Tag Archives: Wales

Freezing transient events (frozen magnetic monopoles)

A Jan. 20, 2014 news item on Nanowerk highlights a new phase in laboratory physics (Note: A link has been removed),

Many of the most interesting things in nature – from spectacular lightning strikes to the subtlety of life itself – are transient, or far-from-equilibrium. To discover the secrets of far from equilibrium states, physicists need simple yet appealing laboratory systems. Now a researcher at the London Centre for Nanotechnology [UK] has collaborated with workers in Grenoble (France), Cardiff [Wales], Oxford [UK] and Kitakyushu (Japan), to create just such a system in the magnetic material known as “spin ice” (“Far-from-equilibrium monopole dynamics in spin ice”).

The Jan. 19 (?), 2014 (?) London Centre for Nanotechnology (LCN) research brief by Steve Bramwell, which originated the news item. explains ‘spin ice’ in greater detail and the trickery employed by the scientists’,

Spin ice is an unusual magnetic material in that it contains the magnetic equivalent of electrical charges – so called magnetic monopoles. It has attracted great interest on account of the currents of these charges forming a magnetic equivalent of electricity or “magnetricity”.

The number of magnetic monopoles in spin ice diminishes as the temperature goes down in much the same way as does the number of electrical charge carriers in semiconducting materials such as silicon – the basis of the electronics industry. The monopoles or charges disappear at low temperatures by positive and negative charges annihilating each other.

The researchers found a trick that used magnetic fields to create a hot “gas” of magnetic monopoles in very cold surroundings. The surroundings then sucked the heat out of the magnetic monopole gas, resulting in many magnetic monopoles trapped at a fraction of a degree above the absolute zero. The frozen monopoles no longer annihilated each other but instead could be made to flow by applying magnetic fields.

“Our low temperature experiments will tell us a lot about how magnetic monopoles move, as well as about the physics of far-from equilibrium systems in general” explains Prof. Steve Bramwell.

The researchers have provided this artist’s illustration of their work,

Figure: Artist’s impression of a hot gas of magnetic monopoles in very cold surroundings. Eventually the surroundings suck the heat out of the monopole gas leaving it frozen at low temperature. [downloaded from http://www.london-nano.com/research-and-facilities/highlight/frozen-magnetic-monopoles-create-new-laboratory-physics]

Figure: Artist’s impression of a hot gas of magnetic monopoles in very cold surroundings. Eventually the surroundings suck the heat out of the monopole gas leaving it frozen at low temperature. [downloaded from http://www.london-nano.com/research-and-facilities/highlight/frozen-magnetic-monopoles-create-new-laboratory-physics]

Here’s a link to and a citation for the paper,

Far-from-equilibrium monopole dynamics in spin ice by C. Paulsen, M. J. Jackson, E. Lhotel, B. Canals, D. Prabhakaran, K. Matsuhira, S. R. Giblin, & S. T. Bramwell. Nature Physics (2014) doi:10.1038/nphys2847 Published online 19 January 2014

This paper is behind a paywall with several payment options.

Toxicity, nanoparticles, soil, and Europe’s NANO-ECOTOXICITY Project

I have featured pieces on nanoparticles, toxicity, and soil in the past (this Aug. 15, 2011 posting about Duke University’s mesocosm project is probably the most relevant) but this study is the first one I’ve seen focusing on earthworms. From the Sept. 23, 2013 news item on Nanowerk (Note: A link has been removed),

From the clothes and make-up we wear to the electronic devices we use every day, nanotechnology is becoming ubiquitous. But while industry has mastered the production of such materials, little is known about their fate once their service life comes to an end. The NANO-ECOTOXICITY project looked into their impact on soil organisms.

The Sept. 23, 2013 CORDIS (European Commission Community Research and Development Information Service) news release, which originated the new item, offers a Q&A (Question and Answer) with the project research leader,

Dr Maria Diez-Ortiz, research leader of the NANO-ECOTOXICITY project, tells us about her research findings and how she expects them to help increase knowledge and shape tools allowing for standard environmental hazard and risk-assessment methodologies.

What is the background of the NANO-ECOTOXICITY project?

Nanotechnology is based on the idea that, by engineering the size and shape of materials at the scale of atoms, i.e. nanometres (nm), distinct optical, electronic, or magnetic properties can be tuned to produce novel properties of commercial value. However, there is an obvious concern that such novel properties may also lead to novel behaviour when interacting with biological organisms, and thus to potentially novel toxic effects.

Since nanoparticles (NPs) are similar in size to viruses, their uptake by and transport through tissues are based on mechanisms distinct from those of molecular uptake and transport. Therefore, there is concern that standard toxicological tests may not be applicable or reliable in relation to NPs, hence compromising current risk-assessment procedures.

