Tag Archives: VTT Technical Research Centre of Finland

Adopting robots into a health care system, Finnish style

The Finns have been studying the implementation of a logistics robotic system in a hospital setting according to an August 30, 2017 news item on phys.org,

VTT Technical Research Centre of Finland studied the implementation of a logistics robot system at the Seinäjoki Central Hospital in South Ostrobothnia. The aim is to reduce transportation costs, improve the availability of supplies and alleviate congestion on hospital hallways by running deliveries around the clock on every day of the week. Joint planning and dialogue between the various occupational groups and stakeholders involved was necessary for a successful change process.

This study is part of a larger project as the August 30, 2017 VTT press release (also on EurekAlert), which originated the news item, makes clear,

As the population ages, the need for robotic services is on the increase. Adopting new technology to support care and nursing work is not straightforward, however. Autonomous service robots and robot systems raise questions about safety as well as about their impact on care quality and jobs, among others.

VTT has studied the implementation of a next-generation logistics robot system at the Seinäjoki Central Hospital. First steps are being taken in Finland to introduce automated delivery systems in hospitals, with Seinäjoki Central Hospital acting as one of the pioneers. The Seinäjoki hospital’s robot system will include a total of 5–8 automated delivery robots, two of which were deployed during the study.

With deliveries running 24/7, the system will help to improve the availability of supplies and alleviate congestion on hallways. Experiences gained during the first six months show that transport personnel expenses and the physical strain of transport work have been reduced. The personnel’s views on the delivery robots have developed favourably and other hospitals have shown plenty of interest in the Seinäjoki hospital’s experiences.

From the perspective of various occupational groups, adoption of the system has had a varied effect on their perceived level of sense of control and appreciation of their work, as well as competence requirements. This study by VTT, employing work research approaches and a systems-oriented view, highlights the importance of taking into account in the change process the interdependencies between various players, along with their roles in the hospital’s core task.

Careful planning, piloting and implementation are required to ensure that the adoption of new robots runs smoothly as a whole. “As the system is expanded with new robots and types of deliveries, even more guidance, communication and dialogue is needed. Joint planning that brings various players to the same table ensures that the system’s implementation goes as smoothly as possible, making it easier to achieve the desired overall benefits”, says Senior Scientist Inka Lappalainen of the ROSE project.

VTT’s study is part of the Robots and the Future of Welfare Services project (ROSE), running from 2015 to 2020. The project investigates Finland’s opportunities for adopting assisting robotics to support the ageing population’s independent living, wellbeing and care. There is also a blog post on the topic: http://roseproject.aalto.fi/fi/blog/32-blog8.


Intermediate results of the project are presented in the publication Robotics in Care Services: A Finnish Roadmap, providing recommendations for both policy making and research. The roadmap is available on the ROSE project website, at http://roseproject.aalto.fi/ or http://roseproject.aalto.fi/fi/blog/29-roadmap-blog-fi.

The roadmap has been compiled by the project consortium comprising Aalto University, the project’s coordinator, and research organisations Laurea University of Applied Sciences, Lappeenranta University of Technology, Tampere University of Technology, University of Tampere and VTT.

 Photo: a logistics robot at the Seinäjoki Central Hospital (photo Marketta Niemelä, VTT)

To make it easier for those without Finnish language reading skills, I have a link to the English language version of the ROSE website. In looking at the ROSE website’s video page, I found this amongst others,

This reminded me of an initiative in Canada introducing a robot designed for use in clinical settings. In a July 4, 2017 posting, I posed this question,

A Canadian project to introduce robots like Pepper into clinical settings (aside: can seniors’ facilities be far behind?) is the subject of a June 23, 2017 news item on phys.org, …

There’s also been some work on robots and seniors in Holland (Netherlands) and Japan although I don’t have any details.

Bio-based standup pouches (food packaging) made from cellulose

CAPTION: VTT has developed lightweight 100% bio-based stand-up pouches with high technical performance. (Photo by VTT)

A March 14, 2017 news item on ScienceDaily describes a new nanocellulose-based product developed by the Technical Research Centre of Finland (VTT),

VTT Technical Research Centre of Finland Ltd has developed lightweight 100% bio-based stand-up pouches with high technical performance. High performance in both oxygen, grease and mineral oil barrier properties has been reached by using different biobased coatings on paper substrate. The pouches exploit VTT’s patent pending high consistency enzymatic fibrillation of cellulose (HefCel) technology.

