Tag Archives: wearable computing

From flubber to thubber

Flubber (flying rubber) is an imaginary material that provided a plot point for two Disney science fiction comedies, The Absent-Minded Professor in 1961 which was remade in 1997 as Flubber. By contrast, ‘thubber’ (thermally conductive rubber) is a real life new material developed at Carnegie Mellon University (US).

A Feb. 13, 2017 news item on phys.org makes the announcement (Note: A link has been removed),

Carmel Majidi and Jonathan Malen of Carnegie Mellon University have developed a thermally conductive rubber material that represents a breakthrough for creating soft, stretchable machines and electronics. The findings were published in Proceedings of the National Academy of Sciences this week.

The new material, nicknamed “thubber,” is an electrically insulating composite that exhibits an unprecedented combination of metal-like thermal conductivity, elasticity similar to soft, biological tissue, and can stretch over six times its initial length.

A Feb.13, 2017 Carnegie Mellon University news release (also on EurekAlert), which originated the news item, provides more detail (Note A link has been removed),

“Our combination of high thermal conductivity and elasticity is especially critical for rapid heat dissipation in applications such as wearable computing and soft robotics, which require mechanical compliance and stretchable functionality,” said Majidi, an associate professor of mechanical engineering.

Applications could extend to industries like athletic wear and sports medicine—think of lighted clothing for runners and heated garments for injury therapy. Advanced manufacturing, energy, and transportation are other areas where stretchable electronic material could have an impact.

“Until now, high power devices have had to be affixed to rigid, inflexible mounts that were the only technology able to dissipate heat efficiently,” said Malen, an associate professor of mechanical engineering. “Now, we can create stretchable mounts for LED lights or computer processors that enable high performance without overheating in applications that demand flexibility, such as light-up fabrics and iPads that fold into your wallet.”

The key ingredient in “thubber” is a suspension of non-toxic, liquid metal microdroplets. The liquid state allows the metal to deform with the surrounding rubber at room temperature. When the rubber is pre-stretched, the droplets form elongated pathways that are efficient for heat travel. Despite the amount of metal, the material is also electrically insulating.

To demonstrate these findings, the team mounted an LED light onto a strip of the material to create a safety lamp worn around a jogger’s leg. The “thubber” dissipated the heat from the LED, which would have otherwise burned the jogger. The researchers also created a soft robotic fish that swims with a “thubber” tail, without using conventional motors or gears.

“As the field of flexible electronics grows, there will be a greater need for materials like ours,” said Majidi. “We can also see it used for artificial muscles that power bio-inspired robots.”

Majidi and Malen acknowledge the efforts of lead authors Michael Bartlett, Navid Kazem, and Matthew Powell-Palm in performing this multidisciplinary work. They also acknowledge funding from the Air Force, NASA, and the Army Research Office.

Here’s a link to and a citation for the paper,

High thermal conductivity in soft elastomers with elongated liquid metal inclusions by Michael D. Bartlett, Navid Kazem, Matthew J. Powell-Palm, Xiaonan Huang, Wenhuan Sun, Jonathan A. Malen, and Carmel Majidi.  Proceedings of the National Academy of Sciences of the United States of America (PNAS, Proceedings of the National Academy of Sciences) doi: 10.1073/pnas.1616377114

This paper is open access.

‘Silverized’ clothing and wearable electronics

A July 30, 2013 news item on ScienceDaily features a technique for printing silver directly onto fibres,

Scientists at the National Physical Laboratory (NPL), the UK’s National Measurement Institute, have developed a way to print silver directly onto fibres. This new technique could make integrating electronics into all types of clothing simple and practical. This has many potential applications in sports, health, medicine, consumer electronics and fashion.

Most current plans for wearable electronics require weaving conductive materials into fabrics, which offer limited flexibility and can only be achieved when integrated into the design of the clothing from the start. [emphasis mine] NPL’s technique could allow lightweight circuits to be printed directly onto complete garments.