The majority of research on nano-safety in the environment has so far focused on the aquatic environment. Current research on environmental fate, however, indicates that soils will become the biggest environmental sink for nanoparticles. Following their entry into liquid waste streams, nanoparticles will pass through wastewater-treatment. processes, ending up in waste sludge which may accumulate in the agricultural land where this sludge is often applied.

What are the main objectives of the project?

This project deals with the toxicokinetics – that is, the rate at which a chemical enters a body and affects it – of metal nanoparticles coming into contact with soil-dwelling organisms. The aim is to determine NPs’ fate and effects in terrestrial ecosystems by means of case studies with zinc oxide and silver NPs, which represent different fate kinetics.

The project’s main objectives are to assess the toxicity of metal nanoparticles in soils in the short and long term; the main route of exposure for earthworms and whether it differs from those of ionic metals; and, finally, the influence of the exposure media on metal nanoparticle toxicity.

What is new or innovative about the project and the way it is addressing these issues?

We have been running a long-term study where soils with AgNP [silver nanoparticles] were stored and left to age for up to a year; their toxicity was tested at the start and after three, seven and 12 months of ageing. The results showed that silver toxicity increased over time, meaning that short-term standard toxicity tests may underestimate the environmental risk of silver nanoparticles.

In parallel, we found that organisms exposed to silver nanoparticles in short-term studies accumulated higher silver concentrations than organisms that were exposed to the same mass concentration of ionic silver. However, these NP exposed organisms actually suffered lower toxic effects. This observation contradicts the prevailing assumption in toxicology that the internalised concentration is directly related to chemical concentration at the target site and hence to its toxicity. This observation creates a new paradigm for nano-ecotoxicology.

What is not yet known is whether the accumulated NP metal may in the longer-term ultimately become toxic (e.g. through dissolution and ion release) in cells and tissues where AgNPs may be stored. Should this occur, the high concentrations accumulated may ultimately result in greater long-term toxicity for NPs than for ionic forms. This may reveal these accumulated NPs as internalised ‘time bombs’ relevant to long-term effects and toxicity.

However, it has to be borne in mind that the redicted environmental concentrations resulting from current use of nanoparticles (e.g. results from EU projects like NANOFATE2) are many times smaller than those used in these studies, meaning that such accumulations of nanoparticle-related silver are unlikely to occur in the environment or, ultimately, in humans.

What difficulties did you encounter and how did you solve them?

The main problems encountered relate to the tracking of nanoparticles inside the tissues and soils, as both are complex matrices. The analysis of the particles is a challenge in itself, even when in water, but to get information about their state in these matrices often requires unrealistic exposure concentrations (due to low detection limits of the highly specialised techniques used for analysis) or extraction of the particles from the matrices, which could potentially change the state of the particles.

In this project, I travelled to University of Kentucky to work with Jason Unrine and used gentle water-based extractions of soil samples immediately before analysing them using ‘Field-flow fractionation’ and ‘Inductively coupled plasma mass spectrometry’ to identify the state of nanoparticles in my aged soils.

To look at what form (speciation) of silver and zinc from the nanoparticle exposures could be found inside worms I collaborated with NANOFATE researchers at Cardiff University who fixed and thinly sectioned the worm tissues. I was lucky to be given the time to use specialist facilities like the UK’s Diamond Light Source synchrotron to investigate where and in what form the metals and potential nanoparticles could be found in these tissues.

The main challenge is that as soon as you take nanoparticles out of the manufacturers’ bottle they start changing, particularly when put into environments likes natural soils and waters, or even organisms. Therefore a lot of characterisation is needed during exposure to establish the state of the nanoparticles the organisms have been exposed to and how fast they are changing from pristine particles to dissolved ions, or particles with completely different surfaces.

Technical solutions to characterisation have been found during this short project, but this will remain a logistical challenge for many years to come as the analysis equipment is still very specialised and expensive and therefore not generally available.

What are the concrete results from the research so far?

The project has helped us draw various conclusions regarding the impact of NPs on the environment and how to assess them. First, we now know that soil acidity, or pH, influences the dissolution and toxicity of ZnO nanoparticles [zinc oxide].

Then, we found that toxicity of silver nanoparticles’ increases over time and that the particles’ coating affects their toxicity to soil invertebrates.

As previously mentioned, earthworms exposed to silver nanoparticles for 28 days accumulated higher silver concentrations than earthworms exposed to silver ions, without the excess silver from the nanoparticles having a toxic effect. [emphasis mine] Moreover, soil ingestion was identified as the main route of exposure to AgNP and ZnONP in earthworms.

How can industry and decision-makers ensure that nanomaterials do not impact our environment?