A March 14, 2017 VTT press release (also on EurekAlert), which originated the news item, describes why the researchers want to change how food is packaged,

“One-third of food produced for human consumption is lost or wasted globally. Packaging with efficient barrier properties is a crucial factor in the reduction of the food loss. Our solution offers an environmentally friendly option for the global packaging industry”, says Senior Scientist Jari Vartiainen of VTT.

VTT’s HefCel technology provides a low-cost method for the production of nanocellulose resulting in a tenfold increase in the solids content of nanocellulose. Nanocellulose has been shown to be potentially very useful for a number of future technical applications. The densely packed structure of nanocellulose films and coatings enable their outstanding oxygen, grease and mineral oil barrier properties.

HefCel technology exploits industrial enzymes and simple mixing technology as tools to fibrillate cellulose into nanoscale fibrils without the need for high energy consuming process steps. The resulting nanocellulose is in the consistency of 15-25% when traditional nanocellulose production methods result in 1-3% consistency.

The stand-up pouch is the fastest growing type of packaging, growing at a rate of 6.5% per year from 2015-2020. Fossil-based plastic films still dominate the packaging market. However, the development of environmentally friendly new materials is of growing importance. Nanocellulose has been shown to be potentially very useful for a number of future technical applications.

VTT has solid expertise in various bio-based raw materials and their application technologies for producing bio-based coatings, films and even multilayered structures both at lab-scale and pilot-scale. A versatile set of piloting facilities are available from raw material sourcing through processing to application testing and demonstration.

I’m glad to hear they’re finding uses for nanocellulose and I keep wondering when Canadian scientists who at one point were leaders in developing crystal nanocellulose (CNC or sometimes known as nanocrystalline cellulose [NCC]) will be making announcements about potential products.

Graphene Flagship high points

The European Union’s Graphene Flagship project has provided a series of highlights in place of an overview for the project’s ramp-up phase (in 2013 the Graphene Flagship was announced as one of two winners of a science competition, the other winner was the Human Brain Project, with two prizes of 1B Euros for each project). Here are the highlights from the April 19, 2016 Graphene Flagship press release,

Graphene and Neurons – the Best of Friends

Flagship researchers have shown that it is possible to interface untreated graphene with neuron cells whilst maintaining the integrity of these vital cells [1]. This result is a significant first step towards using graphene to produce better deep brain implants which can both harness and control the brain.

Graphene and Neurons

This paper emerged from the Graphene Flagship Work Package Health and Environment. Prof. Prato, the WP leader from the University of Trieste in Italy, commented that “We are currently involved in frontline research in graphene technology towards biomedical applications, exploring the interactions between graphene nano- and micro-sheets with the sophisticated signalling machinery of nerve cells. Our work is a first step in that direction.”

[1] Fabbro A., et al., Graphene-Based Interfaces do not Alter Target Nerve Cells. ACS Nano, 10 (1), 615 (2016).

Pressure Sensing with Graphene: Quite a Squeeze

The Graphene Flagship developed a small, robust, highly efficient squeeze film pressure sensor [2]. Pressure sensors are present in most mobile handsets and by replacing current sensor membranes with a graphene membrane they allow the sensor to decrease in size and significantly increase its responsiveness and lifetime.

Discussing this work which emerged from the Graphene Flagship Work Package Sensors is the paper’s lead author, Robin Dolleman from the Technical University of Delft in The Netherlands “After spending a year modelling various systems the idea of the squeeze-film pressure sensor was formed. Funding from the Graphene Flagship provided the opportunity to perform the experiments and we obtained very good results. We built a squeeze-film pressure sensor from 31 layers of graphene, which showed a 45 times higher response than silicon based devices, while reducing the area of the device by a factor of 25. Currently, our work is focused on obtaining similar results on monolayer graphene.”


[2] Dolleman R. J. et al., Graphene Squeeze-Film Pressure Sensors. Nano Lett., 16, 568 (2016)

Frictionless Graphene

Image caption: A graphene nanoribbon was anchored at the tip of a atomic force microscope and dragged over a gold surface. The observed friction force was extremely low.

Image caption: A graphene nanoribbon was anchored at the tip of a atomic force microscope and dragged over a gold surface. The observed friction force was extremely low.

