also stored in the memory* and are retrieved from it (and also written to it) in accordance with the program; the program’s instructions are performed by the processor. There may be several processors, they can work in parallel, data can be stored in a variety of ways – but there is always a fundamental division between the processor and the memory. Even if the computer is integrated into one single chip, it will still have separate elements for processing information and separate units for storing data. At present, all modern microelectronic systems are based on this particular principle and this is partly the reason why most people are not even aware that there may be other types of computer systems – without processors and memory.

*) if physically different elements are used to store data and store a program, the computer is said to be built using Harvard architecture. This method is used in certain microcontrollers, and in small specialized computing devices. The chip that controls the function of a refrigerator, lift, or car engine (in all these cases a “conventional” computer would be redundant) is a microcontroller. However, neither Harvard, nor von Neumann architectures allow the processing and storage of information to be combined into a single element of a computer system.

However, such systems do exist. Furthermore, if you look at the brain itself as a computer system (this is purely hypothetical at the moment: it is not yet known whether the function of the brain is reducible to computations), then you will see that it is not at all built like a computer with von Neumann architecture. Neural networks do not have a specialized computer or separate memory cells. Information is stored and processed in each and every neuron, one element of the computer system, and the human brain has approximately 100 billion of these elements. In addition, almost all of them are able to work in parallel (simultaneously), which is why the brain is able to process information with great efficiency and at such high speed. Artificial neural networks that are currently implemented on von Neumann computers only emulate these processes: emulation, i.e. step by step imitation of functions inevitably leads to a decrease in speed and an increase in energy consumption. In many cases this is not so critical, but in certain cases it can be.

Devices that do not simply imitate the function of neural networks, but are fundamentally the same could be used for a variety of tasks. Most importantly, neural networks are capable of pattern recognition; they are used as a basis for recognising handwritten text for example, or signature verification. When a certain pattern needs to be recognised and classified, such as a sound, an image, or characteristic changes on a graph, neural networks are actively used and it is in these fields where gaining an advantage in terms of speed and energy consumption is critical. In a control system for an autonomous flying robot every milliwatt-hour and every millisecond counts, just in the same way that a real-time system to process data from a collider detector cannot take too long to “think” about highlighting particle tracks that may be of interest to scientists from among a large number of other recorded events.

Bravo to the writer!

Here’s a link to and a citation for the paper,

Hardware elementary perceptron based on polyaniline memristive devices by V.A. Demin. V. V. Erokhin, A.V. Emelyanov, S. Battistoni, G. Baldi, S. Iannotta, P.K. Kashkarov, M.V. Kovalchuk. Organic Electronics Volume 25, October 2015, Pages 16–20 doi:10.1016/j.orgel.2015.06.015

This paper is behind a paywall.

US White House’s grand computing challenge could mean a boost for research into artificial intelligence and brains

An Oct. 20, 2015 posting by Lynn Bergeson on Nanotechnology Now announces a US White House challenge incorporating nanotechnology, computing, and brain research (Note: A link has been removed),

On October 20, 2015, the White House announced a grand challenge to develop transformational computing capabilities by combining innovations in multiple scientific disciplines. See https://www.whitehouse.gov/blog/2015/10/15/nanotechnology-inspired-grand-challenge-future-computing The Office of Science and Technology Policy (OSTP) states that, after considering over 100 responses to its June 17, 2015, request for information, it “is excited to announce the following grand challenge that addresses three Administration priorities — the National Nanotechnology Initiative, the National Strategic Computing Initiative (NSCI), and the BRAIN initiative.” The grand challenge is to “[c]reate a new type of computer that can proactively interpret and learn from data, solve unfamiliar problems using what it has learned, and operate with the energy efficiency of the human brain.”

Here’s where the Oct. 20, 2015 posting, which originated the news item, by Lloyd Whitman, Randy Bryant, and Tom Kalil for the US White House blog gets interesting,

 While it continues to be a national priority to advance conventional digital computing—which has been the engine of the information technology revolution—current technology falls far short of the human brain in terms of both the brain’s sensing and problem-solving abilities and its low power consumption. Many experts predict that fundamental physical limitations will prevent transistor technology from ever matching these twin characteristics. We are therefore challenging the nanotechnology and computer science communities to look beyond the decades-old approach to computing based on the Von Neumann architecture as implemented with transistor-based processors, and chart a new path that will continue the rapid pace of innovation beyond the next decade.

There are growing problems facing the Nation that the new computing capabilities envisioned in this challenge might address, from delivering individualized treatments for disease, to allowing advanced robots to work safely alongside people, to proactively identifying and blocking cyber intrusions. To meet this challenge, major breakthroughs are needed not only in the basic devices that store and process information and the amount of energy they require, but in the way a computer analyzes images, sounds, and patterns; interprets and learns from data; and identifies and solves problems. [emphases mine]

Many of these breakthroughs will require new kinds of nanoscale devices and materials integrated into three-dimensional systems and may take a decade or more to achieve. These nanotechnology innovations will have to be developed in close coordination with new computer architectures, and will likely be informed by our growing understanding of the brain—a remarkable, fault-tolerant system that consumes less power than an incandescent light bulb.

Recent progress in developing novel, low-power methods of sensing and computation—including neuromorphic, magneto-electronic, and analog systems—combined with dramatic advances in neuroscience and cognitive sciences, lead us to believe that this ambitious challenge is now within our reach. …

This is the first time I’ve come across anything that publicly links the BRAIN initiative to computing, artificial intelligence, and artificial brains. (For my own sake, I make an arbitrary distinction between algorithms [artificial intelligence] and devices that simulate neural plasticity [artificial brains].)The emphasis in the past has always been on new strategies for dealing with Parkinson’s and other neurological diseases and conditions.