Tag Archives: Wadood Hamad

Final words on TAPPI’s June 2014 Nanotechnology for Renewable Materials conference

A July 8, 2014 news item on Nanowerk provides some statistics about the recently ended (June 23 – 26, 2014) TAPPI (Technical Association for the Pulp, Paper, Packaging and Converting Industries) Conference on Nanotechnology for Renewable Materials,

Over 230 delegates from 25 countries gathered in Vancouver, British Columbia, Canada last week at TAPPI’s 9th International Conference on Nanotechnology for Renewable Nanomaterials. “This year’s conference was exceptional,” noted co-chair Wadood Hamad, Priniciple Scientist, FPInnovations. “The keynote and technical presentations were of very high quality. The advancements made in many applications show great promise, and we will see expanded commercial use of these renewable biomaterials.”

An identical news item dated July 7, 2014 on Nanotechnology Now,notes the commercial announcements made during the conference,

Several key commercial announcements were made at this year’s conference, highlighting the tangible growth in this emerging market area of renewable biopolymers:

Celluforce, which opened their commercial plant in January 2012, shared six advanced commercial projects.

Imerys announced the launch of their new FiberLean™ MFC innovative composite, which enables a 10-15% reduction in fiber usage for papermaking applications.

Representatives from the newly formed BioFilaments shared information on their unique high performance biomaterial derived from wood cellulose to be used as reinforcing agents and rheological modifiers.

Blue Goose Biorefineries presented their patent-pending process for producing cellulose nanocrystals from wood pulp.

Nippon Paper Industries introduced Cellenpia, their cellulose nanofibers produced from their pre-commercial plant.

GL&V presented their commercial system, developed with the University of Maine, to produce cellulose nanofibrils at a very low energy cost.

American Process Inc. presented their latest results of producing lignin-coated nanocellulose particles using their AVAP® technology which produces a material that is more easily dispersed and has enhanced properties.

I wish them good luck with their projects.

Deadline for submissions to 2014 TAPPI International Conference on Nanotechnology of Renewable Materials in Vancouver, Canada extended

A November 12, 2013 news item on TextileWorld.com announced the new deadline, Nov. 22, 2014, (original deadline was Nov. 5, 2013) for the 2014 TAPPI (Technical Association for the Pulp, Paper, Packaging and Converting Industries) nanotechnology conference submissions,

The Norcross, Ga.-based Technical Association for the Pulp, Paper, Packaging and Converting Industries (TAPPI) has issued a call for 300-word abstracts for presentations to be given at the 2014 TAPPI International Conference on Nanotechnology for Renewable Materials, to be held June 23-26 at the Fairmont Hotel Vancouver in Vancouver, Canada.

… Abstracts focused on additive manufacturing, 3-D printing and other industrial manufacturing applications are preferred.

…. Deadline for submissions is November 22, 2013. …

You can find the 2014 TAPPI Nanotechnology conference website here and the PDF of the Call for Submissions here. Here’s a list of suggested topics from the Call for Submissions,

Preparation & Characterization
Renewable Nanomaterial Isolation & Separation
Cellulose nanocrystals and nanofibrils
Plant, algal, bacterial and other sources
Lignin, heteropolysaccharides, chitosan, etc.
Lab & Pilot-Scale Production
Process Optimization
New isolation & extraction methods
Drying processes
Separation processes forr enewable nanomaterials
Metrology
Sizing, mechanical,chemical, optical and surfaceproperties
Purity, molecular weight, crystallinity, etc.
Thermal, electrical and other properties
Toxicity, biocompatibility & Biodegradability
Self- and Direct-Assembly & Functionalities Nanostructured Materials by Self-assembly
Nano manufacture & self-assembly
Photonic bandgap pigments for special optical effects
Controlled delivery, immobilization, etc.
Novel Nano-enabled Functionalities
Surface modification and responsive materials
Optical effects for novel photonic applications
Inorganic materials template by cellulose nanocrystals
Novel electric, magnetic and piezoelectric effects
Sustainable polymer electronics
Carbon Fibers from Biomass
Production, characterization & uses
Membranes & Filters
New Membrane technologies
Air, water and bio filtration
Biomedical Applications
Ligament replacements, scaffolds, advanced woundtechnology
Bioactive materials
Immunoassays
Rheology and Dispersion Phenomena
Rheology behavior in aqueous and non-aqueous systems
Viscoelastic properties, etc.
Composites, Hydrogels, and Aerogels
Nanocomposites and Renewable Nanomaterials
Nano-reinforced films and fibers
Biomimetic nanocomposites
Porous materials, gels and aerogels, foams and multiphase dispersed system
Bio-derived matrix polymers
Processing
Organic/Inorganic Hybrids
Catalysts
Flexible electronics, etc.
Metal functionalization, ALD, etc,
Manufacturing Applications
Rheology and Rheological Modifiers
Industrial processing applications, e.g., food, pharma, painting, coating, oil, gas, etc.
Dispersion and flocculation
Additive Manufacturing
Raw nanomaterials
Medical applications
3D printing
Paper, Board & Packaging
Coatings & Fillers
High modulus paper coatings
Wear and scratch resistant coatings
Flexible Packaging
Barriers
Printing Technologies
Printing inks
Smart materials
Sensing technologies
Computer Modeling and Simulation
Multiscale Modeling
Solvation structure and hydrodynamics
Environmental, Health and Safety Issues
Workplace Safety & Standards
Current understanding andcritical gaps
Consumer perception and regulations
Management of risks and perceptions
Sustainability assessment, LCA