Research done within the Graphene Flagship, has observed the onset of superlubricity in graphene nanoribbons sliding on a surface, unravelling the role played by ribbon size and elasticity [3]. This important finding opens up the development potential of nanographene frictionless coatings. This research lead by the Graphene Flagship Work Package Nanocomposites also involved researchers from Work Package Materials and Work Package Health and the Environment, a shining example of the inter-disciplinary, cross-collaborative approach to research undertaken within the Graphene Flagship. Discussing this further is the Work Package Nanocomposites Leader, Dr Vincenzo Palermo from CNR National Research Council, Italy “Strengthening the collaboration and interactions with other Flagship Work Packages created added value through a strong exchange of materials, samples and information”.

[3] Kawai S., et al., Superlubricity of graphene nanoribbons on gold surfaces. Science. 351, 6276, 957 (2016) 

​Graphene Paddles Forward

Work undertaken within the Graphene Flagship saw Spanish automotive interiors specialist, and Flagship partner, Grupo Antolin SA work in collaboration with Roman Kayaks to develop an innovative kayak that incorporates graphene into its thermoset polymeric matrices. The use of graphene and related materials results in a significant increase in both impact strength and stiffness, improving the resistance to breakage in critical areas of the boat. Pushing the graphene canoe well beyond the prototype demonstration bubble, Roman Kayaks chose to use the K-1 kayak in the Canoe Marathon World Championships held in September in Gyor, Hungary where the Graphene Canoe was really put through its paces.

Talking further about this collaboration from the Graphene Flagship Work Package Production is the WP leader, Dr Ken Teo from Aixtron Ltd., UK “In the Graphene Flagship project, Work Package Production works as a technology enabler for real-world applications. Here we show the worlds first K-1 kayak (5.2 meters long), using graphene related materials developed by Grupo Antolin. We are very happy to see that graphene is creating value beyond traditional industries.” 

​Graphene Production – a Kitchen Sink Approach

Researchers from the Graphene Flagship have devised a way of producing large quantities of graphene by separating graphite flakes in liquids with a rotating tool that works in much the same way as a kitchen blender [4]. This paves the way to mass production of high quality graphene at a low cost.

The method was produced within the Graphene Flagship Work Package Production and is talked about further here by the WP deputy leader, Prof. Jonathan Coleman from Trinity College Dublin, Ireland “This technique produced graphene at higher rates than most other methods, and produced sheets of 2D materials that will be useful in a range of applications, from printed electronics to energy generation.” 

[4] Paton K.R., et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624 (2014).

Flexible Displays – Rolled Up in your Pocket

Working with researchers from the Graphene Flagship the Flagship partner, FlexEnable, demonstrated the world’s first flexible display with graphene incorporated into its pixel backplane. Combined with an electrophoretic imaging film, the result is a low-power, durable display suitable for use in many and varied environments.

Emerging from the Graphene Flagship Work Package Flexible Electronics this illustrates the power of collaboration.  Talking about this is the WP leader Dr Henrik Sandberg from the VTT Technical Research Centre of Finland Ltd., Finland “Here we show the power of collaboration. To deliver these flexible demonstrators and prototypes we have seen materials experts working together with components manufacturers and system integrators. These devices will have a potential impact in several emerging fields such as wearables and the Internet of Things.”

​Fibre-Optics Data Boost from Graphene

A team of researches from the Graphene Flagship have demonstrated high-performance photo detectors for infrared fibre-optic communication systems based on wafer-scale graphene [5]. This can increase the amount of information transferred whilst at the same time make the devises smaller and more cost effective.

Discussing this work which emerged from the Graphene Flagship Work Package Optoelectronics is the paper’s lead author, Daniel Schall from AMO, Germany “Graphene has outstanding properties when it comes to the mobility of its electric charge carriers, and this can increase the speed at which electronic devices operate.”

[5] Schall D., et al., 50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems. ACS Photonics. 1 (9), 781 (2014)

​Rechargeable Batteries with Graphene

A number of different research groups within the Graphene Flagship are working on rechargeable batteries. One group has developed a graphene-based rechargeable battery of the lithium-ion type used in portable electronic devices [6]. Graphene is incorporated into the battery anode in the form of a spreadable ink containing a suspension of graphene nanoflakes giving an increased energy efficiency of 20%. A second group of researchers have demonstrated a lithium-oxygen battery with high energy density, efficiency and stability [7]. They produced a device with over 90% efficiency that may be recharged more than 2,000 times. Their lithium-oxygen cell features a porous, ‘fluffy’ electrode made from graphene together with additives that alter the chemical reactions at work in the battery.