We hope that this project, and the larger EU project NANOFATE to which it is linked, will provide knowledge and tools enabling standard environmental-hazard and risk-assessment methodologies to be applied to engineered nanoparticles (ENPs) with just a few judicious modifications. The current systems and protocols for chemical risk assessment have been developed over decades, and where no novel toxic mechanisms exist, our results tend to say that nano fits in as long as we measure the right things and characterise realistic exposures properly.

Our research aims to determine the minimum methodological tweaks needed. So far everything indicates that the potential benefits from nanotechnology can be realised and managed safely alongside other chemicals. While we are fairly confident at this stage that ENPs impose no greater acute effects on important biological parameters – like reproduction – than their ionic forms, the NANO-ECOTOXICITY results demonstrate that we have some way to go before we can state loud and clear that we do not believe there is any novel low-level or long-term effect.

As for all chemicals, proving such a negative is impossible using short-term tests. We think the final conclusions by industry and regulators on safe use of nanoparticles should and will have to be made according to a ‘weight of evidence’ approach – proving there is a gap between predicted likely exposure levels and those levels seen to cause any effects or accumulations within ecosystem species.

What are the next topics for your research?

This project has finished but the next step for any other funding opportunity would be to address increasingly environmentally relevant exposure scenarios by analysing how nanoparticles modify in the environment and interact with living tissues and organisms at different trophic levels. I would like to investigate nanoparticle transformation and interactions in living tissues. To date, the studies that have identified this ‘excess’ accumulation of non-toxic metal loads in nanoparticleexposed organisms have only been short term.

Apart from the obviously increased food-chain transfer potential, is also not known whether, over the longer term, the accumulated NP-derived metal ultimately becomes toxic when present in tissues and cells. Such transformation and release of metal ions within tissues may ultimately result in greater longterm toxicity for NPs than for ionic forms.

Furthermore, I want to test exposures in a functioning model ecosystem including interspecific interactions and trophic transfer. Since interactions between biota and nanoparticles are relevant in natural soil systems, caution is needed when attempting to predict the ecological consequences of nanoparticles based on laboratory assays conducted with only a single species. In the presence of the full complement of biological components of soil systems, complex NPs may follow a range of pathways in which coatings may be removed and replaced with exudate materials. Studies to quantify the nature of these interactions are therefore needed to identify the fate, bioavailability and toxicity of realistic ‘non-pristine’ forms of NPs present in real soil environments.

New to me was the material about ageing silver nanoparticles and their increased toxicity over time. While this is an interesting piece of information it’s not necessarily all that useful. It seems even with their increased uptake compared to silver ions, silver nanoparticles (Diez-Ortiz doesn’t indicate whether or not * they tested variously aged silver nanoparticles) did not have toxic effects on the earthworms tested.

The NANO-ECOTOXICITY website doesn’t appear to exist anymore but you can find the NANOFATE (Nanoparticle Fate Assessment and Toxicity in the Environment) website here.

* ‘not’ removed to clarify meaning, Oct. 9, 2013. (Note: I had on Oct. 8, 2013 removed ‘not’ in a second place from the sentence in an attempt t o clarify the meaning and ended up not making any sense at all.) Please read Maria Diez-Ortiz in the Comments, as she clarifies matters in a way I could never hope to.

If vat-grown burgers are here, what are the social implications?

The Jan. 17, 2013 news item on Nanowerk about Dr. Neil Stephens and his research into the social implications of vat-grown (aka, in vitro meat) poses some interesting questions,

he [sic] world’s first laboratory-grown hamburger has been produced by Professor Mark Post and his team in Maastricht, representing something radically new in our world. Dr Neil Stephens, Research Associate at Cesagen (Cardiff School of Social Sciences), has been researching the social and ethical issues of this technology and what this innovation in stem cell science might mean for us in 2013.

Will we be eating burgers made in test-tubes in the near future? That is probably unlikely considering Professor Post’s burger costs around £200,000 to produce.

The University of Cardiff Jan. 16, 2013 news release,which originated the news item, goes on to explain why Stephens is conducting this investigation,

However, the benefits this new technology can deliver – according to the scientists – include slaughter-free meat that is healthier and free from animal to human disease. The meat could also be grown during space travel and could have a much smaller environmental impact than today’s whole-animal reared meat. But it is not yet clear if any of these can be delivered in a marketable form.

Since 2008, Dr Stephens has been investigating these ‘social promises’ by interviewing most of the scientists across the world who are involved in this project. He looks to understand how this community of scientists came together and what strategies they use to justify the promises they make.

Professor Mark Post’s work at the University of Maastricht (Holland) was covered extensively last year when it was presented at the 2012 AAAS (American Ass0ciation for the Advancement of Science) meeting in Vancouver. This Feb. 19, 2012 article by Pallab Ghosh for BBC (British Broadcasting Corporation) online highlights some of the discussion which took place then,

Dutch scientists have used stem cells to create strips of muscle tissue with the aim of producing the first lab-grown hamburger later this year.

