Tag Archives: William M. Shih

DNA (deoxyribonucleic acid) scaffolding for nonbiological construction

DNA (deoxyribonucleic acid) is being exploited in ways that would have seemed unimaginable to me when I was in high school. Earlier today (June 3, 2015), I ran a piece about DNA and data storage as imagined in an art/science project (DNA (deoxyribonucleic acid), music, and data storage) and now I have this work from the US Department of Energy’s (DOE) Brookhaven National Laboratory, from a June 1, 2015 news item on Nanowerk,

You’re probably familiar with the role of DNA as the blueprint for making every protein on the planet and passing genetic information from one generation to the next. But researchers at Brookhaven Lab’s Center for Functional Nanomaterials have shown that the twisted ladder molecule made of complementary matching strands can also perform a number of decidedly non-biological construction jobs: serving as a scaffold and programmable “glue” for linking up nanoparticles. This work has resulted in a variety of nanoparticle assemblies, including composite structures with switchable phases whose optical, magnetic, or other properties might be put to use in dynamic energy-harvesting or responsive optical materials. Three recent studies showcase different strategies for using synthetic strands of this versatile building material to link and arrange different types of nanoparticles in predictable ways.

The researchers have provided an image of the DNA building blocks,

Controlling the self-assembly of nanoparticles into superlattices is an important approach to build functional materials. The Brookhaven team used nanosized building blocks—cubes or octahedrons—decorated with DNA tethers to coordinate the assembly of spherical nanoparticles coated with complementary DNA strands.

Controlling the self-assembly of nanoparticles into superlattices is an important approach to build functional materials. The Brookhaven team used nanosized building blocks—cubes or octahedrons—decorated with DNA tethers to coordinate the assembly of spherical nanoparticles coated with complementary DNA strands.

A June 1, 2015 article (which originated the news item) in DOE Pulse Number 440 goes on to highlight three recent DNA papers published by researchers at Brookhaven National Laboratory,

The first [leads to a news release], published in Nature Communications, describes how scientists used the shape of nanoscale building blocks decorated with single strands of DNA to orchestrate the arrangement of spheres decorated with complementary strands (where bases on the two strands pair up according to the rules of DNA binding, A to T, G to C). For example, nano-cubes coated with DNA tethers on all six sides formed regular arrays of cubes surrounded by six nano-spheres. The attractive force of the DNA “glue” keeps these two dissimilar objects from self-separating to give scientists a reliable way to assemble composite materials in which the synergistic properties of different types of nanoparticles might be put to use.

In another study [leads to a news release], published in Nature Nanotechnology, the team used ropelike configurations of the DNA double helix to form a rigid geometrical framework, and added dangling pieces of single-stranded DNA to glue nanoparticles in place on the vertices of the scaffold. Controlling the code of the dangling strands and adding complementary strands to the nanoparticles gives scientists precision control over particle placement. These arrays of nanoparticles with predictable geometric configurations are somewhat analogous to molecules made of atoms, and can even be linked end-to-end to form polymer-like chains, or arrayed as flat sheets. Using this approach, the scientists can potentially orchestrate the arrangements of different types of nanoparticles to design materials that regulate energy flow, rotate light, or deliver biomolecules.

“We may be able to design materials that mimic nature’s machinery to harvest solar energy, or manipulate light for telecommunications applications, or design novel catalysts for speeding up a variety of chemical reactions,” said Oleg Gang, the Brookhaven physicist who leads this work on DNA-mediated nano-assembly.

Perhaps most exciting is a study [leads to a news release] published in Nature Materials in which the scientists added “reprogramming” strands of DNA after assembly to rearrange and change the phase of nanoparticle arrays. This is a change at the nanoscale that in some ways resembles an atomic phase change—like the shift in the atomic crystal lattice of carbon that transforms graphite into diamond—potentially producing a material with completely new properties from the same already assembled nanoparticle array. Inputting different types of attractive and repulsive reprogramming DNA strands, scientists could selectively trigger the transformation to the different resulting structures.

“The ability to dynamically switch the phase of an entire superlattice array will allow the creation of reprogrammable and switchable materials wherein multiple, different functions can be activated on demand,” Gang said.

Here are links to and citation for all three papers,

Superlattices assembled through shape-induced directional binding by Fang Lu, Kevin G. Yager, Yugang Zhang, Huolin Xin, & Oleg Gang. Nature Communications 6, Article number: 6912 doi:10.1038/ncomms7912 Published 23 April 2015

Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames by Ye Tian, Tong Wang, Wenyan Liu, Huolin L. Xin, Huilin Li, Yonggang Ke, William M. Shih, & Oleg Gang. Nature Nanotechnology (2015) doi:10.1038/nnano.2015.105 Published online 25 May 2015

Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions by Yugang Zhang, Suchetan Pal, Babji Srinivasan, Thi Vo, Sanat Kumar & Oleg Gang. Nature Materials (2015) doi:10.1038/nmat4296 Published online 25 May 2015

The first study is open access, the second is behind a paywall but there is a free preview via ReadCube Acces, and the third is behind a paywall.