The July 30, 2013 National Physical Laboratory news release on EurekAlert, which originated the news item, provides a little more detail,

Silver coated fibres created using this technique are flexible and stretchable, meaning circuits can be easily printed onto many different types of fabric, including wool which is knitted in tight loops.

The technique involves chemically bonding a nano‐silver layer onto individual fibres to a thickness of 20 nm. The conductive silver layer fully encapsulates fibres and has good adhesion and excellent conductivity.

The researchers don’t appear to have published a paper but there is a bit more information on the NPL’s Smart Textiles webpage,

At NPL the Electronics Interconnection group has developed a new method to produce conductive textiles. This new technique could make integrating electronics into all types of clothing simple and practical by enabling lightweight circuits to be printed directly onto complete garments.

The nano silver material is chemically bonded to the fabric, encapsulating the fibres and providing full coverage. The resulting textile demonstrates good adhesion, flexibility and is stretchable achieving excellent resistivity of 0.2 Ω/sq.

My May 9, 2012 posting concerns a project where batteries were being woven into textiles for the US military.

Nanotechnology-enabled fashion at Cornell University

The image you see below is one of several featuring work from Cornell University’s Textiles Nanotechnology Laboratory,

Wearable Charging StationCredit: Textiles Nanotechnology Laboratory/Cornell UniversityAbbey Liebman, a design student at Cornell University in Ithaca, N.Y., created a dress made with conductive cotton that can charge an iPhone via solar panels.

Wearable Charging StationCredit: Textiles Nanotechnology Laboratory/Cornell University. Abbey Liebman, a design student at Cornell University in Ithaca, N.Y., created a dress made with conductive cotton that can charge an iPhone via solar panels.

It’s part of a May 7, 2013 slide show put together by Denise Chow at the LiveScience website. Also shown in the slide show are Olivia Ong’s anti-bacterial clothing (featured here in an Aug. 5, 2011 posting) and some anti-malarial clothing by Matilda Ceesay (featured here in a May 15, 2012 posting). I have more details about the textiles and the work but the pictures on LiveScience are better.

As I’ve not come across LiveScience before ,my curiosity was piqued and to satisfy it, I found this on their About page,

LiveScience, launched in 2004, is the trusted and provocative source for highly accessible science, health and technology news for people who are curious about their minds, bodies, and the world around them. Our team of experienced science reporters, editors and video producers explore the latest discoveries, trends and myths, interviewing expert sources and offering up deep and broad analyses of topics that affect peoples’ lives in meaningful ways. LiveScience articles are regularly featured on the web sites of our media partners: MSNBC.com, Yahoo!, the Christian Science Monitor and others.

Most of the science on LiveScience is ‘bite-sized’ and provides information for people who are busy and/or don’t want much detail.

Getting intimate with your smart clothing at Concordia University (Canada)

The Karma Chameleon project at Concordia University is an investigation into ‘smart’ clothing that goes beyond the ‘how to’ and also asks how would we feel about clothing than can transform itself without our volition. An Apr. 16, 2013 news item on ScienceDaily highlights the project and its lead researcher, Joanna Berkowska,

Joanna Berzowska, professor and chair of the Department of Design and Computation Arts at Concordia, has developed interactive electronic fabrics that harness power directly from the human body, store that energy, and then use it to change the garments’ visual properties.

“Our goal is to create garments that can transform in complex and surprising ways — far beyond reversible jackets, or shirts that change colour in response to heat. That’s why the project is called Karma Chameleon,” says Berzowska.

The Apr. 15, 2013 Concordia University news release by Emily Essert, which originated the news item, describes the unique technical aspect of this work,

The major innovation of this research project is the ability to embed these electronic or computer functions within the fibre itself: rather than being attached to the textile, the necessary electronic components are woven into these new composite fibres. The fibres consist of multiple layers of polymers, which, when stretched and drawn out to a small diameter, begin to interact with each other. The fabric, produced in collaboration with the École Polytechnique de Montréal’s Maksim Skorobogatiy, represent a significant advance in the development of “smart textiles.”