The aim of the research is to develop a more efficient way of producing meat than rearing animals.

Professor Post’s group at Maastricht University in the Netherlands has grown small pieces of muscle about 2cm long, 1cm wide and about a mm thick.

They are off-white and resemble strips of calamari in appearance. These strips will be mixed with blood and artificially grown fat to produce a hamburger by the autumn [2012].

…Some estimate that food production will have to double within the next 50 years to meet the requirements of a growing population. During this period, climate change, water shortages and greater urbanisation will make it more difficult to produce food.

Prof Sean Smukler from the University of British Columbia said keeping pace with demand for meat from Asia and Africa will be particularly hard as demand from these regions will shoot up as living standards rise. He thinks that lab grown meat could be a good solution.

But David Steele, who is president of Earthsave Canada, said that the same benefits could be achieved if people ate less meat.

“While I do think that there are definite environmental and animal welfare advantages of this high-tech approach over factory farming, especially, it is pretty clear to me that plant-based alternatives… have substantial environmental and probably animal welfare advantages over synthetic meat,” he said.

Dr Steele, who is also a molecular biologist, said he was also concerned that unhealthily high levels of antibiotics and antifungal chemicals would be needed to stop the synthetic meat from rotting.

There doesn’t seem to be any more recent news about vat-grown meat from Post’s team at the University of Maastricht; the interest in Stephens’ sociological work on the topic seems to have been stimulated by his inclusion in the UK’s Economic and Social Research Council’s (ESRC) annual publication, (Britain in magazine) Britain in 2013.

Here’s more about Stephens’ and his sociological inquiry,

Agitation about nanotechnology from Wales (the country, not the prince)

David Williamson’s June 6,2012 article on the Wales Online website features a very provocative opinion about the UK and its nanotechnology efforts,

THE UK Government has failed to grasp the multi-billion-pound potential of nanotechnology and has not acted to protect us from its potential risks, a Cardiff University expert has warned.

Steven Vaughan, who teaches at the university’s law school, gave a scathing account of the Westminster Government’s approach to the field of micro-engineering. [emphasis mine]

In a lecture at the literary festival at Hay-on-Wye he claimed it had failed to capture commercial opportunities and had not put in place regulations to ensure public safety.

I was a bit surprised to see that this lecture took place at a literary festival. The connection was not immediately apparent to me but I see that the festival ( Imagine the World, May 31 – June 10, 2012) is celebrating its 25th anniversary with a “stunning programme of international writers and thinkers.” I went on to look at the festival’s programme categories and found this,

  • Art & Design
  • Business
  • Children
  • Classics
  • Comedy
  • Entertainment
  • Family
  • Film
  • Food
  • Green & Nature
  • History
  • Literature
  • Medicine
  • Music
  • Performance
  • Poetry
  • Politics
  • Science
  • Stage & Screen
  • Thinking and
  • World Affairs

I hope Vancouver’s (Canada) Writers & Readers Festival takes a leaf out of this book (pun intended).

Given his comments, I was a little curious about Stephen Vaughan and found his Cardiff University webpage,

Steven Vaughan holds a first class bachelors degree in Jurisprudence from Oxford University, where he studied at Corpus Christi College. On completion of his Legal Practice Course diploma, Steven joined Freshfields Bruckhaus Deringer where he qualified as a solicitor in August 2005 into the firm’s Environment, Planning and Regulatory team. There, his practice focused on the provision of environmental law advice in the context of multinational mergers and acquisitions, project financings and real estate matters. In the summer of 2006, Steven joined the London office of Latham & Watkins LLP as an attorney in their Environment, Land and Resources group. He has represented clients in the renewable energy, paper, waste and manufacturing sectors as well as numerous private equity and other financial institutions.

Having completed a MSc in Research Methods at Cardiff University in 2007 – 2008, Steven is currently undertaking a PhD with Professor Robert Lee of Cardiff Law School, looking at EU chemicals law and the Regulation commonly known as REACH.

Steven teaches on the Company Law undergraduate module at Cardiff Law School and lectures Environmental Law at undergraduate and postgraduate levels in the School of Earth Sciences, the School of Engineering and the School of City and Regional Planning, all at Cardiff University. He also lectures on planning law, banking law and project finance law.

It looks to me as if Vaughan has a grand total of two years work experience while spending the better of his adult life as a student. I did look up the event description for Vaughan’s talk and I’m not sure, given the information on his university webpage, how Vaughan qualifies as an expert on nanotechnology or any other emerging technology while the reference to micro-engineering in the context of a lecture on nanotechnology, as per Williamson’s article, seems a bit odd.