In digging about for information about the TAPPI nanotechnology conference,, I came across a reference to a meeting hosted by PAPTAC (Pulp and Paper Technical Association of Canada) regarding nanocrystalline cellulose (NCC) or, as it’s also known, cellulose nanocrystals (CNC)  held in June 2013 in Victoria, BC (preparatory to the 17th [2013] International Symposium
on Wood, Fibre and Pulping Chemistry [ISWFPC] conference in Vancouver) I thought the CNC programme interesting enough to reproduce here,

8:05
Keynote lecture by Professor Arthur Carty, Executive Director of the Waterloo Institute for Nanotechnology
Small World, Large Impact: Driving a Materials Revolution Through Nanotechnology
9:00
Dr Clive Willis, Former Vice President of National Research Council of Canada (NRC)
Standardization of CNC: Needs and Challenges
9:45 Coffee Break
10:15
Dr Richard Berry, VP and CTO, CelluForce Inc.
CelluForce—The Journey So Far
11:00
Dr Alan Rudie, USDA Forest Products Lab
Pilot Scale Production of Cellulose Nanocrystals and Cellulose Nanofibrils:
The US Need, FPL Process and Status
11:45
Professor Derek Gray, McGill University
Preparation and Optical Properties of Films Containing Cellulose Nanocrystals
12:30 Lunch
13:30
Professor Akira Isogai, Tokyo University
Applications of TEMPO-oxidized Cellulose Nanofibres to Gas Barrier Films and Nanocomposites
14:15
Dr Laurent Heux, CERMAV
Physico-chemical and Self-assembling Properties of CNC in Water and Organic Solvents
15:00
Professor Emily Cranston, McMaster University
Surface-modified Cellulose Nanocrystals: Characterization, Purification and Applications
15:45 Coffee Break
16:15
Dr Carole Fraschini, FPInnovations
Particle Issues in the Determination of Nanocellulose Particle Size
17:00
Dr Andriy Kovalenko, National Institute of Nanotechnology (NINT-NRC)
Multi-scale Modelling of the Structure, Thermodynamics,
and Effective Interactions of CNC in Different Solutions
19:00 Dinner and Award—Host: Dr J Bouchard

Monday, June 10

8:30
Dr Wadood Hamad, FPInnovations
Cellulose Nanocrystals for Advanced Functional Nanocomposites
9:15
Professor Michael Tam, University of Waterloo [emphasis mine]
Cellulose Nanocrystals—Functionalization, Characterization and Applications in Personal Care Systems
10:00
Professor Mark MacLachlan, University of British Columbia
Cellulose Nanocrystal-derived Porous Materials… With a Twist
10:45 Coffee Break
11:15
Professor Yaman Boluk, University of Alberta
Cellulose Nanocrystals in Soft Matter and Smart Applications
12:00
Professor Orlando Rojas, North Carolina State University
Self- and Direct-assembly of Cellulose Nanocrystals at Solid, Liquid and Air Interfaces: Fundamentals and Applications
12:45 Lunch
13:45
Professor John Simonsen, Oregon State University
Atomic Layer Deposition on Cellulose Nanocrystal Aerogels
14:30
Professor Alain Dufresne, Grenoble INP—Pagora
Processing of Nanocellulose Based Polymer Nanocomposites
15:15
Professor Monique Lacroix, INRS-Institut Armand-Frappier
The Use of Cellulose Nanocrystals in Food Packaging
16:00 Coffee Break
16:30
Professor Mark Andrews, McGill University
Cellulose NanocrystalsMake Light Work
17:15
Dr David Plackett, University of British Columbia
Cellulose Nanocrystals as a Vehicle for Delivery of Antibiotics

I don’t think it’s a coincidence that Michael Tam bears the same last name as Janelle Tam whose father is named Michael and both of whom lived in Waterloo when the then 16 year old Janelle Tam placed first in the 2013 Sanofi BioGENEius Challenge Competition (my May 11, 2012 posting).