Graphene Flagship researchers show how the 2D material graphene can improve the energy capacity, efficiency and stability of lithium-oxygen batteries.

Both devices were developed in different groups within the Graphene Flagship Work Package Energy and speaking of the technology further is Prof. Clare Grey from Cambridge University, UK “What we’ve achieved is a significant advance for this technology, and suggests whole new areas for research – we haven’t solved all the problems inherent to this chemistry, but our results do show routes forward towards a practical device”.

[6] Liu T., et al. Cycling Li-O2 batteries via LiOH formation and decomposition. Science. 350, 6260, 530 (2015)

[7] Hassoun J., et al., An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode. Nano Lett., 14 (8), 4901 (2014)

Graphene – What and Why?

Graphene is a two-dimensional material formed by a single atom-thick layer of carbon, with the carbon atoms arranged in a honeycomb-like lattice. This transparent, flexible material has a number of unique properties. For example, it is 100 times stronger than steel, and conducts electricity and heat with great efficiency.

A number of practical applications for graphene are currently being developed. These include flexible and wearable electronics and antennas, sensors, optoelectronics and data communication systems, medical and bioengineering technologies, filtration, super-strong composites, photovoltaics and energy storage.

Graphene and Beyond

The Graphene Flagship also covers other layered materials, as well as hybrids formed by combining graphene with these complementary materials, or with other materials and structures, ranging from polymers, to metals, cement, and traditional semiconductors such as silicon. Graphene is just the first of thousands of possible single layer materials. The Flagship plans to accelerate their journey from laboratory to factory floor.

Especially exciting is the possibility of stacking monolayers of different elements to create materials not found in nature, with properties tailored for specific applications. Such composite layered materials could be combined with other nanomaterials, such as metal nanoparticles, in order to further enhance their properties and uses.​

Graphene – the Fruit of European Scientific Excellence

Europe, North America and Asia are all active centres of graphene R&D, but Europe has special claim to be at the centre of this activity. The ground-breaking experiments on graphene recognised in the award of the 2010 Nobel Prize in Physics were conducted by European physicists, Andre Geim and Konstantin Novoselov, both at Manchester University. Since then, graphene research in Europe has continued apace, with major public funding for specialist centres, and the stimulation of academic-industrial partnerships devoted to graphene and related materials. It is European scientists and engineers who as part of the Graphene Flagship are closely coordinating research efforts, and accelerating the transfer of layered materials from the laboratory to factory floor.

For anyone who would like links to the published papers, you can check out an April 20, 2016 news item featuring the Graphene Flagship highlights on Nanowerk.

Partners wanted to commercialize new production technique for metallic nanoparticles

An April 20, 2015 news item on Azonano announces a new technique for producing metallic nanoparticles (Note: A link has been removed),

Researchers at VTT Technical Research Centre of Finland Ltd have devised a new, inexpensive metallic nanoparticle manufacturing technique.

The aerosol technology reactor employed for nanoparticle synthesis is capable of producing carbon-coated particles, particles of various alloys and a number of pure metal particles. It can even produce several grams and kilograms of nanoparticles every day.

Nanoparticles are suitable for applications including energy technology, tailoring the electrical and magnetic properties of polymers, drug dosing and medical diagnostics, and conductive and magnetic inks. VTT is looking forward to commercialize the technique.

An April 20, 2015 VTT press release (also on EurekAlert), which originated the news item,  describes the project’s achievements in more detail and makes a plea (of sorts) for partners to commercialize this work,

“Demand has outstripped supply in the nanoparticle markets. This has been an obstacle to the development of product applications; nano-metal composites are scarce and often available in small quantities only. We wanted to demonstrate that it was possible to produce nanomaterials in considerable quantities cost-effectively,” comments Ari Auvinen of VTT, head of the research team.