Getting up to the size of a dust speck, the first ‘large’ self-assembling DNA crystals

An Oct. 19, 2014 news item on ScienceDaily describes the latest developments in ‘DNA nanotechnology’ research at the Wyss Institute for Biologically Inspired Engineering at Harvard University,

DNA has garnered attention for its potential as a programmable material platform that could spawn entire new and revolutionary nanodevices in computer science, microscopy, biology, and more. Researchers have been working to master the ability to coax DNA molecules to self assemble into the precise shapes and sizes needed in order to fully realize these nanotechnology dreams.

For the last 20 years, scientists have tried to design large DNA crystals with precisely prescribed depth and complex features — a design quest just fulfilled by a team at Harvard’s Wyss Institute for Biologically Inspired Engineering. The team built 32 DNA crystals with precisely-defined depth and an assortment of sophisticated three-dimensional (3D) features, an advance reported in Nature Chemistry.

It seems a bit of a misleading for the Wyss Institute to state the ‘team built’ the DNA crystals as they are self-assembling according to this Oct. 19, 2014 Wyss Institute news release (also on EurekAlert), which originated the news item,

The team used their “DNA-brick self-assembly” method, which was first unveiled in a 2012 Science publication when they created more than 100 3D complex nanostructures about the size of viruses. The newly-achieved periodic crystal structures are more than 1000 times larger than those discrete DNA brick structures, sizing up closer to a speck of dust, which is actually quite large in the world of DNA nanotechnology.

“We are very pleased that our DNA brick approach has solved this challenge,” said senior author and Wyss Institute Core Faculty member Peng Yin, Ph.D., who is also an Associate Professor of Systems Biology at Harvard Medical School, “and we were actually surprised by how well it works.”

The news release goes on to describe some of the issues with other self-assembly methods along with more details about the ‘DNA brick’ approach,

Scientists have struggled to crystallize complex 3D DNA nanostructures using more conventional self-assembly methods. The risk of error tends to increase with the complexity of the structural repeating units and the size of the DNA crystal to be assembled.

The DNA brick method uses short, synthetic strands of DNA that work like interlocking Lego® bricks to build complex structures. Structures are first designed using a computer model of a molecular cube, which becomes a master canvas. Each brick is added or removed independently from the 3D master canvas to arrive at the desired shape – and then the design is put into action: the DNA strands that would match up to achieve the desired structure are mixed together and self assemble to achieve the designed crystal structures.

“Therein lies the key distinguishing feature of our design strategy—its modularity,” said co-lead author Yonggang Ke, Ph.D., formerly a Wyss Institute Postdoctoral Fellow and now an assistant professor at the Georgia Institute of Technology and Emory University. “The ability to simply add or remove pieces from the master canvas makes it easy to create virtually any design.”

The modularity also makes it relatively easy to precisely define the crystal depth. “This is the first time anyone has demonstrated the ability to rationally design crystal depth with nanometer precision, up to 80 nm in this study,” Ke said. In contrast, previous two-dimensional DNA lattices are typically single-layer structures with only 2 nm depth.

“DNA crystals are attractive for nanotechnology applications because they are comprised of repeating structural units that provide an ideal template for scalable design features”, said co-lead author graduate student Luvena Ong.

Furthermore, as part of this study the team demonstrated the ability to position gold nanoparticles into prescribed 2D architectures less than two nanometers apart from each other along the crystal structure – a critical feature for future quantum devices and a significant technical advance for their scalable production, said co-lead author Wei Sun, Ph.D., Wyss Institute Postdoctoral Fellow.

“My preconceived notions of the limitations of DNA have been consistently shattered by our new advances in DNA nanotechnology,” said William Shih, Ph.D., who is co-author of the study and a Wyss Institute Founding Core Faculty member, as well as Associate Professor in the Department of Biological Chemistry and Molecular Pharmacology at Harvard Medical School and the Department of Cancer Biology at the Dana-Farber Cancer Institute. “DNA nanotechnology now makes it possible for us to assemble, in a programmable way, prescribed structures rivaling the complexity of many molecular machines we see in Nature.”

“Peng’s team is using the DNA-brick self-assembly method to build the foundation for the new landscape of DNA nanotechnology at an impressive pace,” said Wyss Institute Founding Director Don Ingber, M.D., Ph.D. “What have been mere visions of how the DNA molecule could be used to advance everything from the semiconductor industry to biophysics are fast becoming realities.”

Here’s a link to and a citation for the latest paper,

DNA brick crystals with prescribed depths by Yonggang Ke, Luvena L. Ong, Wei Sun, Jie Song, Mingdong Dong, William M. Shih, & Peng Yin. Nature Chemistry (2014) doi:10.1038/nchem.2083 Published online 19 October 2014

This paper is behind a paywall.