Although it’s not yet possible to manufacture clothing with the new composite fibres, Berzowska worked with fashion designers to create conceptual prototypes that can help us visualize how such clothing might look and behave. Imagine a dress that changes shape and colour on its own, or a shirt that can capture the energy from human movement and use it to charge an iPhone

According to Berzowska, it will be two to three decades before we see this clothing in the stores but in the meantime she’s also investigating the social impact (from the Concordia news release),

There would also be a performative aspect to wearing such garments, whose dramatic transformations may or may not be controlled by the wearer. This research raises interesting questions about human agency relative to fashion and computers. What would it mean to wear a piece of clothing with “a mind of its own,” that cannot be consciously controlled? How much intimate contact with computers do we really want?

Apparently, there will be a show at Montréal’s PHi Centre in either 2o13 or 2014, Unfortunately the centre does not list any events planned after June 2013.

The project title, Karma Chameleon gives me an excuse to feature Boy George’s identically titled hit song,

I’d never seen the video before and it was a revelation. Tip: Do not pickpocket jewellery or cheat at cards; Karma will get you.

Canada Foundation for Innovation “World’s Best”?; Ping hoodie, clothing that networks socially; life protection clothing; getting spiders to weave building materials?; open access archive for nano papers

The headline for the news release on Marketwire (via the Canadian Science Policy site) is: Canada Foundation for Innovation(CFI) Practices is Called ‘World’s Best’. As it’s been a bit slow for news here I began wondering ‘which practices in which countries are being compared’? After reviewing the reports quickly, I can’t answer the question. There are no bibliographies in any of the three reports related to this KPMG study while the footnotes make reference only to other KPMG and Canadian studies. It was a bit of surprise, I was expecting to see reports from other countries and/or from international organizations and some insight into their analysis as comparing agencies in different countries can be complicated.

I’m not sure how they arrived at their conclusion although they provide some interesting data. From the Overall Evaluation report (p. 28 PDF, p. 24 print),

Exhibit [Table] 4.16 shows that, on average, there have been about 6.4 collaborations with end-users per PL/PU in the past year, three-quarters of which used the CFI projects as key resources, and about 10.2 collaborations per Department Head, about 70% of which using CFI projects in a significant way. For PLs/PUs, there are only small differences in use of CFI projects as a key resource by type of end-user, but Department Heads show more variation in the use of CFI project by type of user; it is unknown if this is significant.

Note that 64% of PL/PUs’ and 80% of Department Heads’ end-user collaborations, respectively, are with Canadian organizations; there is a significant international component (with OMS data suggesting that the CFI projects are a significant attractor for international organizations to collaborate [emphasis mine]).

It certainly seems laudable although I question whether you can conclude that the CFI is a significant international organization attractor by inference alone. Shouldn’t this be backed up with another instrument, such as a questionnaire for a survey/poll of the international organizations, asking why they are collaborating with Canadian scientists? I was not able to find any mention of such a survey or poll taking place.

From everything I hear, Canadians are excellent at academic science research and attracting researchers from around the world and because of our penchant for collaboration we (as they say) “punch above our weight.” I just wish this report did a better job of providing evidence for its assertions about the CFI’s ‘best practices’.

Ping hoodie

Thanks to Adrian Covert’s article on Fast Company, I found information about a prototype for a piece of wearable computing, the Ping hoodie. From Covert’s article,

The Ping clothing concept makes use of embedded electronics and haptics controlled by the Arduino Lilypad system, which transmits to your device (most likely a smartphone) using the Lylipad Xbee. This tech serves as the core interface between you and the information you need. If someone special is sending you a call or text, you can set the hoodie to vibrate in a specific manner, letting you know it’s them. Actions as simple as lifting or dropping the hood can be used to send status updates and messages on Facebook, with the potential to target certain groups of friends.