When developing the reactor, the aim was to achieve a production figure of 200-3,000 grammes per day. This has already been clearly exceeded. Due to the extremely small material wastage incurred when using this equipment, remote-control production can be maintained for several days. In most cases, industrial production of metallic nanoparticles involves chemical reduction in liquid solutions, which requires the design of product-specific solutions. Plasma synthesis, which consumes large amounts of energy and involves significant material wastage, is another generally used method.

In the design of the reactor developed by VTT, the scalability and cost-effectiveness of the synthesis process were key criteria. For this reason, synthesis is performed under air pressure at a comparatively low temperature. This means that the equipment can be built from materials commonly used in industry and energy consumption is low. The process generates an extremely high particle concentration, enabling a high production speed but with low gas consumption. In addition, even impure metallic salts can be used as a raw material, which keeps the price low.

VTT has demonstrated the practical functionality of its reactor by testing the production of various nanometals, metallic compounds and carbon-coated materials. Materials such as carbon-coated magnets, which can be used as catalysts in biorefineries – say, in the production of biofuels – have been produced in the reactor. Following synthesis, magnets used as catalysts can be efficiently gathered in and recycled back into the process.

Nanoparticles have also been tested in the manufacture of magnetic inks and inks that conduct electricity in printed electronics. For example, VTT succeeded in using a permalloy ink to print a magnetically anisotropic material, which can be used in the manufacture of magnetic field sensors.

VTT’s third application trial involved the prevention of microwave reflection. The tests showed that reflection can be reduced by even 10,000 times in polymers, by adding particles which increase radar wave attenuation.

VTT’s researchers believe that the reactor has many applications in addition to those already mentioned. The silicon nanoparticles it produces may even enable lithium battery capacity to be boosted by a factor of 10. Other possible applications, all of which require further investigation, include high permeability polymers, nanomagnets for medical diagnostics applications, materials for the 3D printing of metal articles, and silicon-based materials for thermoelectric and solar power components.

VTT is currently seeking a party interested in commercialising the technique.

For interested parties, here is the contact information listed in the press release,

For more information, please contact:

Raimo Korhonen, Head of Research Area
tel. +358 40 7030052, raimo.korhonen@vtt.fi

Good luck!

Designing nanocellulose (?) products in Finland; update on Canada’s CelluForce

A VTT Technical Research Centre of Finland Oct. 2, 2013 news release (also on EurekAlert) has announced an initiative which combines design with technical expertise in the production of cellulose- (nanocellulose?) based textile and other products derived from wood waste,

The combination of strong design competence and cutting-edge cellulose-based technologies can result in new commercially successful brands. The aim is for fibre from wood-based biomass to replace both cotton production, which burdens the environment, and polyester production, which consumes oil. A research project launched by VTT Technical Research Centre of Finland, Aalto University and Tampere University of Technology aims to create new business models and ecosystems in Finland through design-driven cellulose products.

The joint research project is called Design Driven Value Chains in the World of Cellulose (DWoC). The objective is to develop cellulose-based products suitable for technical textiles and consumer products. The technology could also find use in the pharmaceutical, food and automotive industries. Another objective is to build a new business ecosystem and promote spin-offs.

Researchers seek to combine Finnish design competence with cutting-edge technological developments to utilise the special characteristics of cellulose to create products that feature the best qualities of materials such as cotton and polyester. Product characteristics achieved by using new manufacturing technologies and nanocellulose as a structural fibre element include recyclability and individual production.

The first tests performed by professor Olli Ilkkala’s team at the Aalto University showed that the self-assembly of cellulose fibrils in wood permits the fibrils to be spun into strong yarn. VTT has developed an industrial process that produces yarn from cellulose fibres without the spinning process. VTT has also developed efficient applications of the foam forming method for manufacturing materials that resemble fabric.

“In the future, combining different methods will enable production of individual fibre structures and textile products, even by using 3D printing technology,” says Professor Ali Harlin from VTT.

Usually the price of a textile product is the key criterion even though produced sustainably. New methods help significantly to shorten the manufacturing chain of existing textile products and bring it closer to consumers to respond to their rapidly changing needs. Projects are currently under way where the objective is to replace wet spinning with extrusion technology. The purpose is to develop fabric manufacturing methods where several stages of weaving and knitting are replaced without losing the key characteristics of the textile, such as the way it hangs.

