Tag Archives: water-repellent

Material that sheds like a snake when it’s damaged

Truly water-repellent materials are on the horizon. Or, they would be if one tiny problem was solved. According to a May  3, 2017 news item on ScienceDaily, scientists may have come up with that solution,

Imagine a raincoat that heals a scratch by shedding the part of the outer layer that’s damaged. To create such a material, scientists have turned to nature for inspiration. They report in ACS’ journal Langmuir a water-repellant material that molts like a snake’s skin when damaged to reveal another hydrophobic [water-repellent] layer beneath it.

A May 3, 2017 American Chemical Society (ACS) press release (also on EurekAlert), which originated the news item, expands on the theme,

Lotus leaves, water striders and other superhydrophobic examples from nature have inspired scientists to copy their water-repelling architecture to develop new materials. Such materials are often made by coating a substrate with nanostructures, which can be shored up by adding microstructures to the mix. Superhydrophobic surfaces could be useful in a range of applications including rain gear, medical instruments and self-cleaning car windows. But most of the prototypes so far haven’t been strong enough to stand up to damage by sharp objects. To address this shortcoming, Jürgen Rühe and colleagues again found a potential solution in nature — in snake and lizard skins.

The researchers stacked three layers to create their material: a water-repellant film made with poly-1H,1H,2H,2H-perfluorodecyl acrylate (PFA) “nanograss” on the top, a water-soluble polymer in the middle and a superhydrophobic silicon nanograss film on the bottom. Nanograss consists of tiny needle-like projections sticking straight up. The team scratched the coating and submerged the material in water, which then seeped into the cut and dissolved the polymer. The top layer then peeled off like molted skin and floated away, exposing the bottom, water-repellant film. Although further work is needed to strengthen the top coating so that a scratch won’t be able to penetrate all three layers, the researchers say it offers a new approach to creating self-cleaning and water-repellant materials.

The authors acknowledge support from the German Federal Ministry of Education and Research (BMBF) and VDI/VDE/IT GmbH through project NanoTau.

Here’s a video demonstrating the concept,

Published on May 2, 2017

Scientists turn to snakes and lizards for inspiration to create a new material that sheds its outer layer when scratched.

Finally, a link to and a citation for the paper,

Molting Materials: Restoring Superhydrophobicity after Severe Damage via Snakeskin-like Shedding by Roland Hönes, Vitaliy Kondrashov, and Jürgen Rühe. Langmuir, Article ASAP DOI: 10.1021/acs.langmuir.7b00814 Publication Date (Web): April 14, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

Glasswing butterflies teach us about reflection

Contrary to other transparent surfaces, the wings of the glasswing butterfly (Greta Oto) hardly reflect any light. Lenses or displays of mobiles might profit from the investigation of this phenomenon. (Photo: Radwanul Hasan Siddique, KIT)

Contrary to other transparent surfaces, the wings of the glasswing butterfly (Greta Oto) hardly reflect any light. Lenses or displays of mobiles might profit from the investigation of this phenomenon. (Photo: Radwanul Hasan Siddique, KIT)

I wouldn’t have really believed. Other than glass, I’ve never seen anything in nature that’s as transparent and distortion-free as this butterfly’s wings.

An April 22, 2015 news item on ScienceDaily provides more information about the butterfly,

The effect is known from the smart phone: Sun is reflected by the display and hardly anything can be seen. In contrast to this, the glasswing butterfly hardly reflects any light in spite of its transparent wings. As a result, it is difficult for predatory birds to track the butterfly during the flight. Researchers of KIT under the direction of Hendrik Hölscher found that irregular nanostructures on the surface of the butterfly wing cause the low reflection. In theoretical experiments, they succeeded in reproducing the effect that opens up fascinating application options, e.g. for displays of mobile phones or laptops.

An April 22, 2015 Karlsruhe Institute of Technology (KIT) press release (also on EurekAlert), which originated the news item, explains the scientific interest,

Transparent materials such as glass, always reflect part of the incident light. Some animals with transparent surfaces, such as the moth with its eyes, succeed in keeping the reflections small, but only when the view angle is vertical to the surface. The wings of the glasswing butterfly that lives mainly in Central America, however, also have a very low reflection when looking onto them under higher angles. Depending on the view angle, specular reflection varies between two and five percent. For comparison: As a function of the view angle, a flat glass plane reflects between eight and 100 percent, i.e. reflection exceeds that of the butterfly wing by several factors. Interestingly, the butterfly wing does not only exhibit a low reflection of the light spectrum visible to humans, but also suppresses the infrared and ultraviolet radiation that can be perceived by animals. This is important to the survival of the butterfly.

For research into this so far unstudied phenomenon, the scientists examined glasswings by scanning electron microscopy. Earlier studies revealed that regular pillar-like nanostructures are responsible for the low reflections of other animals. The scientists now also found nanopillars on the butterfly wings. In contrast to previous findings, however, they are arranged irregularly and feature a random height. Typical height of the pillars varies between 400 and 600 nanometers, the distance of the pillars ranges between 100 and 140 nanometers. This corresponds to about one thousandth of a human hair.

In simulations, the researchers mathematically modeled this irregularity of the nanopillars in height and arrangement. They found that the calculated reflected amount of light exactly corresponds to the observed amount at variable view angles. In this way, they proved that the low reflection at variable view angles is caused by this irregularity of the nanopillars. Hölscher’s doctoral student Radwanul Hasan Siddique, who discovered this effect, considers the glasswing butterfly a fascinating animal: “Not only optically with its transparent wings, but also scientifically. In contrast to other natural phenomena, where regularity is of top priority, the glasswing butterfly uses an apparent chaos to reach effects that are also fascinating for us humans.”

The findings open up a range of applications wherever low-reflection surfaces are needed, for lenses or displays of mobile phones, for instance. Apart from theoretical studies of the phenomenon, the infrastructure of the Institute of Microstructure Technology also allows for practical implementation. First application tests are in the conception phase at the moment. Prototype experiments, however, already revealed that this type of surface coating also has a water-repellent and self-cleaning effect.

Here’s a link to and a citation for the paper,

The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly by Radwanul Hasan Siddique, Guillaume Gomard, & Hendrik Hölscher. Nature Communications 6, Article number: 6909 doi:10.1038/ncomms7909 Published 22 April 2015

The paper is behind a paywall but there is a free preview via ReadCube Access.