There’s more at Fast Company or you can check out electricfoxy where the designer, Jennifer Darmour has her site which is where I found this image,

Ping hoodie (wearable computing) designed by Jennifer Darmour at electricfoxy

Do go to Darmour’s site (although Fast Company offers a pretty good selection) if you want to see all the images including close ups of the fabric (don’t forget to scroll horizontally as well as vertically).

Clothing that protects your life

P2i, a company I’ve mentioned here before, has announced a ‘new’ revolutionary form of protective clothing. Actually, it sounds like an improvement rather than a revolutionary concept but maybe I’m getting jaded. From the news item on Nanowerk,

A revolutionary new generation of high-performance body armour, launched today, is lighter, more comfortable and more protective than any previous design, thanks to P2i’s liquid-repellent nano-coating technology.

The new G Tech Vest is a joint development between two world-class UK companies with very strong credentials for the life protection market: P2i, whose technology was originally developed to make soldiers’ protective clothing more effective against chemical attack; and Global Armour, which has been at the leading edge of product innovation in the armour industry for over 30 years.

The G Tech Vest employs brand-new lightweight materials, both in the physical armour itself (a closely-guarded trade secret) and the fabric that forms the armour into a garment. P2i’s technology reduces weight by avoiding the need for bulky durable water repellents and increases comfort by preserving the natural airflow and drape of the garment material.

I recently (April 15, 2010) made a comment about how modern soldiers are beginning to resemble medieval knights and this talk of armour certainly reinforces the impression.

Spiders weaving building materials?

Michael Berger at Nanowerk has written an in-depth article about spider silk and its possible application, amongst others, as a building material. He’s interviewed one of the authors (Markus J. Buehler) of a recent paper that lays out “… a framework for predicting the nanostructure of spider silk using atomistic principles.” More from the Spotlight article on Nanowerk,

In a paper published as the cover article in Applied Physics Letters on April 12, 2010 (“Atomistic model of the spider silk nanostructure”), [Sinan] Keten and Buehler demonstrate an innovative application of replica exchange molecular dynamics simulations on a key spider silk repeating sequence, resulting in the first atomistic level structure of spider silk.

More specifically, the MIT researchers found the formation of beta-sheet structures in poly-Ala rich parts of the structure, the presence of semi-extended GGX domains that form H-bonded 31 helix type structures and a complete lack of alpha-helical conformations in the molecular structures formed by the self-assembly of MaSp1 proteins. These results resolve controversies around the structure of the amorphous domains in silk, by illustrating for the first time that these semi-extended, well-oriented and more sparsely H-bonded structures that resemble 31 helices could be the molecular source of the large semi-crystalline fraction of silks and the so-called ‘pre-stretched’ configuration proposed for these domains.

Shy of reading the original research, which I likely wouldn’t understand easily, Berger’s article provides an excellent entry into the subject.

Open access archive for nano papers

My final item for today is about a project to give free access to papers on nanotechnology that they host and/or publish.  Hooray! It’s very frustrating to get stuck behind paywalls so I’m thrilled that there’s an agency offering free access. From the news item on Nanowerk,

The Nano Archive, the online open-access repository for nanoscience and nanotechnology, invites you to submit research papers to be published free online for users across the globe.

Submitted papers can include peer-reviewed articles, journal articles, review articles, conference and workshop papers, theses and dissertations, book chapters and sections, as well as multimedia and audio-visual materials. The Nano Archive also welcomes new, unpublished research results to be shared with the wider community.

The Nano Archive is part of the ICPC NanoNet project, funded by the EU under FP7. It brings together partners from the EU, Russia, India, China and Africa, and provides wider access to published nanoscience research and opportunities for collaboration between scientists in the EU and International Cooperation Partner Countries.

The Nano Archive currently hosts over 6000 papers. You can read more about the sponsoring agency, the ICPC (International Cooperation Partner Countries) NanoNet here. It has funding for four years and was started in 2008.