The VTT news release also provides statistics supporting the notion that cellulose textile products derived from wood waste are more sustainable than those derived from cotton,

Finland’s logging residue to replace environmentally detrimental cotton Cotton textiles account for about 40% of the world’s textile markets, and oil-based polyester for practically the remainder. Cellulose-based fibres make up 6% of the market. Although cotton is durable and comfortable to wear, cotton production is highly water-intensive, and artificial fertilisers and chemical pesticides are often needed to ensure a good crop. The surface area of cotton-growing regions globally equates to the size of Finland.

Approximately 5 million tons of fibre could be manufactured from Finland’s current logging residue (25 million cubic metres/year). This could replace more than 20% of globally produced cotton, at the same time reducing carbon dioxide emissions by 120 million tons, and releasing enough farming land to grow food for 18 million people. Desertification would also decrease by approximately 10 per cent.

I am guessing this initiative is focused on nanocellulose since the news release makes no mention of it but it is highly suggestive that one of the project leads, Olli Ilkkala mentions nanocellulose as part of the research for which he received a major funding award as recently as 2012,. From a Feb. 7, 2012 Aalto University news release announcing the grant for Ikkala’s research,

The European Research Council granted Aalto University’s Academy Professor Olli Ikkala funding in the amount of €2.3 million for research on biomimetic nanomaterials. Ikkala’s group specialises in the self-assembly of macromolecules and how to make use of this process when producing functional materials.

The interests of Ikkala’s group focus on the self-assembled strong and light nanocomposite structures found in nature, such as the nacreous matter underneath seashells and biological fibres resembling silk and nanocellulose. [emphasis mine] Several strong natural materials are built from both strong parallel elements and softening and viscosifying macromolecules. All sizes of structures form to combine opposite properties: strength and viscosity.

The research of the properties of biomimetic nanocomposites is based on finding out the initial materials of self-assembly. Initial material may include, for example, nano platelets, polymers, new forms of carbon, surfactants and nanocellulose.[emphasis mine]

– Cellulose is especially interesting, as it is the most common polymer in the world and it is produced in our renewable forests. In terms of strength, nano-sized cellulose fibres are comparable to metals, which was the very offset of interest in using nanocellulose in the design of strong self-assembled biomimetic materials, Ikkala says. [emphases mine]

Celluforce update

After reading about the Finnish initiative, I stumbled across an interesting little article on the Celluforce website about the current state of NCC (nanocrystalline cellulose aka CNC [cellulose nanocrystals]) production, Canada’s claim to fame in the nanocellulose world. From an August 2013 Natural Resources Canada, Canadian Forest Service, Spotlight series article,

The pilot plant, located at the Domtar pulp and paper mill in Windsor, Quebec, is a joint venture between Domtar and FPInnnovations called CelluForce. The plant, which began operations in January 2012, has since successfully demonstrated its capacity to produce NCC on a continuous basis, thus enabling a sufficient inventory of NCC to be collected for product development and testing. Operations at the pilot plant are temporarily on hold while CelluForce evaluates the potential markets for various NCC applications with its stockpiled material. [emphasis mine]

When the Celluforce Windsor, Québec plant was officially launched in January 2012 the production target was for 1,000 kg (1 metric ton) per day (there’s more in my Jan. 31 2012 posting about the plant’s launch). I’ve never seen anything which confirms they reached their production target, in any event, that seems irrelevant in light of the ‘stockpile’.

I am somewhat puzzled by the Celluforce ‘stockpile’ issue. On the one hand, it seems the planning process didn’t take into account demand for the material and, on the other hand, I’ve had a couple back channel requests from entrepreneurs about gaining access to the material after they were unsuccessful with Celluforce.  Is there not enough demand and/or is Celluforce choosing who or which agencies are going to have access to the material?

ETA Oct. 14, 2013: It took me a while to remember but there was a very interesting comment by Tim Harper (UK-based, emerging technologies consultant [Cientifica]) in Bertrand Marotte’s May 6, 2012 Globe & Mail article (about NCC (from my May 8, 2012 posting offering some commentary about Marotte’s article),

Tim Harper, the CEO of London-based Cientifica, a consultant on advanced technologies, describes the market for NCC as “very much a push, without signs of any pull.”

It would seem the current stockpile confirms Harper’s take on NCC’s market situation. For anyone not familiar with marketing terminology, ‘pull’ means market demand. No one is asking to buy NCC as there are no applications requiring the product, so there is ‘no pull/no market demand’.