There you have it, Good luck with your 2014 TAPPI nanotechnology conference submission.

Celluforce presents

I like to keep up with the nanocellulose scene so I’m featuring this item even though it’s a bit late and a bit thin. From the March 29, 2012 news item on Nanowerk,

CelluForce, the world leader in the commercial development of NanoCrystaline Cellulose (NCC), announced that it will participate in the Bioplastek Forum 2012 being held March 28-30, 2012 at the Westin Arlington Gateway in Arlington, Virginia.

Dr. Wadood Hamad, Principal Scientist and expert in NCC, will present product development opportunities with NCC on March 29, 2012. The Forum will address the opportunity bioplastics represent in sustainability and environmental leadership for the chemical and materials industries, as well as the issues confronting the bioplastics value chain.

More specifically, Dr. Hamad’s session was titled, Advances in ‘New-to-the-World’ Bioplastics for Durables and concerns itself with making nanocellulose products economically attractive. From the 2012 BioPlatek Forum program page, here’s the session overview,

Most of the “new-to-the-world” bioplastics are more costly and have property shortcomings versus the petro-derived plastics they are attempting to replace. This session will examine what economically attractive modifications have been achieved for durable product applications.

You can find out more about CelluForce here.

Glass and cellulose nanocrystals at the University of British Columbia

I got a news release from the folks at the University of British Columbia (UBC) about nanocrystals of cellulose (I imagine this is a another of sayng nanocystalline cellulose, a topic I’ve posted about a number of times,  most recently in my Aug. 27, 2010 interview with Dr. Richard Berry of FPInnovations).

From the UBC news release,

Using nanocrystals of cellulose, the main component of pulp and paper, chemistry researchers at the University of British Columbia have created glass films that have applications for energy conservation in building design because of their ability to reflect specific wavelengths of light, such as ultra violet, visible or infrared.

These nanoporous films, described in a paper published in today’s [November 17, 2010] issue of Nature, may also be used in optical filters, sensors, or for molecule separation in the pharmaceutical industry.

“This is the first time that the unique, helical structure of cellulose has been replicated in a mineral,” says Mark MacLachlan, associate professor in the chemistry department at UBC and co-authour of the paper. “The films have many applications and we created them from an exciting new product derived from our wood processing industry right here in British Columbia.”

At the molecular level, the films have the helical structure of nanocrystalline cellulose, a building block of wood pulp, explains MacLachlan.

MacLachlan and PhD student Kevin Shopsowitz, post-doctoral fellow Hao Qi and Wadood Hamad of FPInnovations, stumbled upon this discovery while trying to create a hydrogen storage material. [emphasis mine]

The UBC researchers mixed the cellulose from the wood pulp with a silica, or glass, precursor and then burned away the cellulose. The resulting glass films are composed of pores, or holes, arranged in a helical structure that resembles a spiral staircase. Each hole is less than 1/10,000th of the diameter of a human hair.

“When Kevin showed me the films and they were red, blue, yellow and green, I knew we’d been able to maintain the helical structure found in the cellulose.”

“The helical organization we produced synthetically mimics the structure of the exoskeletons of some iridescent beetles,” says Shopsowitz.

The pores in the helix give the films a wide range of applications. When certain liquids are added to the film, the liquid gets trapped in the pores and changes the optical properties of the films.

“By functionalizing the pores to make them more selective to particular chemicals, we may be able to develop new sensors that are very sensitive for detecting substances in the environment,” says Shopsowitz.

To reduce the energy needed to cool buildings, windows could be treated with the transparent films that reflect infrared light – the light that heats up a building. Right now, metal particles are often used to do this but they tint the windows brown.

This research was done in partnership with FPInnovations, an organization dedicated to developing new products from the forest sector, and with funding from the Natural Sciences and Engineering Research Council of Canada.

I hope to hear about this soon as it feeds into my fascination with windows and, if I read this rightly, this discovery may lead to products that are both useful and aesthetically pleasing.